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Gender Differences in Computing Interest: The Role of Social Constructs in Early Paths 

 

 
Abstract 
 
Background and context: Strong academic performance, digital skills and self-assessed ability are often 
unrelated to computing interest, particularly among middle school girls, when gender is especially salient. 
Popular misperceptions of computer science may hinder identification with the field, especially if social 
and creative modalities are framed as irrelevant to authentic interest. 
 
Objective: We explore gender differences in computing interest by examining children’s enjoyment of 
digital activities. 
 
Methods: A survey of 3971 middle school students was used to create an intrinsic tech values scale, 
which was then employed in an analysis of computer class interest. 
 
Findings: In factor analysis, the historically conventional computing modalities cohere separately from 
the others. Logistic regressions show gender differences in computing interest declines 
substantially with the inclusion of the tech values scale, independent from socio-economic status, skill, 
and self-assessed abilities. 
 
Implications: Enjoyment of conventional tech modalities appear integral to early tech pathways, 
independent from ability perceptions. Our findings highlight how gendered constructions of technology 
may create status advantage for masculine identities. 
 
 
 
Keywords:  computer science interest and attitudes; digital technology modalities; perception; STEM 
education 
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Introduction 

As digital technology becomes more integral to society, the need grows for computing innovators who 

can draw from a wide array of experiences and speak up when designs are harmful. The public has 

become more aware of the ways that politics, business and social interaction are connected to digital 

technology, but it has been challenging to bring different voices to the field. For the last two decades, 

efforts have expanded to bring more girls and women to science, technology, engineering and math 

(STEM) with considerable focus on K-12 education in the United States. School curricula as well as out-

of-school learning have engaged more young people in science learning, framing STEM as core to 

communities, industry and government. Even though the proportion of high schools which offer 

foundational computer science courses steadily increased from 45 to 57.5 percent between 2019 and 2023 

(Code.org, 2019, 2020, 2021, 2022, 2023), less than one-third who take such courses are girls, a trend 

which has not changed in the last three years (Klein, 2023). Women have made significant inroads in 

biology, chemistry and math, where the proportion of undergraduate degrees conferred to women from 

1986 to 2019 rose from 27 to 40 percent (National Science Board, 2022), but only one-fifth of 

undergraduates who completed a computer science major in 2019 were women (Cimpian et al., 2020; 

Corbett & Hill, 2015; National Science Board, 2022; National Science Foundation, 2014). 

The process by which young people develop interest and confidence in science is complex, and when it 

comes to discerning computing interest in particular, much is yet unknown since data sources have been 

limited in the U.S. The availability of computing courses is highly variable in the U.S. K-12 system 

(Gallup, Inc. and Amazon LLC, 2021; Google LLC and Gallup, Inc., 2020) and recent evidence suggests 

that math and science attitudes may not fully encapsulate how young people come to identify with 

computer science (J. Chen et al., 2023; Cheryan et al., 2020; Kang et al., 2019; Lehman et al., 2017; 

Moote et al., 2020b; Zhao & Perez-Felkner, 2022), perhaps because young people first encounter digital 

devices in the private sphere. In addition to exposure and access to digital devices, socio-psychological 

processes may shape the circumstances under which children develop enthusiasm about digital 
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technology. While much important research has informed efforts to address differential treatment 

(Robnett, 2016; Rogers et al., 2021), the history of computing and gendered defaults in science may also 

affect how adults and children assign meaning and identify with various modalities of tech usage. In 

studies of adults, for example, dualisms tend to structure the value assigned to science and technology in 

such a way that programming is often assumed to be inherently “for boys” (Cheryan & Markus, 2020; 

Faulkner, 2000; Garr-Schultz et al., 2023; Wajcman, 2007). Femininity and gender roles have tended to 

enhance girls’ socialization toward valuing people, relationships and well-being to such an extent that 

engaging with computers specifically is seen as asocial, geeky and unappealing to many girls (Cheryan et 

al., 2009; Master et al., 2016). Other digital devices and modalities which include more social and 

creative uses appear to engage young women (Hamer et al., 2023; Lehman et al., 2017; Wong & Kemp, 

2018), but it is unknown how children in the key period of middle school view these activities in 

comparison to programming, separate and apart from self-assessed ability, or if they map onto gender 

identity as neatly as they have in the past. 

The present study seeks to discern children’s valuation and enjoyment of various tech activities to better 

understand how perceived matches with gender identity might be associated with interest in computing. 

Much research has focused on undergraduates in computer science, but the processes which surround 

children’s engagement with devices are active earlier in the life course. Middle school is a critical period 

because educational trajectories become more salient (DeWitt et al., 2013; Legewie & DiPrete, 2014) at 

the same time that performances of gender are particularly prized, perhaps more so than at any other time 

in the life course (Crouter et al., 2007; Williams, 2006). Children during this period may be drawn to tech 

activities which they perceive to mesh with their gender identity and avoid others that do not. This study 

explores patterns in children’s appreciation of various tech activities to evaluate if they mediate gender 

differences in computing interest overall. A focus on the meaning making around digital technology 

contributes a better understanding of how children develop interest in computing and reveals 

opportunities to bring more young people into the field. 
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Literature Review 

Theoretical Framework 
 

Bandura’s social cognitive theory suggests that experiences and self-regulatory processes shape interests 

and self-efficacy. Interest is not innate, but moderated by the meaning of the field and perceptions of fit 

for different selves (Bandura et al., 2001; Eccles, 1994; Eccles & Wigfield, 2002; Hidi, 2006; Renninger 

& Hidi, 2011). Identity is embedded in one’s social structure (Stets & Burke, 2000; Stryker & Burke, 

2000), and thus depends on multiple social supports. Socially contructed beliefs and ideology, public 

perceptions, and support structures in computer science are associated with children’s sense of belonging 

and one’s ability to identify with the field, which in turn affects motivation, interest and learning in early 

paths (Cheryan, Plaut, et al., 2013; Master et al., 2021; Master & Meltzoff, 2020). 

Social identity is associated with social activities and habits, thus connecting well-being, commitment and 

behavior. Interest and perceptions of capacity shape behavior and these outcomes are internalized, further 

shaping interest and self-efficacy in an iterative process (Tajfel, 2010). The significance of different 

activities is contextual (Puckett & Gravel, 2023) and children may identify more with tech modalities they 

intrinsically value – the pleasure derived solely from the pursuit – rather than what they might get in 

exchange (Ryan & Deci, 2000; Wigfield & Eccles, 1992). Tech enthusiasm and enjoyment is likely 

instrumental in early computing paths especially since skills and attitudes towards learning computing 

may be mutually reinforcing, associated with motivation, risk-taking, experimentation and practices that 

are generative in computing paths (Gee, 2003; Klimmt & Hartmann, 2006).  

Social Constructions of Computer Science  

Patterns in children’s interest and enjoyment of technology are affected by broader societal 

categorizations, constructions and dualities that make sense of technology (Clegg, 2001; Faulkner, 2000; 

Kelan, 2007; Turkle, 1984; Wajcman, 2013). For example, Steve Jobs and Bill Gates are more commonly 
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known than Grace Hopper or Joy Buolamwini perhaps because the latter are less congruent with 

culturally shaped notions of what it means to be tech-savvy. This phenomenon may reflect socially 

constructed beliefs around technology, and is always subject to change. When computers like the room-

sized ENIAC sorting machines were built for data retrieval beginning in the 1940s, coding required 

considerable skill and was also constructed as “clerical” and feminine. But as computer processing speeds 

increased, programming skills became aligned with control, a means by which institutions could 

increasingly wield power and profit (Ensmenger, 2010, 2012). The original personal computers and 

gaming systems came to be marketed to boys in the 1980s, and new summer computer camps and classes 

filled primarily with boys (Hess & Miura, 1985; Thompson, 2019). Representations in film and television 

of the “boy hacker icon” grew in popularity, a culmination of brilliance, a rebellious personality, and 

“love” of the design and power of the computer (Margolis & Fisher, 2003; Turkle, 1984). With parallels to 

the gender binary, the distinction between occupations that emphasize people and those which emphasize 

things (technology) has often been constructed as mutually exclusive (Cejka & Eagly, 1999; Lippa, 1998) 

even though computing occupations in reality require collaboration, anticipation of user needs, and 

creativity (Charles et al., 2014; Faulkner, 2000; Sørensen & Berg, 1987). While changes are underway, 

computer science at the undergraduate level has historically followed this pattern, emphasizing the 

technical aspects of analytical problems and less priority and status associated with real world examples 

and prosocial interests (Faulkner, 2007; Margolis & Fisher, 2003; Vrieler et al., 2021). 

If the people/things dualism persists in the public imagination, it may be limiting to children since 

computing is constantly advancing and there are few formal support structures in place to indicate or 

clarify the reality of these paths. Computer science courses are rarely part of core middle school 

curriculum (Code.org, 2023; Google LLC and Gallup, Inc., 2020; Puckett & Gravel, 2020), yet digital 

technology is now ubiquitous material culture in much of the United States. Some research suggests that 

children are often not aware of the social or creative aspects of computing occupations (Grover et al., 

2014), believing that computer scientists typically work alone (Hansen et al., 2017), though more recent 
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evidence suggests evidence of change (Opps & Yadav, 2022). The idea that computer science is an 

isolating career may conflict with traditional notions of femininity more so than masculinity and lead to 

disinterest in computing amongst girls (Cheryan, Drury, et al., 2013; Master et al., 2016; Starr & Leaper, 

2023; Wong, 2016). New scholarship suggests that beliefs about computer science can change over the 

life course, however. In a cross-sectional study of children who engaged in coding activities on a weekly 

basis, endorsement of computer science interest and ability stereotypes tended to favor boys in third 

grade, but became somewhat more egalitarian in grade eight (Tang et al., 2024).  

Perceiving Computer Science Fit 

Constructs which guide the conceptualization and discernment of computing interest may be more likely 

to be internalized when they appear to map onto other aspects of the self. Among other lines of inquiry, 

gender schema theory explores the idea that the roles and beliefs associated with sex categories can shape 

how people process information (see Weisgram, 2016). As in the case of computing, gender conformity 

can translate into status advantage for those with masculine identity (Cheryan & Markus, 2020; Faulkner, 

2000; Garr-Schultz et al., 2023; Thebaud & Charles, 2018). This takes place in a variety of contexts. For 

boys, it may be a significant advantage to see masculine-typed people doing computer science online or in 

films, especially if such portrayals appear empowering and fulfilling. More often than girls, boys report 

seeing people like them doing computer science in popular media (Google LLC and Gallup, Inc., 2016a). 

This does not mean that children passively accept or internalize common beliefs about computer science. 

Over time, the feedback children receive for their own behaviors can shape their personal gender 

schematicity, the extent to which they process information using a gendered framework. The degree to 

which children come to endorse gender stereotypes, such as the idea that boys as a group are more 

interested in computer science or engineering, can dampen girls’ personal interest and sense of belonging 

in these fields. This has been shown to be the case for children as early as the first grade (Master et al., 

2021, 2023). 
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Considerable evidence suggests that children develop cultural, social and economic resources which are 

likely influenced by the aforementioned constructions of computing. More so than girls, boys appear to 

participate in more STEM activities at home and receive more parent support for STEM interest, a strong 

correlate with child enthusiasm for such paths (Archer et al., 2015; Hill et al., 2017; Liu & Schunn, 2020; 

Moote et al., 2020a). Parent support for STEM enthusiasm may be especially fruitful in households where 

caregivers have higher educational attainment (Starr et al., 2022). Boys also participate in more STEM 

camp experiences than girls, especially if they are from higher SES households (Liu & Schunn, 2020). 

Since computer learning is often done informally by students themselves, those who have attitudes 

compatible with a growth mindset (Bian et al., 2017; Yeager & Dweck, 2012) and interpersonal skills to 

seek out peers and adults who are supportive and knowledgeable may be more likely to develop social 

networks which validate their interests across multiple settings (Eklund & Roman, 2017; Godec et al., 

2020; Puckett, 2022). These social bridges can be challenging to build, however, when some adults view 

non-traditional digital modalities such as social media, videogaming, or smartphone expertise as 

irrelevant to computing paths (Paino & Renzulli, 2013; Rafalow, 2020). Children with computer science 

role models are much more likely to consider computing paths, but on average girls are less likely to have 

them (C. Chen et al., 2024; Gallup, Inc. and Amazon LLC, 2021). Especially in middle school, peers play 

an important role in the development of academic interests, and boys may be advantaged by their same-

gender friendships which have a higher likelihood of supporting computing enthusiasm given the 

aforementioned masculine framing of computer science (Gauthier et al., 2017; Raabe et al., 2019; Robnett 

& Leaper, 2013).  

The people/things duality associated with computing has perhaps brought about a popular assumption that 

boys are advantaged in what is perceived to be an undifferentiated masculine domain that primarily 

consists of analytical problems, coding and fixing. However, the perceived fit between tech activities and 

gender roles has likely increased in complexity as digital technology is currently more ubiquitous and 

varied than in the past. For example, even though sociability has not been congruent with common 
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stereotypes of computer science, social validation is likely very influential in STEM paths. Discussions of 

science in particular are instrumental in facilitating relationships, learning and connecting science 

pathways (Archer et al., 2012; Dou & Cian, 2021; Moote et al., 2020b), and the growing popularity of 

social platforms which emphasize tech design and walkthroughs such as Twitch.tv and Switch suggests 

that the people/things dualism may be less relevant to computing paths now than in the past. Those who 

engage socially around technology may be advantaged since learning computing often requires that 

children connect knowledge and practices which are otherwise isolated both in and out of school, in 

physical space and online (Ito et al., 2020; Kang et al., 2019; Livingstone & Sefton-Green, 2016). 

Engaging in computing activities with peers both inside and outside of school is strongly associated with 

intent to major in computer science (Gallup, Inc. and Amazon LLC, 2021) and may be particularly 

beneficial for girls (C. Chen et al., 2024). Peer support networks appear to influence how girls perceive 

STEM and its compatibility with femininity (Raabe et al., 2019; Robnett, 2016), perhaps critical for more 

masculine-typed fields such as computing. Negative peer treatment, implicit gender-science stereotypes 

and gender discrimination endangers girls’ sense of connectedness with school and dampens motivation 

for academic achievement in STEM (Rogers et al., 2021). 

The creative aspects of computing often appear incongruent with computer science stereotypes as well. 

This is arguably the result of a long process of making programming more rational, less autonomous, and 

gendered (Ensmenger, 2010, 2012; Margolis & Fisher, 2003; Turkle, 1984). Regardless of gender identity, 

children generally find the creative aspects of technology appealing, and this may especially be the case 

for girls (Hamer et al., 2023; Holmegaard et al., 2024; Wong & Kemp, 2018). Women attracted to 

computing majors tend to see themselves as more artistic than men in computer science and other women 

in STEM (Lehman et al., 2017) and undergraduate curriculum which incorporates creative aspects tends 

to have higher retention rates for women and men (Svedin & Bälter, 2016). Video production, playing and 

exploring the limitations of devices to design computer animation, games, wearable technology and 
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“glitch music” are not only associated with skill-building, but tend to attract girls as well as boys (Master 

et al., 2017; Nugent et al., 2019; Pinch & Bijsterveld, 2003; Watkins et al., 2018). 

This Study 

Informed by scholarship which suggests that computing interest may be uniquely shaped and rewarded in 

ways that map on to gender identity, this project evaluates patterns in children’s enjoyment of specific 

tech activities, or “intrinsic tech values” as a means of better understanding how they come to identify 

with computing. We examine students in middle school, a key period for academic pathways, when 

decisions are often made about course taking in high school (Legewie & DiPrete, 2014) and when gender 

is especially salient in the life course (Crouter et al., 2007). While some studies have used similar 

frameworks (Mahadeo et al., 2020; Werner & Chen, 2024), few have incorporated a range of digital 

modalities that may be especially important for children. Beyond simply using various forms of 

technology, children’s enthusiasm for various tech activities (social media, programming, surfing the web, 

exploring phone apps, and troubleshooting) may be more strongly associated with interest, motivation and 

the social self. They may interact with gender identity as well given the historically gendered framing of 

science (Eccles & Wigfield, 2020; Myint & Robnett, 2024; Ryan & Deci, 2009). Even though all tech 

modalities are associated with skill and confidence to a degree, some may be more closely aligned with 

popular constructions of computing, perhaps similar to the dualities that emphasize programming and 

fixing over social and creative uses.  

Hypotheses 

1. Out of a range of computing activities, programming, fixing and solving tech problems will be 
clustered together in factor analysis of intrinsic tech values. 
 

2. On average, girls in the survey will be less likely to answer “yes” in comparison to boys when 
asked if they would like to take a class about computers. 
 

3. Including the intrinsic tech values scale in models of computing interest will reduce the gender 
difference in computing interest and do so independently from computer skill and efficacy.  
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In the analysis which follows, we assess hypothesis 1 with factor analysis and then create a scale using 

the identified underlying construct. After evaluating the gender difference in computing interest using 

bivariate analysis (hypothesis 2), we then use multivariate regression analysis to assess the association 

between the scale, gender and interest in a computer class (hypothesis 3). We also include measures of 

computer skill and computer efficacy as socio-psychological perspectives suggest that these aspects are 

associated with interest in an academic domain (Bandura et al., 2001; Eccles, 1994; Hidi, 2006; 

Renninger & Hidi, 2011) and found to be associated specifically with computer interest (Mahadeo et al., 

2020; Werner & Chen, 2024). We control for household socio-economic status (SES) because, as 

mentioned above, previous scholarship suggests a relationship with social class and STEM paths (Liu & 

Schunn, 2020; Starr et al., 2022). We also control for grade level as interest may decline in the early teens 

(Ghasemi & Burley, 2019; Google LLC and Gallup, Inc., 2017; Lofgran et al., 2015).  

Children’s use and appreciation of digital technologies based on data from the survey period (Fall 2015 

and Spring 2016) likely inform present and future processes as well. While reports show that the 

proportion of middle schools which offer foundational computer science courses has increased since our 

surveying (Code.org, 2023), research findings demonstrate that children’s current perceptions of computer 

scientists are likely still similar. For example, Gallup showed that 93% of students grades 5 through 12 

agreed that “computer scientists help people” (Gallup, Inc. and Amazon LLC, 2021). This is very similar 

to the proportion of students affirming, “people who do computer science make things that help improve 

people’s lives” in 2015 and 2016, a result which did not differ by gender (Google LLC and Gallup, Inc., 

2015, 2016b; Wang et al., 2017).1 The gender difference in computer science interest has also remained 

quite large and consistent according to national surveys – at about 20%.2 Our study may shed light on the 

 
1 Skewed to slightly older children than the 2021 survey, Google and Gallup’s 2015 and 2016 surveys found that 
93% of boys and girls grades 7 through 12 agree that “people who do computer science make things that help 
improve people’s lives.” 
2 In a nationally representative survey of students from 2021, 62% of 5th through 12th graders reported being 
“interested in learning (or learning more) about computer science”, a gender difference of 19% (“very interested” 
and “interested” categories combined 53% for girls and 72% for boys) (Gallup, Inc. and Amazon LLC, 2021). The 
gender difference in an analogous question, “how interested are you in learning computer science in the future” in 
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finding that as more high schools offer foundational computer science courses, the gender difference in 

enrollment has remained substantial – with boys currently twice as likely as girls to take them (Code.org, 

2023; Klein, 2023). 

Methods 

Sample and Data Collection 

This study reports analyses of a sample of middle school students in the Southeastern United States. The 

qualitative results were collected between November 2013 and October 2014, consisting of ten focus 

groups in classrooms across two schools which explored students’ views of computing. In each of the two 

schools, one all-girl and one all-boy focus group was conducted in the 6th and 8th grades. The other two 

focus groups in these grades were mixed gender. One mixed-gender group was also conducted in the 7th 

grade for each of the two schools; there were not any same-gender focus groups done in the 7th grade. For 

forty-five minutes eight to ten middle school students met in each group for a total of 93 students (in total 

45 boys and 48 girls). Group moderators were matched to focus group participants by race and gender to 

the extent possible. Focus groups followed an interview guide to ensure that all topics are covered, but the 

moderator also had discretion to probe on novel threads. Students were given $10 (cash) and a snack for 

participation. 

The moderators asked questions that aimed to capture students’ current computing practices and 

preferences, and, importantly, the language they use to describe their activities. All focus groups were 

asked the same questions, with emphasis on constructs for the purpose of survey design. Examples of 

questions asked included: How do you use the computer? What kinds of things would someone who is an 

expert in computers know? Tell us how you decide which software is right for a given use, such as for 

 
2016 was 22% (“very interested” 16% for girls and 34% for boys) for children in grades 7 through 12 (Google LLC 
and Gallup, Inc., 2016a). 
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email? What do you do for fun with computers? What don’t you like about computers? Do you talk to 

your friends about computers?  

In-depth interviews of about 45 minutes were also conducted with 24 students in schools, again matching 

participants by race and gender to the extent possible. Students were given $10 (cash). The questions for 

these interviews were based on analyses of focus group data. The individual interview format allowed for 

individualized probing of background and contextual factors which were then transcribed and coded. 

The focus groups and interviews were then recorded and transcribed. The textual data was coded 

according to standard qualitative analytic procedures using NVivo, a qualitative data analysis software 

package. The coding involved both inductive and deductive passes, with the latter focusing on 

participants’ computing practices and preferences, and their gendered perceptions of these practices 

(Strauss & Corbin, 1998). During initial open coding, inductive coding was performed. Pattern coding 

then identified emergent themes, repeated topics, arguments and phrases. 

The survey instrument was developed in light of the findings of the qualitative phase. After focus groups 

and survey piloting in early 2015, the survey was administered in classrooms in Fall 2015 through Spring 

of 2016. A paper-and-pencil format was used in order to avoid some of the signaling around digital 

technology in the case of online surveys. This resulted in an initial sample of 5,235 students. Our survey 

methodology has been published previously (Ashlock et al., 2022, 2023) so we provide an abridged 

summary here. 

Survey respondents derive from a stratified sample of middle schoolers in three school districts in the 

Southeastern United States. We focused on obtaining a sample that was diverse and large enough to allow 

us to answer our research questions with sufficient statistical power (Cohen, 1992). The selection of 

schools was based on the proportion of children qualifying for reduced lunch as well as proportions of 

White, Black, Hispanic, and Asian students according to publicly available information. We gained 

permission to survey 15 schools in total, including 13 public schools (magnet and nonmagnet) and 2 
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private schools. We aimed for a near census of the schools to which we gained access and, on average, we 

sampled a median of 83 percent of the school populations according to publicly available information 

about each school.3 The proportion of White, Black, Hispanic, and Asian students surveyed in each school 

very closely resembles each school’s publicly reported information. Because the school district requires it, 

all students had basic computing classes available to them. 

A consistent analytic sample was specified with information for all models. Listwise deletion reduced our 

sample by 24 percent (from 5235 to 3971) but did not significantly change the mean SES, the gender 

differences across the models, nor the substantive results. Demographic characteristics of the sample are 

described in Table 1. Although not asked on the survey, overall 36 percent of the sample is estimated to 

receive reduced cost lunch according to publicly available information about school demographics. 

Typically underrepresented in surveys of this kind, Black students comprise 17.1 percent of the data set 

(677 respondents), Hispanics 12.1 percent (479 respondents), Asian Americans 10.8 percent (430 

respondents) and multi-racial children 15.6 percent (620). White students comprise 44.5 percent of the 

data set (1765). 

[INSERT TABLE 1 ABOUT HERE] 

Measures 

Dependent variable 

Our measure of computing interest is derived from a survey item in our questionnaire: “In the future, 

would you like to take a class in school or after school about computers?” (Check one: Yes/No). This 

measure is similar to Master, Cheryan and Meltzoff’s “enrollment interest” for high school students 

(2016) and some of the aforementioned Gallup surveys (i.e. “are you interested in learning (or learning 

more) about computer science?”) (Gallup, Inc. and Amazon LLC, 2021). Our measure is directly related 

 
3 Information available upon request. 
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to education, future oriented, and concrete. It was also placed very early in the questionnaire to maximize 

the response rate. 

Independent variables 

The intrinsic tech values scale draws from Eccles expectancy-value theory which argues that decisions 

regarding course enrollments are, in addition to usefulness and importance, influenced by the “enjoyment 

one gains from doing the task” (Wigfield & Eccles, 2000, p. 72) and important for children who may not 

distinguish intrinsic enjoyment from extrinsic value (Ryan & Deci, 2000; Wigfield & Eccles, 1992). 

Occasionally termed “interest value” (Eccles, 2009; Eccles & Wang, 2016), our measure derives from a 

battery of survey items respondents were asked about various digital tasks they enjoy. Driven by data 

collected during the aforementioned focus groups and student interviews as well as a review of the 

literature, the research team developed a survey instrument for field testing in one school (N=298). 

Analysis of the pilot survey honed the battery further, placing some constructs into separate items, 

deleting and adding others.4 Informed by the pilot survey analysis, fourteen items were included in the 

finalized battery. They include making friends online, shopping online, consuming visual media, surfing 

websites for fun, creating media, as well as programming, fixing devices, exploring apps, exploring 

programs and talking about technology (see Figure 1 for an excerpt of the battery). Each item was 

answered on a scale of 1 to 6 and then reverse coded such that higher values indicated more enjoyment 

and lower values indicated less enjoyment or no participation, a combined measure.  

[INSERT FIGURE 1 ABOUT HERE] 

Since the intrinsic battery items are ordinal, they are not normally distributed. Factor analysis based on 

polychoric correlations was chosen as this may better reproduce the measurement model. In addition, 

some of our individual items had high skewness and kurtosis which can affect EFA. The descriptive 

 
4 For example, given the cultural meanings of videogames, a separate battery for gaming activities was created. (For 
more information, see Ashlock et al. (2023).) 
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statistics for the items and the polychoric matrix can be found in the Supplemental materials (Table S1 

and S2, respectively). 

Three outliers were identified with Mahalanobis distance (D2) values over the threshold of 59.7 but a 

review showed no obvious explanation for why these values were discrepant. A visual scan of the 

polychoric matrix found many coefficients were greater than .30 so Bartlett’s test of sphericity and the 

Kaiser-Meyer-Olkin measure of sampling adequacy (KMO) were used. Appropriateness of a correlation 

matrix for EFA was tested. The determinant was reported to be 0.014. Barlett’s test statistically rejected 

the hypothesis that the correlation matrix was an identity matrix (chi-square of 20864.888 with 91 degrees 

of freedom) at p < .001. The KMO measure was acceptable at 0.88. The purpose of this study was to 

uncover the latent structure underlying the 14 intrinsic tech value items. Accordingly, a common factor 

model (EFA) was selected. 

An iterated principal factor extraction was conducted with initial communalities estimated by squared 

multiple correlations which are the default in the statistical software used, Stata. This assured that the 

estimation method had robustness and reduced sensitivity to the nonnormality of the intrinsic values 

battery. 

To determine the number of factors to retain from the battery, initial EFA was conducted to allow 

computation. The postestimation KMO value for the polychoric matrix was .88, almost identical to the 

KMO from the Pearson matrix. Next, parallel analysis (PA) was done using the fapara user-contributed 

package and the minap package. When the eigenvalues from random data were compared to the 

eigenvalues from the intrinsic tech values data, the third random eigenvalue was larger than the third real 

eigenvalue. Thus, parallel analysis indicated that two factors should be sufficient (see figure S1 in 

Supplemental materials). The minap procedure also suggested that 2 principal components should be 

extracted. The intrinsic values items are thought to measure different aspects of tech interest, perhaps 

distinguishing between the more conventional constructions of computing identified in the review of the 

literature (“technical”), as well as casual exploration online and social modalities. In theory, then, there 
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should be three factors. However, PA and MAP suggested two factors would be sufficient, and the scree 

plot signaled three or four factors. Therefore, models with four, three and two factors were sequentially 

evaluated for their interpretability and theoretical meaningfulness. The final EFA (the two factor model) is 

presented here and the other models are included in the supplementary materials. 

An oblique rotation was selected because it is well suited for the intercorrelations among social science 

variables. The two-factor model converged properly, producing reasonable parameter estimates, and 

accounted for 47% of the total variance before rotation (see table 2, S3 and S4). The first factor exhibited 

eight salient loadings in agreement with technical values. The second factor exhibited six loadings which 

combined exploration (casual surfing of the internet and trying out apps) with the aforementioned social 

items. There were low communality scores for items 1 (trying out apps), 5 (looking up things just for 

fun), 7 (shopping online), 11 (creating songs, videos, etc.) and 9 (watching movies, videos and listening to 

music online) at .36. The average root mean squared residual (RMSR) was .04 which is acceptable, and 

interfactor correlation of .34 was low enough to pose no threat to discriminant validity.5 However, the 

theoretical underpinning of the factors were not intuitive. Additional survey questions may be needed to 

better discern the underlying constructs. For example, exploring the internet, trying out new apps, 

consuming video content and creating visual and audio media may each be associated with different skill 

sets and levels of efficacy. The second factor also had a Cronbach’s alpha (reliability) of .62, which is 

considered rather weak for scale construction. A variety of variable combinations were attempted, but the 

reliability of the second factor did not improve. 

Across the three tests, the EFA analysis showed that the eight items containing more conventional tech 

values consistently and generally cohered across and, with the exception of looking up instructions (6) 

and creative uses (11), had good communality. As displayed in Table 2, 75% of the salient loadings (six 

 
5 Note: Both the three and two factor structures were robust to rotation method (promax and oblimin) as well as 
extraction method (iterated principal factor and maximum likelihood). Further, similar results were obtained when 
the potential outliers identified were omitted. Finally, results did not differ when a Pearson correlation matrix was 
submitted to EFA and an oblique promax rotation applied. 
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out of eight) were good to excellent in magnitude (Comrey & Lee, 2013) in a simple structure 

configuration consistent with the theoretical underpinning of the construct.6 This includes six items: 4, 8, 

10, 12, 13, and 14 (solving tech problems, programming, talking about technology, learning about device 

specs, discussing how to troubleshoot, and exploring new computer programs) and is interpreted further 

in the Results section. The internal consistency for the items measured with Cronbach’s alpha is .86, 

which is considered satisfactorily reliable (DeVellis, 2003). The McDonald’s omega coefficient for these 

items was also .86.  

[INSERT TABLE 2 ABOUT HERE] 

A scale was then created from the items identified in the first factor, summing the six items and then 

averaging them. We call this the intrinsic tech values scale and it has a range 1 to 6. In the regression 

analyses, the scale is standardized so that it can be more readily compared to the effect of the other 

variables in the model. 

Academic efficacy is a measure which evaluates perceived competence in a specific field of academic 

study and was developed by Albert Bandura et al. (2001). Such measures have been found to have 

significant association with STEM interest (see Perez-Felkner et al. (2017)) and taking computer classes 

(Beyer, 2014). We emulate Bandura’s wording and scale. Students in the survey were asked: “Please rate 

how well you feel you are able to do each of the things described below” with the numbers 1 through 10 

listed for them to circle. “Learn math,” “learn science,” and “learn computers” were included in the list of 

five items.7 These are single-item measures (not derived from factor analysis), future-oriented and 

specific to academic learning of math, science and computers. 

 
6 Item 6 loads on the first factor, but is not as robust as the other items describing conventional tech uses. There may 
be different levels of skill or interest associated with looking up instructions in comparison to implementing and 
using such instructions (item 4 – solving tech problems). 
7 See Ashlock et al. (2022) for more detail about these survey items. 
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Control variables 

Our task-based skill measure is a scale generated from a list of 12 tasks that students reported to have ever 

done on a computer (0 to 12). The raw score for this test was established by counting how many out of the 

12 items the participants ticked off. Self-reported task familiarity constructs have good predictive power 

of actual skills completed in a lab environment (Hargittai, 2005, 2008; Hargittai & Hsieh, 2011; Hargittai 

& Kim, 2010). Our task-skill index consists of a battery of self-reported literacy questions regarding the 

use of software, hardware, and the internet and is similar to a more recent survey, the National 

Assessment of Educational Progress Computer Access and Familiarity Study (National Assessment of 

Educational Progress (NAEP) 2019:23). An exploratory factor analysis of the task-skill battery (using a 

polychoric matrix since these are dichotomous items) failed to identify separate factors and is thus treated 

as a one factor. The Cronbach’s alpha for the tasks is .76 and McDonald’s omega is as well. Because self-

reported tasks may not accurately reflect actual skills, readers should approach the interpretation of the 

results with caution. 

Math grades and science grades are self-reported. Higher values indicate As, lower values indicate Ds, 

etc. Self-reported grades are adequate measures of academic performance as students tend to accurately 

respond to such questions in surveys. It should be noted that respondents may inflate their performance 

when such an item is sensitive, as in the case that they are lower performing (Rosen et al., 2017). Readers 

are advised to take these issues into account. 

Since other research finds declines in computing and science interest across the middle school grades 

(Google LLC and Gallup, Inc., 2017; Lofgran et al., 2015), dummy variables for grade level are also 

included, with 6th grade as the omitted category. 

Gender is a dichotomous variable in which self-identified girls were coded as 1 and self-identified boys  

coded as 0. Our study is limited by this measure in some respects due to its binary categories (Weisgram, 

2016). 
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Socio-economic status (SES) is a composite adapted from the measure of SES in PISA (Programme for 

International Student Assessment 2014:16), a well-known cross-national comparison of 15-year-old 

student achievement. PISA combines parents’ highest education, highest occupation socio-economic 

index, and an index of 23 household items intended to measure wealth, cultural possessions, and 

educational resources. The weights assigned to each component are empirical; they come from the 

principal component analysis. We emulate the PISA measure of SES, the only exception being that we use 

a different index in the place of home possessions. More detailed information about the SES measure can 

be found in Ashlock et al. (2022). 

Variables describing race and ethnic origins derive from an item on the survey, “What is your race or 

origin? Check all that apply” with the following categories: “White,” “Black or African American,” 

“Hispanic/Latino/Spanish,” “Asian (including India/Pakistan),” “Native American” and “Other. Specify:.” 

Our measure is similar to the combined race and ethnicity question described in Krogstad and Cohn 

(2014). Only those respondents who placed themselves in the single race category were coded as such. 

The “Other” category was checked for answers consistent with multi-racial identity. Children who 

indicated “White” and also reported European American lineage in the “Other” section were coded as 

White. The “other” category consists of Native American and multiracial children. Readers thus need to 

be careful when interpreting this category or making comparisons to it. The “race” categories in all 

regression analyses are dummy variables. The omitted category is “White.” 

The computer ownership measure is constructed from a question on the survey which asked respondents 

if they own a computer and if they have their own device, if they shared it with people in their family, or 

if they didn’t have the device. Answers were coded as “owning,” “sharing,” or “not having” and 

ambiguous answers coded as missing. 

Dummy variables for cell phone, tablet and game console ownership are also included in the models to 

distinguish students who do not participate in the computing engagement activities with students who 



21 
 

own devices but do not use them. The coefficients are not reported in the models as they are not 

statistically significant. A note is included in the table for readers. 

Missing Values 

Stata applies listwise deletion to observations with at least one missing value in any variable. We 

identified a consistent analytic sample that included data for all models. The following descriptive 

statistics, correlations and regression analyses are based solely on respondents who have non-missing data 

across all models. While this reduces our sample size overall by about 24 percent (from 5235 to 3971), 

the substantive conclusions reached did not change. The decision was made against imputation because 

the missing data is likely not random and could lead to biased parameter estimates (Lodder, 2014). 

Analytical Strategy 

Our analysis takes place in three main parts. First, factor analysis of the intrinsic tech values battery will 

establish underlying constructs (hypothesis 1). Second, bivariate analyses evaluate the extent of the 

gender differences in the dependent variable (hypothesis 2). Last, multivariate analyses using logit 

regressions evaluate gender differences in computer class interest, net of the intrinsic tech values scale, 

computer skill, grades, and self-assessments of ability in computing (hypothesis 3).  

Results 

Exploratory Factor Analysis of Intrinsic Tech Values 

The exploratory factor analysis offers insight into middle schoolers’ intrinsic tech values. Of the fourteen 

survey questions (see Figure 1 for an excerpt), factor analyses revealed a robust construct deriving from 

six items: exploring new computer programs, solving tech problems, discussing how to troubleshoot my 

computer or phone, learning about the specs of my phone or my computers, programming or hacking, and 

talking about computers or technology. These items were used to create the six point scale described in 

the Methods section, above.  
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The factor analysis results (Table 2) show that the questions pertaining to some social and creative uses of 

technology do not correlate well with the other valued modalities, congruent with the people/things 

dualism discussed above (Faulkner 2000). More nuanced patterns are apparent as well. Talking about 

technology and discussing troubleshooting involve social interaction but are linked to the conventional 

tech modalities. While the framing of digital technology is often one of a socially isolated individual, this 

finding suggests there is overlap. These results generally support hypothesis 1. 

Bivariate Analyses 

Moving to the bivariate results, we find support for some of the predicted gender differences and show 

evidence of internal and external validity (Table 3). About half of the children in our sample are interested 

in a computer class. Notably, there is a substantial gender difference; a minority (39%) of girls and a 

majority (67%) of boys would like to take a class in computers. These findings support hypothesis 2. 

The children in our sample on average score 3.2 on the intrinsic tech values scale (1 to 6). On average, 

girls score significantly lower on the scale (2.7) and boys score higher (3.7) (t=23.47; p <.00001). The 

difference is .7 standard deviations (SD) in the scale.  

Computer efficacy is lower for all respondents in comparison with math and science efficacy (6.75 

compared with 7.78 and 7.65, respectively, on a scale of 1–10). Also, the gender difference in computer 

efficacy is larger in comparison with math and science efficacy. In contrast, there is not a significant 

gender difference in math grades. Girls report significantly higher science grades than boys, though the 

difference is small (about one-tenth of a shift between letter grades, 0.08).  

There are also gender differences in our measure of task-based computer skill. The average girl in our 

survey reported that they had done 0.63 fewer tasks on a scale of 0 to 12 (or −0.22 SD), a smaller gender 

difference than found in our intrinsic tech values scale. 

[INSERT TABLE 3 ABOUT HERE] 
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Correlation Matrix 

Bivariate correlations for the independent variables are shown in Table 4. The intrinsic tech values scale is 

significantly correlated with computer class interest at .48. The scale is also correlated with self-

assessments of computer ability (.50) and computer skill (.38), congruent with prior research (Beyer, 

2014; Mahadeo et al., 2020). There are robust relationships between math and science efficacy, grades 

and SES, but the intrinsic tech values scale is not correlated with math and science grades and has modest 

association with math and science efficacy (correlated at .09 and .13, respectively). This is consistent with 

Kang et al. (2019) which found that while home and out-of-school science activities were correlated with 

middle schooler’s interest in applied physical science interest (including computer science interest), 

school-based science activities were not. 

Over the course of the middle grades, it appears that science efficacy slightly decreases, as found in 

previous work (Ghasemi & Burley, 2019; Lofgran et al., 2015). Perhaps consistent with skill 

accumulation over the course of middle school grades, task-based computer skill is significantly and 

positively related to grade in school (at .21). With controls for digital device usage, we previously found 

that girls’ computer efficacy is also declining over the course of middle school despite overall 

accumulation of skill (Ashlock et al., 2023). 

[INSERT TABLE 4 ABOUT HERE] 

Multivariate Analyses 

To evaluate the extent to which the intrinsic tech values scale and computer efficacy are associated with 

the gender difference in computer class interest (hypothesis 3), we use logistic regression analysis (Table 

5). Comparing models 1 and 2, the addition of the intrinsic tech scale reduces the gender difference by 

one-fifth (z = -7.97; p< .000) and improves model fit overall (chi-square = 593.88, p<.00001). The 

unconstrained model (3) shows that while computer efficacy improves model fit further (chi-square = 
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256.61, p<.00001), the intrinsic tech values scale is independently associated with computing interest.8 

Combined, the intrinsic values scale and computer efficacy measures significantly reduce the gender 

difference by more than one-fourth (comparing models 1 and 3; chi-square = 850.49, p<.00001). The 

addition of the intrinsic tech values scale (z = 17.41; p<.000) and computer efficacy (z = 15.27; p<.000) 

both more than double the odds of a student reporting interest in a computer class.  

Significant gender interaction effects were also found (see model 4 in Table 5). The effect of intrinsic tech 

values was stronger for girls than for boys. One standard deviation increase in the intrinsic tech values 

scale (roughly the equivalent of moving from a 4 to slightly over a 5 on a scale of 1 to 6) increased boys’ 

odds of computer class interest by 108% compared to none (β = 0.93, se = 0.07, p < 0.001, OR = 2.08), 

whereas for girls it increased the odds by 225% (exp(0.93 + 0.25) = 3.25). In contrast, boys appear to get 

more of a boost than girls from computer efficacy. One standard deviation increase in computer efficacy 

(roughly the equivalent of moving from 6 to an 8 on a scale of 1 to 10) increased boys’ odds of computing 

interest by 153% (β = 0.73, se = 0.08, p < 0.05, OR = 2.53) while it boosted girls’ interest less at 63% 

(exp(0.73 - 0.24) = 1.63). Post-hoc testing showed that all of the effects were significantly different. 

Together, these results support hypothesis 3. 

[INSERT TABLE 5 ABOUT HERE] 

Discussion 

This project was motivated to better understand how children in the key period of middle school come to 

identify with computing, especially since misconceptions of computing are persistent. Derived from 

factor analysis, our intrinsic tech values scale appears to reduce the gender difference in computer class 

interest independent from computer skill and efficacy. This is the case even though the girls and boys in 

 
8 As predicted by Eccles (2011), there is a statistically significant interaction between computer efficacy and the 
intrinsic tech value scale, though it is negligible (10% - not shown). This suggests that these are largely separate 
constructs.  
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our sample have similar computer skills and math grades. Prior studies have found patterned distinctions 

between social and technical uses of technology, and we find some parallels in the results presented here. 

Although we lack direct evidence of the social constructions themselves, our findings indicate patterns in 

how children perceive the enjoyment of different tech modalities, likely influenced by their sense of 

usefulness or relevance to their interests. Previous work has suggested that these groupings can 

exacerbate gender differences in interest as the traditional masculine framing of science offers less 

validation for social uses of technology, and girls often identify with such modalities (Cech, 2015; 

Faulkner, 2000; Margolis & Fisher, 2003). Our findings thus speak to the construction of computing field, 

how it has been framed and communicated over time, and the current state of computer education in the 

U.S. We show that the typical measures used to evaluate interest in computing such as grades and math 

efficacy may not fully capture how children come to see themselves in this path, as the meaning of digital 

technology is highly varied amongst different modalities in the public and private sphere, subject to 

gender differentiated feedback.  

Despite significant gains in the proportion of women that major in STEM fields overall, children’s 

intrinsic tech values are patterned in ways which suggest that many of the longstanding meanings 

attributed to digital technology appear resistant to change. Combined with popular notions of men’s 

inherent ability, conceptualizations tend to frame authentic interest in computing as primarily consisting 

of programming, to the exclusion of prosocial interests (Dou et al., 2020; Master et al., 2016). The 

people/things dualism has tended to map on to femininity and masculinity, with social modalities being 

less valued and considered peripheral to true interest (Garr-Schultz et al., 2023), perhaps because the 

meaning of various digital technologies is shaped by context. Tech usage often takes place in informal 

unmediated spaces, thus subject to gender differentiated feedback. The idea that computing is strictly 

about programming and tangential to creative pursuits or prosocial objectives is contested by the reality of 

21st century computing occupations. We speculate that children who enjoy and are initially interested in 
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the more social and creative aspects of computing may better discern and develop their talents when 

adults and peers can identify and articulate how these skills are relevant to computing paths.  

Notably, the contexts in which students come to enjoy the conventional tech activities are likely 

influenced by pre-existing attitudes, social networks and school curricula. While our survey does not 

include questions pertaining to student perceptions of importance or utility (Eccles & Wang, 2016), 

students who participate in project-based classes in math and science may be more likely to find such 

subjects relevant to their daily lives, an attitude which in turn shapes interest and enjoyment (Riegle-

Crumb et al., 2019). Children’s knowledge of STEM occupations is also associated with interest 

(Blotnicky et al., 2018; Friend, 2015) and in school experiences may more effectively communicate the 

value of science and scientist’s work than home experiences (Kang et al., 2019).  

Despite some evidence of a persisting people/things dichotomy, we find a link between some social 

activities and interest in computing paths, specifically with regard to talking with others about technology. 

A finding congruent with studies of college students (Mahadeo et al., 2020; Werner & Chen, 2024), 

exchanging ideas about tech with others does not necessarily require substantial tech knowledge per se, 

but may nevertheless be supportive or indicative of tech interest. Significant research suggests that peers 

are crucial to middle schoolers’ socialization and opportunities to talk with others about digital devices 

may be rare for many children (Livingstone and Sefton-Green 2016, Ito et al. 2020). Initiating and 

sustaining connections with others around digital technology – whether it be asking for information or 

sharing fun experiences with technology – can be validating and provide a bridge between home and 

school learning and formal and informal settings (Dou et al., 2019; Godec et al., 2020).  

We find that girls on average are less likely to enjoy traditional constructions of computing, but when they 

do, they appear more interested in computing courses. This parallels other findings which show that the 

association between STEM identity and STEM career interest may be stronger for girls than for boys 

(Dou & Cian, 2022; Myint & Robnett, 2024). Rather than simply advocating for those to conform to the 
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traditional framing of computing, therefore, a focus on the field itself and how to communicate its 

relevance and complexity may be fruitful in that it appeals to more children. 

Our findings inform efforts to bring more students into early computing paths and to make computer 

science learning more equitable. Since the intrinsic tech values scale was very modestly associated with 

school grades and math and science efficacy, our findings bolster the initiative to incorporate more 

computer science in early education. This aligns with the perspectives of educators, researchers, and 

parents advocating for the integration of computing in public K-12 curriculum (Ito et al., 2020; Scholes et 

al., 2021; Tekinbaş, 2020). In practical terms, our results suggest that opportunities to discuss technology 

in supportive, mediated spaces are needed. Efforts to integrate activities into classrooms before middle 

school may be beneficial when low stakes digital learning communities take form (Tang et al., 2024). 

Effectively mediated forums for discussion and use of technology amongst peers may enhance enjoyment 

and sustain continual learning, especially important for a quickly changing field such as computing. Too 

often computer learning is constructed as an elite academic field, restrictive, and highly competitive. 

Local contexts and the various means by which status is assigned to activities and identities is important, 

such as the ways typical geek culture is communicated as exclusive (sci fi posters, jargon, hacking) 

(Master et al., 2016). When some tech activities are validated more than others, it may confirm children’s 

gender schematic frameworks, but such processes can be effectively disrupted when contested (Puckett & 

Gravel, 2023). “Meritocratic” school policies which limit computer activities to those with high grades, 

restrictions on smartphones but not laptop usage, and hierarchical decision-making may also reproduce 

inequity in digital technology learning (Watkins et al., 2018). 

Norms around tech interest which prioritize more masculine-typed curriculum (often programming) have 

tended to be emphasized in out-of-school learning activities as well, which may advantage boys (Liu & 

Schunn, 2020). For parents and guardians looking to support their children’s academic interests, the 

available extracurricular activities may not appear – at least on the surface – to fit the interests of many 
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children. Girls’ expressions may be less recognizable due to the current constructions of digital 

technology that tend to emphasize the people/things dualism. 

Finally, it is notable that approximately half the surveyed students reported interest in taking a computer 

class. Though this finding could be an artifact of social desirability bias, it is also consistent with some 

recent scholarship. According to the current data, computer courses – or at least the idea of them - appear 

popular despite most middle schools not offering such curricula in the U.S. (Code.org, 2023; Google LLC 

and Gallup, Inc., 2020). Though parent support for child STEM interest may be associated with parent 

educational attainment (Starr et al., 2022) – a factor often associated with SES - our findings are 

consistent with a nationwide survey which did not find this link when it comes to computing (C. Chen et 

al., 2024). Given that computing requires continual learning for skills to stay current, parents’ more 

specialized digital knowledge (such as digital practices and skills) may play a stronger role than beliefs or 

resources associated with socio-economic status (C. Chen et al., 2024; Jonsson et al., 2009).  

Limitations 

Our results should be evaluated with the knowledge that our methodology allows for a comparison of 

gender differences in computing interest, but it does not offer the ability to evaluate the processes by 

which these relationships come to be. Readers should consider the effect of reverse causality. While 

intrinsic tech values may very well facilitate interest in computing paths, it is very likely that the reverse 

is also true. Interest in classes may motivate engagement with technology especially when children are 

more invested in computing paths (Wigfield and Eccles 1992). We only evaluate conscious interest and do 

not have the measures needed to assess student knowledge of computing occupations. The measures we 

use, intrinsic tech valuation, computer efficacy and skill, contribute to the understanding of children’s 

tech interest, but do not include frequency of engagement in the activity, significance to the individual, or 

perceived future utility which has been shown to be associated with interest as well (Eccles & Wang, 

2016).  
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Previous work has found that gender constructions play more of a role in behavior than self-reported 

gender identity. Masculinity and femininity are complex constructs (Hall & Halberstadt, 1980) and are not 

addressed in the current study – only dichotomous, self-reported gender identity in a survey environment. 

Recent scholarship has shown that interest in historically masculine-typed fields is associated with 

atypical gender beliefs, thus providing an avenue by which some girls come to identify with computing. 

Intersectional approaches have been effective in highlighting how hegemonic masculinity works to shape 

culturally shaped beliefs about computing (Lewis et al., 2016; Nguyen & Riegle-Crumb, 2024).  

Our study’s external validity is limited by the age of the current data set. Some evidence suggests that the 

underlying social and educational structures relating to gender and digital technology education have not 

changed since the period of study (Klein, 2023), but other issues have persisted or emerged. Even though 

computer classes are in demand, it has become challenging to staff and retain K-12 computing teachers. 

Preparing and supporting the teaching pipeline is especially important (Yadav et al., 2021), as well as 

ensuring a stable pool of high-quality teachers for hiring. Teacher retention is a problem when schools 

must compete with tech companies for talent (Kistler et al., 2024; Kistler & Dougherty, 2024). Sustaining 

child interest in computing paths is contingent on cultivating lines of practice which connect digital 

literacies inside and outside of school, in person and online, including core school subjects to computing 

(Azevedo, 2011; Godec et al., 2020), but when schools lack the necessary funding this becomes a 

significant challenge for adults and children alike. Computer classes, when student-centered, may 

effectively mediate hostility and discouragement from peers which has been shown to be a persistent 

problem (Nguyen et al., 2022). Engaging curricula such as inquiry-based learning is also greatly needed 

(Riegle-Crumb et al., 2019), but often lacks support, especially in under resourced school districts 

(Watkins et al., 2018). 

While our study may shed light on the relationship between computing interest and intrinsic enjoyment of 

various tech modalities at the individual level, there are likely several additional social influences that are 

important to note. All respondents in our study had basic computer classes available to them at school, but 
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we are not able to account for access to out-of-school opportunities such as after school clubs, summer 

camps or participation in makerspaces. Some research has shown that greater availability of computer 

classes is associated with stronger interest and some of the students in our survey likely had more options 

than others (Gallup, Inc., 2023; Gallup, Inc. and Amazon LLC, 2021). Perhaps not surprisingly, recent 

evidence suggests that computing classes outside of school are influential in STEM paths as well (Caspi 

et al., 2023; C. Chen et al., 2024; Liu & Schunn, 2020). Parent and caregiver involvement in children’s 

digital literacy and learning is also likely impactful (Bonanati & Buhl, 2022; Hammer et al., 2021), but 

such information was not included in our survey. A significant body of research now shows a connection 

between parent support for STEM learning and student interest in STEM (Archer et al., 2010, 2012; Dou 

& Cian, 2021; Holmegaard et al., 2024; Puente et al., 2024). Work which includes such aspects further 

identifies and discerns the processes by which children develop and sustain interest in computing and 

provides an improved understanding of the current computer education ecology in the United States. 

Finally, due to our research site location, parent labor force participation in STEM fields is very likely 

above the U.S. average. While controls for parent occupation did not change the regression results, our 

respondents’ knowledge of computing may be higher than other children in the United States.  

Future Research 

Future research should continue to examine the ways that children develop motivations to learn and 

explore digital technology since evidence suggests that those who opt out in the key period of middle 

school are unlikely to revisit computer science as they progress through high school and beyond (J. Chen 

et al., 2023). Our intrinsic tech values battery had only had one item pertaining to creative uses, and did 

not discern between creating art and graphics, songs or editing videos. The technology, skill and 

enthusiasm required for these activities may vary significantly and should be disentangled as they may 

provide insight into generative practices in computer science. Given the efforts to incorporate more 

STEAM learning into schools, there may be progress in this regard since the period of study (Jolly, 2014; 
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Peppler & Wohlwend, 2018; Sousa & Pilecki, 2013). As computing continues to change with expanded 

use of machine learning, artificial intelligence, and augmented reality, the need for such research grows. 

Conclusion 

Informed by evidence that many children who are confident in math and science do not pursue 

computing, this study examined patterns in children’s intrinsic tech values as a potential mediating factor 

of gender differentiated computer interest. We find evidence that the more traditional conceptualizations 

of computing such as programming and fixing are clustered together for children. When this pattern is 

taken into account, the gender difference in computing class interest is reduced by 20 percent, even with 

controls for socio-economic status, math grades, computer skills and academic efficacy. This suggests that 

the social validation associated with more masculine socialization creates circumstances where similarly 

skilled and engaged children are differentially rewarded for their tech interest. In order to attend to greater 

digital learning equity, research should continue to investigate the complex relationship between digital 

modalities, computer science education, and interest in computing paths.  
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Figures 
 
Figure 1. Intrinsic tech values battery from survey (excerpt) 
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Tables 
 

Table 1. Demographics of Combined Sample (N = 3971) 
    N Percent 
Gender   

 

girls  2043 51.5 
boys  1928 48.6 

    
Race/ethnicity   

 

White  1765 44.5 
Black/African American  677 17.1 

Hispanic/Latino  479 12.1 
Asian American  430 10.8 

Other  620 15.6 
   

 

Receive reduced cost lunch (est)  36.0 
   

 

Grade   
 

6th grade  1150 29.0 
7th grade  1429 36.0 
8th grade  1392 35.1 

    
Computer    

own  1962 49.4 
share with others in home  1790 45.1 

no home computer  219 5.5 
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Table 2. Rotated Factor analysis results of intrinsic tech values battery (pattern matrix of 2 factor solution)ª

Survey 
item # Variable Factor1 Factor2 Communality

1 Trying out new apps 0.20 0.41 0.26
2 Keeping up with existing friends using social media -0.23 0.82 0.60
3 Making new friends using social media 0.02 0.63 0.41
4 Solving tech problems 0.78 -0.11 0.56
5 Looking up things just for fun 0.22 0.37 0.24
6 Looking up instructions to fix my computer or phone 0.53 0.25 0.43
7 Looking at things to buy online 0.01 0.55 0.30
8 Programming or hacking 0.75 -0.12 0.52
9 Watching movies, videos, or listening to music online. -0.10 0.62 0.36

10 Talking about computers or technology 0.83 -0.15 0.63
11 Creating songs, graphics, art and/or editing videos on the compu 0.42 0.25 0.31
12 Learning about the specs of my phone/computers 0.82 0.03 0.69
13 Discussing how to troubleshoot my computer/phone 0.85 -0.05 0.69
14 Exploring new computer programs 0.81 -0.01 0.64

Eigenvalue 4.77 1.87
% of variance 34 13

Extraction method
Method: Promax rotation

ª Bolded items used for intrinsic values scale (see text for information). Cronbach's alpha for these items is .86

Variable Range t p
Dependent variable

Interest in computer class 0-1 0.53 (0.50) 0.39 (0.49) 0.67 (0.47) 18.10 0.00

Independent variables
Intrinsic tech values scale 1-6 3.21 (1.48) 2.71 (1.31) 3.74 (1.46) 23.47 0.00

Math efficacy 1-10 7.78 (2.09) 7.59 (2.18) 7.97 (1.97) 5.64 0.00
Science efficacy 1-10 7.65 (2.01) 7.45 (2.10) 7.86 (1.88) 6.43 0.00
Computer efficacy 1-10 6.75 (2.60) 6.04 (2.62) 7.50 (2.35) 18.32 0.00

Math grades 1-4 3.40 (0.83) 3.39 (0.83) 3.40 (0.84) 0.38 0.70
Science grades 1-4 3.46 (0.81) 3.50 (0.77) 3.42 (0.85) -3.03 0.00
Task-based computer skill 0-12 7.14 (2.83) 6.82 (2.64) 7.45 (2.98) 7.07 0.00

Note: SD = standard deviation

M (SD) M (SD) M (SD)

Table 3: Bivariate Analyses
All Girls Boys

N = 3971 N = 2043 N = 1928
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Table 4. Correlation Matrix - Selected Variables (N = 3971) `

Variable 1 2 3 4 5 6 7 8 9 10 11

1. Girl indicator (0-1) 1

2. SES 0.00 1

3. Math grade (1-4) 0.00 0.37 * 1

4. Science grade (1-4) 0.05 0.39 * 0.49 * 1

5. Own computer (0-1) - 0.01 0.21 * 0.09 * 0.09 * 1

6. Grade in school 0.01 0.01 0.01 - 0.03 0.09 * 1

7. Math efficacy (1-10) - 0.09 * 0.21 * 0.57 * 0.31 * 0.06 * - 0.03 1

8. Science efficacy (1-10) - 0.10 * 0.21 * 0.20 * 0.47 * 0.05 - 0.06 * 0.44 * 1

9. Computer efficacy (1-10) - 0.28 * 0.14 * 0.15 * 0.15 * 0.12 * - 0.04 0.32 * 0.36 * 1

10. Task-based skill (0-12) - 0.11 * 0.19 * 0.14 * 0.15 * 0.23 * 0.21 * 0.18 * 0.18 * 0.41 * 1

11. Intrinsic tech values scale (1-6) - 0.35 * - 0.02 - 0.00 - 0.02 0.13 * - 0.04 0.09 * 0.13 * 0.50 * 0.38 * 1

12 Interest in a computer class (0-1) - 0.28 * 0.07 * 0.10 * 0.09 * 0.06 * - 0.02 0.14 * 0.15 * 0.46 * 0.23 * 0.48 *

*Statistically significant correlation (p<.001)
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Table 5. Logit Regression of Interest in a Computer Class

B SE Exp(B ) Sig. B SE Exp(B ) Sig. B SE Exp(B ) Sig. B SE Exp(B ) Sig.
Girls -1.07 0.07 0.34 0.000 *** -0.61 0.08 0.54 0.000 *** -0.50 0.08 0.61 0.000 *** -0.46 0.08 0.63 0.000 ***
Black -0.08 0.10 0.92 0.416 -0.27 0.11 0.77 0.017 * -0.20 0.12 0.82 0.093 -0.19 0.12 0.83 0.108
Hispanic 0.30 0.14 1.35 0.029 * 0.12 0.15 1.13 0.402 0.16 0.15 1.18 0.285 0.16 0.15 1.17 0.301
Asian 0.45 0.12 1.56 0.000 *** 0.24 0.13 1.27 0.068 0.30 0.14 1.35 0.028 * 0.30 0.14 1.35 0.028 *
Other 0.01 0.10 1.01 0.945 -0.08 0.11 0.93 0.489 0.01 0.12 1.01 0.913 0.01 0.12 1.01 0.927
Socio-economic Status (SES) 0.02 0.05 1.02 0.600 0.10 0.05 1.10 0.054 0.07 0.05 1.07 0.192 0.07 0.05 1.07 0.181
Grade 7 (omitted: 6th grade) -0.16 0.09 0.86 0.071 0.00 0.09 1.00 0.969 0.10 0.10 1.11 0.285 0.11 0.10 1.11 0.268
Grade 8 (omitted: 6th grade) -0.33 0.09 0.72 0.000 *** -0.06 0.10 0.94 0.552 0.06 0.10 1.07 0.526 0.07 0.10 1.07 0.492
Math grades 0.08 0.06 1.09 0.152 0.11 0.06 1.12 0.075 0.14 0.07 1.15 0.037 * 0.14 0.07 1.15 0.034 *
Science grades 0.05 0.06 1.05 0.411 0.14 0.06 1.15 0.022 * 0.19 0.06 1.21 0.004 ** 0.18 0.06 1.20 0.005 **
No home comp (omitted: own) 0.06 0.16 1.06 0.721 0.19 0.17 1.21 0.276 0.29 0.18 1.34 0.107 0.29 0.18 1.34 0.109
Shared computer (omitted: own) -0.07 0.07 0.93 0.326 0.08 0.08 1.09 0.296 0.11 0.08 1.11 0.197 0.10 0.08 1.11 0.223
Task-based computer skill (std) 0.45 0.04 1.56 0.000 *** 0.11 0.04 1.12 0.015 * -0.07 0.05 0.93 0.148 -0.07 0.05 0.93 0.152
Math efficacy (std) 0.07 0.05 1.08 0.126 0.10 0.05 1.10 0.057 -0.02 0.06 0.98 0.731 -0.02 0.06 0.98 0.690
Science efficacy (std) 0.15 0.05 1.16 0.001 *** 0.08 0.05 1.08 0.123 -0.10 0.05 0.91 0.067 -0.10 0.05 0.91 0.073

Intrinsic tech values scale (std) 1.04 0.05 2.83 0.000 *** 0.85 0.05 2.34 0.000 *** 0.93 0.07 2.08 0.000 ***
Computer efficacy (std) 0.80 0.05 2.22 0.000 *** 0.73 0.08 2.53 0.000 ***

Interaction effects
Girl x Intrinsic tech values (std) 0.25 0.09 1.28 0.007 ***
Girl x Computer efficacy (std) -0.24 0.09 0.79 0.011 *

Model X² 580.71   p<.00001 1174.59   p<.00001 1431.20   p<.00001 1442.41   p<.00001
Pseudo R-sqr 0.11 0.21 0.26 0.26
N 3971 3971 3971 3971

* p<0.05, ** p<0.01, *** p<0.001
All models include controls for cell phone ownership, game console ownership and school

1. Main effects 2. Intrinsic tech values 3. Unconstrained model

Note: The dep.variable is "In the future, would you like to take a class in school or after school about computers?" coded so that 1=yes and 0=no

4. Gender interactions
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Supplemental Information 
 

While the best model for the intrinsic tech values scale was a two-factor solution, four and three factor 

models were also examined. As noted above, an oblique rotation was selected because it is well suited for 

the intercorrelations among social science variables. The four-factor model converged properly, producing 

reasonable parameter estimates, and accounted for 55% of the total variance before rotation, but there was 

evidence of overextraction after rotation.9 The first factor exhibited eight salient loadings in agreement 

with technical values (and included the creative measure, though this item had a low communality score 

of .31, suggesting some measurement error). Also, 75% of the loading for the “solving tech problems” 

item (4) loaded on the fourth factor. The second factor exhibited four loadings which combined casual 

surfing of the internet, trying out apps, and online shopping, though 75% of the loading for the latter item 

(7) also loaded on the third factor. The third factor exhibited only two salient loadings consistent with 

social activities online (items 2 and 3 - making friends online or communicating with current friends). 

The fourth factor contained only one item relating to solving tech problems (4). There were also low 

communality scores (all <.60) for items 1 (trying out apps), 5 (looking up things just for fun), and 7 

(shopping online). Given these weak factors, the four factor model was not considered plausible. 

The three-factor model converged properly, producing reasonable parameter estimates, and accounted for 

53% of the total variance before rotation (see Table S5 for the pattern matrix, Table S6 for the structure 

matrix and Table S7 for a correlation matrix of the rotated common factors). The first factor exhibited 

eight salient loadings in agreement with a technical values scale (also including the creative measure 

(item 11), but again with a low communality score of .31). The second factor exhibited three loadings 

which combined casual surfing of the internet and trying out apps (items 1, 5 and 9). The third factor 

exhibited three salient loadings consistent with social aspects and online shopping (items 2, 3 and 7), 

though 84% of the loading was on the second factor. The average overall residual fit of the three-factor 

 
9 Table available upon request. 
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model was quantified by a root mean squared residual (RMSR) of .02 which is acceptable. There were 

again low communality scores for items 1, 5, 7 and 11. The items with the lowest communality scores 

were dropped one by one,10 and the EFA resubmitted in each iteration, but the factor loadings remained 

unstable. Given these issues, the three factor model was not considered to be a robust solution. 

 

 

 
10 Item 11 (creative uses of technology) perhaps confounded different tasks. When this item was dropped from the 
EFA and the analysis resubmitted, it did not improve the communality of the other items (1, 5, and 7). Additional 
tests which included separately dropping item 7 and then item 5 did not improve model fit. 
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Table S1. Summary Statistics for Items in Intrinsic Tech Values Battery      
       

Survey 
item # 

        
Items Observations Mean Std. dev. Skewness Kurtosis 

1 Trying out new apps 5136 4.80 1.37 -1.58 4.99 

2 Keeping up with existing friends using social media (like Facebook, 
Twitter, Instagram, Snapchat) 5146 4.40 1.95 -0.91 2.20 

3 Making new friends using social media 5149 3.38 1.96 -0.05 1.44 

4 Solving tech problems 5140 3.64 1.81 -0.29 1.70 

5 Looking up things just for fun 5144 4.84 1.45 -1.48 4.38 

6 Looking up instructions to fix my computer or phone 5162 3.67 1.87 -0.28 1.64 

7 Looking at things to buy online 5158 4.38 1.82 -0.93 2.42 

8 Programming or hacking 5144 2.73 2.00 0.53 1.59 

9 Watching movies, videos, or listening to music online. 5155 5.58 0.97 -3.09 13.14 

10 Talking about computers or technology 5154 3.51 1.82 -0.19 1.64 

11 Creating songs, graphics, art and/or editing videos on the computer 5162 3.90 2.02 -0.44 1.57 

12 Learning about the specs of my phone or my computers 5152 3.24 1.97 0.05 1.42 

13 Discussing how to troubleshoot my computer or phone 5141 2.68 1.82 0.49 1.73 

14 Exploring new computer programs 5159 3.59 2.01 -0.23 1.43 
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Figure S1. Parallel analysis plot of eigenvalues, intrinsic tech values battery 
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Table S2. Polychoric matrix of intrinsic tech values battery

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Trying out new apps 1

2. Keeping up with existing friends using social media 0.27 1

3. Making new friends using social media 0.25 0.63 1

4. Solving tech problems 0.24 - 0.03 0.13 1

5. Looking up things just for fun 0.33 0.17 0.24 0.26 1

6. Looking up instructions to fix my computer or phone 0.29 0.22 0.27 0.45 0.29 1

7. Looking at things to buy online 0.25 0.40 0.32 0.06 0.25 0.29 1

8. Programming or hacking 0.17 - 0.06 0.15 0.57 0.20 0.38 0.12 1

9. Watching movies, videos, or listening to music online. 0.36 0.39 0.27 0.01 0.39 0.19 0.35 - 0.05 1

10. Talking about computers or technology 0.22 - 0.10 0.08 0.64 0.26 0.41 0.06 0.57 0.06 1

11. Creating songs, graphics, art and/or editing videos 0.24 0.19 0.25 0.30 0.26 0.31 0.21 0.35 0.25 0.37 1

12. Learning about the specs of my phone/computers 0.26 0.09 0.21 0.60 0.25 0.55 0.17 0.54 0.08 0.64 0.45 1

13. Discussing how to troubleshoot my computer/phone 0.20 0.04 0.20 0.56 0.20 0.57 0.15 0.61 - 0.01 0.61 0.42 0.75 1

14. Exploring new computer programs 0.36 0.01 0.15 0.60 0.30 0.44 0.13 0.58 0.10 0.63 0.43 0.64 0.67
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Table S3. Structure matrix: Correlations between variables and promax(2) rotated common factors

Survey item # Item Factor 1 Factor 2
1 Trying out new apps 0.34 0.48
2 Keeping up with existing friends using social med 0.05 0.74
3 Making new friends using social media 0.23 0.64
4 Solving tech problems 0.74 0.16
5 Looking up things just for fun 0.35 0.44
6 Looking up instructions to fix my computer or ph 0.61 0.43
7 Looking at things to buy online 0.20 0.55
8 Programming or hacking 0.71 0.13
9 Watching movies, videos, or listening to music o 0.11 0.59

10 Talking about computers or technology 0.78 0.13
11 Creating songs, graphics, art and/or editing video    0.51 0.39
12 Learning about the specs of my phone/computer 0.83 0.30
13 Discussing how to troubleshoot my computer/ph 0.83 0.24
14 Exploring new computer programs 0.80 0.26

Table S4. Correlation matrix of the promax(2) rotated common factors
Factors Factor1 Factor2

Factor1 1           
Factor2 0.34 1           
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Table S5. Rotated Factor Analysis Results of Intrinsic Tech Values Battery (3 factor solution)

Survey 
item # Item

4 Solving tech problems 0.76 0.01 -0.11 0.56
6 Looking up instructions to fix my computer or phone 0.55 0.07 0.20 0.43
8 Programming or hacking 0.77 -0.11 -0.04 0.52
10 Talking about computers or technology 0.78 0.07 -0.21 0.63
11 Creating songs, graphics, art and/or editing videos on the comp 0.41 0.19 0.09 0.31
12 Learning about the specs of my phone or my computers 0.85 -0.07 0.09 0.70
13 Discussing how to troubleshoot my computer or phone 0.91 -0.22 0.12 0.74
14 Exploring new computer programs 0.77 0.13 -0.12 0.65

1 Trying out new apps 0.14 0.46 0.05 0.31
5 Looking up things just for fun 0.13 0.56 -0.06 0.35
9 Watching movies, videos, or listening to music online. -0.24 0.79 0.06 0.58

2 Keeping up with existing friends using social media -0.12 0.00 0.93 0.84
3 Making new friends using social media 0.12 0.00 0.66 0.48
7 Looking at things to buy online 0.02 0.27 0.32 0.28

Eigenvalue 4.79 2.00 0.60
% of variance 34 14 4

Extraction method
Method: Promax rotation

Factor 1 Factor 2 Factor 3 Communality

Table S6. Structure matrix: Correlations between variables and promax(3) rotated common factors

Survey item # Item Factor 1 Factor 2 Factor 3
1 Trying out new apps 0.34 0.54 0.31
2 Keeping up with existing friends using social med 0.06 0.44 0.91
3 Making new friends using social media 0.24 0.39 0.68
4 Solving tech problems 0.74 0.26 0.03
5 Looking up things just for fun 0.34 0.58 0.25
6 Looking up instructions to fix my computer or ph 0.61 0.40 0.33
7 Looking at things to buy online 0.20 0.45 0.47
8 Programming or hacking 0.71 0.18 0.05
9 Watching movies, videos, or listening to music o 0.10 0.73 0.43

10 Talking about computers or technology 0.77 0.28 -0.03
11 Creating songs, graphics, art and/or editing video    0.50 0.41 0.27
12 Learning about the specs of my phone/computer 0.83 0.32 0.20
13 Discussing how to troubleshoot my computer/ph 0.85 0.22 0.17
14 Exploring new computer programs 0.80 0.38 0.09

Table S7. Correlation matrix of the promax(3) rotated common factors
Factors Factor1 Factor2 Factor3 

Factor1 1           
Factor2 0.41 1           
Factor3 0.18 0.52 1
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