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Motivation for Quantum Codes

Errors in quantum world are more ubiquitous than in the classical 
world

Many kinds of errors – phase flips, bit flips etc. Most errors are 
continuous

Measurement destroys quantum information. ECCs are harder to 
construct

QECCs used to build fault tolerant quantum computers



CSS Codes

Dimension

Two mutually orthogonal binary codes

Distance



LDPC Codes

LDPC CSS Code
• When parity check matrices HX and HZ are sparse 

• Random construction does not work anymore. With probability 1, HX 
and HZ are not orthogonal

• Binary linear code with a sparse parity check matrix

• Efficient decoding algorithms exist. Use Tanner graphs associated 
with the parity check matrix.



The Toric Code (m=2)

Can be thought of as 
a product of two 

cycles of length m

The vertex-edge incidence 
matrix and the face-edge 

incidence matrix



Tanner Graph  

Parity check matrix H
11

Tanner graph (V, C, E)

(bipartite)

V C
E

Variable nodes

Check nodes



Tanner graph of Toric Code (m = 2) 

X X X

X X X

Variable node

Check node

Tanner graph with 
2m2 left vertices and 

m2 right vertices

Can do the same thing with the face-edge incidence matrix ie HZ



Tanner graph of Toric Code (m = 2) 
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Combining the two 
Tanner graphs we 

get…

Can be thought of as 
a product of two 

cycles of length 2m



Graph Products

Product of two graphs 𝒢1 and 𝒢2, has vertex set V1 × V2. The vertices 
(x,y) and (x’,y’) are connected if x = x’ and y, y’ are connected in 𝒢2 or y 
= y’ and x, x’ are connected in𝒢1.

Graph 1 
(V1, E1)

Graph 2 
(V2, E2)

×



Question

What if we take products of arbitrary graphs?



Product of Tanner Graphs

V2 C2

V1 C1

v2
c2

v1

c1

(v1,v2)

(c1,c2)

(c1,v2)

(v1,c2)

V1 × V2

C1 × C2
V1 × C2

C1 × V2

V = (V1 × V2)∪ (C1 × C2)

C = (C1 × V2)∪ (V1 × C2)



Product of Tanner Graphs

V2 C2

V1 C1

v2
c2

v1

c1

(v1,v2)

(c1,c2)

(c1,v2)

(v1,c2)

V1 × V2

C1 × C2
V1 × C2

C1 × V2

V = (V1 × V2)∪ (C1 × C2)

C = (C1 × V2)∪ (V1 × C2)

X

X

Z

Z



This graph product gives a CSS code

Proposition – Let 𝒢1 = (V1, C1, E1) and 𝒢2 = (V2, C2, E2) be two Tanner 
graphs. Then we have

• Let vi ∈ Vi and ci ∈ Ci for i = 1, 2

• hX(c1, v2) is the row of HX corresponding to check node (c1, v2) 

• hZ(v1, c2) is the row of HZ corresponding to check node (v1, c2)

• <hX(c1, v2), hZ(v1, c2)> = # nodes adjacent to both in V

• If vi is not adjacent to ci in 𝒢i for any i, then this number is 0 

• Otherwise this number is 2.



Question

We have a CSS code 🥳

What about dimension and distance? 🤔



Hypergraph (V, ℰ)

∈ ℰ

∈ ℰ

A ‘graph’ in which each 
(hyper)edge connects 
more than one vertex



Bipartite (Tanner) Graphs and Hypergraphs

Tanner graph (V, C, E)

(bipartite)

V C

E

∈ ℰ

Hypergraph (V, ℰ)

The neighbourhood of a check node becomes a hyperedge.



Hypergraph Products 

Generalization of graph products

Product of two hypergraphs ℋ1 and ℋ2, has vertex set V=V1 × V2. 
Hyperedges of the product are of the form 
• {v1} × e2 or 
• e1 × {v2}
where e1 and e2 are in ℰ1 and ℰ2 respectively.

We can define a new product⊗ of Tanner graphs by using this 
definition and the equivalence between Tanner graphs and 
hypergraphs



Hypergraph Products in terms of Tanner graphs

V2 C2 V1 C1

v2
c2

v1

c1

V1 × V2

C1 × V2

V1 × C2

𝒢1𝒢2

Induced subgraph of 𝒢1 × 𝒢2 with variable node set V1 × V2 and check 
node set (C1 × V2)∪ (V1 × C2)

𝒢1 ⊗ 𝒢2 



Transpose of a Tanner Graph

Tanner graph (V, C, E)

V C
E

Tanner graph (C, V, E)

C C
E



Connection to Product Codes

For two binary linear codes of 𝒞1 and 𝒞2 of length n1 and n2 the 
product code 𝒞1 ⊗ 𝒞2 is made up of codewords in the form of 
n1 × n2 binary matrices with columns in 𝒞1 and rows in 𝒞2

Proposition: The Tanner graph for 𝒞1 ⊗ 𝒞2 is given by 𝒢1 ⊗ 𝒢2 



CSS Codes from Product Codes

With these definitions, we redefine the previously defined CSS code 
using Tanner graphs 𝒢1 and 𝒢2.



X code from 𝒞1⊗ 𝒞2 

V2 C2

V1 C1

v2
c2

v1

c1

(v1,v2)

(c1,c2)

(c1,v2)X

X

V1 × V2

C1 × C2

C1 × V2



Z code from 𝒞1⊗ 𝒞2 

V2 C2

V1 C1

v2
c2

v1

c1

(v1,v2)

(c1,c2)
(v1,c2)

Z

V1 × V2

C1 × C2
V1 × C2

Z



CSS Codes Assemble!

V2 C2

V1 C1

v2
c2

v1

c1

(v1,v2)

(c1,c2)

(c1,v2)

(v1,c2)

V1 × V2

C1 × C2
V1 × C2

C1 × V2

V = (V1 × V2)∪ (C1 × C2)

C = (C1 × V2)∪ (V1 × C2)

X

X

Z

Z



Finally, the dimension…

Similarly…

And…



Minimum Distance 

Let di be the minimum distance of 𝒢i and di
T be the minimum distance 

of 𝒢i
T, then

Equality is achieved when none of the four codes is trivial.



Subsequent Work 💻 (N qubits)

Construction Minimum Distance Dimension

Toric Code 2

This paper (hypergraph 
products, tilings)

cN

Couvreur-Delfosse-Zemor
(Cayley Graphs, no topology)

Evra-Kaufman-Zemor
(high dimensional expanders)

‘about’ 

Hastings-Haah-O’Donnell
(fibre bundle codes)

Panteleev-Kalachev (lifted 
product)(3 days back)



Thank you! 🙋‍♂️🙋‍♂️


