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Fig 1. Left plot: Results of repeatability (the measurement error between two data collection

sessions) across five frequency ranges, for three connectivity measures. Left plot: Results

with the easy task condition. Right plot: Associated results for correlation coefficient (𝜌).

Fig 2. Statistical analysis of LE across five EEG sensor regions (frontal, central, temporal,

parietal, occipital), presented for four frequency ranges: theta (top-left), low-alpha (top-right),

beta (lower-left), gamma (lower-right). Legend denotes MATB task difficulty. Statistical

significance: *p<0.05, **p<0.01, ***p<0.001.
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• EEG data was used from the COG-BCI database [1]

• Participants ( 𝑛 = 29 ) completed the Multi-Attribute

Task Battery (MATB) under three levels of difficulty

• EEG was preprocessed with high-pass filter and

independent component analysis (ICA)

– Note: ICA was not used for the classification

• Five frequency ranges used: theta (4-7), low-alpha (8-

10), high-alpha (11-13), beta (14-29), gamma (30-40)

• Three connectivity measures were with preprocessed

EEG: WPLI, IC, and layer entanglement (LE)

• The LE method was recently introduced [2]:

1. The natural visibility graph (VG) algorithm is used to map

an EEG time series to a complex network [3].

2. The VG of each EEG channel is assembled into the layers

of a single MVG.

3. The edge overlap between all layer pairs is computed and

assembled to a layer entanglement (LE) matrix [4].

• To assess the consistency of the connectivity metrics

across multiple (identical) study sessions, we compute

two metrics: Pearson’s correlation coefficient, and the

repeatability [5]:

• We also assessed the ability of the connectivity

metrics to classify different levels of mental workload

to the levels of task difficulty

– Ternary: three levels, binary: two levels

• Three classifiers were used: support vector machine

(three variations of the kernel), random forest, and

multi-layer perceptron

• Classification performance assessed with accuracy,

computed for each participant, with cross-validation
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Fig. 3. Left panel: accuracy scores of five classifiers (multi-layer perceptron, random forest,

RBF-SVM, polynomial-SVM, linear-SVM) tasked with predicting three levels of mental

workload. Right panel: associated scores for predicting only two levels of workload.

• Preliminary evidence was shown that the LE method

has better repeatability than other FC methods due to

lower measurement error across sessions (Fig. 1)

– However, correlation between session data was low

• For the WPLI and IC methods, measurement error

decreased as the frequency range increased

• In general, LE decreased as the level of task demand

increased in difficulty (consistent with prior work)

• The LE method had the best classification performance

in both the ternary and binary situations

• The SVM trained with a polynomial kernel achieved the

highest mean accuracy in ternary (89%) and binary

(97%) classification

• The results of classification suggest that the LE method

based on MVGs can possibly serve as a biomarker of

mental workload

• This work is still limited in that we only investigated

connectivity between two regions at a time (cortical

networking can occur between more than two)

• There were significant challenges with regard to the

computational intensity of metric processing

• To improve our understanding of the neural mechanisms

associated with mental workload, studies have used

electroencephalography (EEG) to analyze neural activity

during task completion

• Cortical dynamics of mental workload have traditionally

been analyzed through regional activity with EEG

spectral power

• This is useful; however, prior work has shown cognitive

processes involve interactions between brain regions

• To address this, functional connectivity (FC) methods

have been developed. These study the statistical

relationship between two brain regions

• Existing FC methods include imaginary coherence (IC)

and weighted phase lag index (WPLI)

• The goal of this research to investigate the ability of a

new graph-based method based on multiplex visibility

graphs (MVGs) to assess FC dynamics

• Use simulated EEG to further investigate the

properties of MVGs formed from EEG time series

• Compare the results of sensor-space and source-

space connectivity analysis using MVGs

• Investigate the potential of FC-based methods to

serve in a framework for mental workload assessment

during long-term spaceflight missions

• Use MVG-based features as inputs for real-time

decoding of mental workload in a passive brain-

computer interface
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