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Introduction

• Passive brain-computer interfaces (pBCI) 

have the potential to improve cognitive-motor 

performance in future Artemis missions

• However, pBCI must accurately classify 

mental workload using a small segment of 

brain activity (see Fig. 1)

• In this work we use an enhanced version of 

our computational model [1, 2] to predict 

mental workload with an HRI task

Methods

• Six participants completed the Rush Hour 

puzzle (two difficulty levels) with an engaged 

(RE) or disengaged (DE) robot

• EEG was collected, preprocessed, and  

segmented into 5-second windows

• Five frequency ranges were considered

• EEGs of ten channels were mapped into 

visibility graphs (VGs) and assembled as 

layers of a multiplex VG (MVG) [3]

• The edge overlap, or entanglement, of MVGs 

was computed [4]

• A support vector machine (SVM) classifier 

was trained with the computed measures to 

classify two levels of mental workload

Discussion
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• Average testing accuracy was 93% when 

robot was engaged, 83% when disengaged

• Average testing loss was 0.27 when robot 

was engaged, 0.44 when disengaged

• Significant decrease in network connectivity 

observed in frontal, central, and temporal 

brain regions when task demand increased

–Opposite trend observed for parietal region

–Observations consistent in both theta and 

high-alpha bands

• Future work:

– Assess model feasibility in a real-time 

(online) pBCI scenario

– Use MVGs to investigate dynamics of 

functional brain networks
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Fig. 1. Overview of a general pBCI system.

Results

Fig. 2. Left panel: Testing accuracy scores for an SVM classifier tasked with prediction of 

two states of mental workload associated with two levels of task demand. Right panel: 

associated testing loss scores. Legend denotes level of robot involvement.

Fig. 3. Left panel: average layer entanglement of MVGs generated from EEGs filtered 

into the theta band (4-8 Hz) under two states of task demand. Right panel: associated 

measurement for the high-alpha band (11-13 Hz). **p<0.01, ***p<0.001.
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