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Multiplex Networks for Rapid Mental Workload Classification 

• One application of pBCI is NASA space exploration 

missions (e.g., Artemis). 

• Use of AI or robotic assistance when required, with 

the objective of not depleting limited resources and 

maintaining performance.

• Passive brain-computer interfaces (pBCI) require an 

accurate method for classification of mental 

workload (MWL) using a small segment of brain 

activity.

• Classification of MWL has been demonstrated in 

previous work [1], but strong performance has not 

been shown at small sample sizes ( < 10 seconds). 

• In this work, we introduce a novel method to classify 

EEG signals (5-second windows) using the 

structural properties of multiplex temporal networks 

(MTNs).

• A multiplex network is a structure composed of two 

or more graphs, known as layers. We examine the 

edge overlap of these structures – that is, the 

tendency of layers to share the same edges.

• The simultaneous task EEG workload dataset 

(STEW) was used. Participants (n=48) engaged in 

multitasking to induce higher workload.

• Classification was performed individually on each 

participant’s data.

• 10 EEG Channels were used for feature extraction. 

The signals were filtered of artifacts and segmented 

into 5-second windows.

• Delta, theta, alpha, beta, and gamma frequencies 

were considered.

• The natural visibility graph (VG) algorithm was used 

to map a time series to a complex network [2].

• The VG of each channel is assembled into layers of 

a single MTN, and a unique MTN exists for each 5-

second period. 

• To examine the structural property of the MTNs, 

edge overlap (also called entanglement) was 

measured [3].

• These properties are fed as inputs to a vector 

machine (SVM) classifier to predict the level of 

MWL.

• In this work we have i) built upon an existing 

methodology for mental workload classification [1] 

and ii) introduced a new technique for feature 

extraction for MWL classification. 

• The main result of this work is the ability to classify 

shorter EEG segments with a high accuracy 

(≥95%).

• The best-performing classifier was the SVM with a 

polynomial kernel (95% average accuracy; average 

loss < -0.2).

• The performance of the SVM with linear kernel was 

slightly inferior to that of the polynomial SVM.

• The analysis showed the edge overlap metrics were 

discriminatory (statistically significant) between low 

and high MWL.

• Future work will focus on real-time pBCI:

– Modifications to the approach presented here.

– Polynomial vs. linear SVM

– Continuous fluctuations of MWL (not low/high binary 

states).

– Cognitive-motor tasks involving human-robot teaming.
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Fig 1. Computational model for classification of MWL. The collected EEG data is processed by means of 

filtering and segmentation. Processed signals are transformed into graphs by means of the VG algorithm. The 

VGs for all channels are then assembled into an MTN, whose properties are extracted. Specifically, the 

metrics with respect to edge overlap are computed. These are fed to ML classifiers which then predict the level 

of workload taken by the EEG.
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Fig. 2. Left panel: accuracy scores of three different SVM-based classifiers (variations of the kernel; linear 

function, polynomial function, radial-based function). Right panel: associated loss scores. Performance metrics 

are computed for each participant’s data.

Fig. 3. Analysis of brain dynamics. Left panel: average similarities of edge overlap (denoted homogeneity) in 

individual frequency ranges. Right panel: average amount of overlap in the MTN (denoted intensity). Statistical 

significance is denoted as: ***p<0.001.

Fig 4. Examples of a pBCI application for space exploration.
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