Quantum LDPC Codes

Adway 🖄 , Sagnik 🖄

CMSC828K, Dec 10, 2020

Motivation for Quantum Codes

Errors in quantum world are <u>more ubiquitous</u> than in the classical world

Many kinds of errors – phase flips, bit flips etc. Most errors are <u>continuous</u>

<u>Measurement destroys quantum information</u>. ECCs are harder to construct

QECCs used to build <u>fault tolerant quantum computers</u>

CSS Codes

Two mutually orthogonal binary codes

$$\mathcal{C}_Z^{\perp} \subseteq \mathcal{C}_X$$

Dimension

$$k_{\mathcal{Q}} = \dim \left(\mathcal{C}_X \setminus \mathcal{C}_Z^{\perp} \right) = \dim \left(\mathcal{C}_Z \setminus \mathcal{C}_X^{\perp} \right)$$

Distance

$$d_{\mathcal{Q}} = \min \{ d_X, d_Z \}$$
$$d_X = \min \{ |x|, x \in \mathcal{C}_X \setminus \mathcal{C}_Z^{\perp} \}$$
$$d_Z = \min \{ |x|, x \in \mathcal{C}_Z \setminus \mathcal{C}_X^{\perp} \}$$

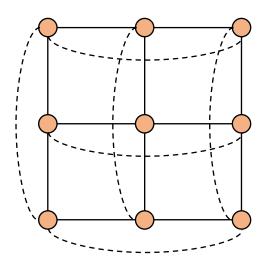
LDPC Codes

- Binary linear code with a <u>sparse</u> parity check matrix
- Efficient decoding algorithms exist. Use Tanner graphs associated with the parity check matrix.

LDPC CSS Code

- When parity check matrices H_X and H_Z are <u>sparse</u>
- Random construction does not work anymore. With probability 1, H_X and H_Z are not orthogonal

The Toric Code (m=2)



The vertex-edge incidence matrix and the face-edge incidence matrix

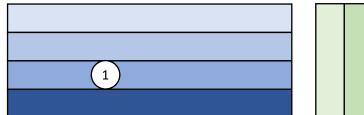
$$H_X = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

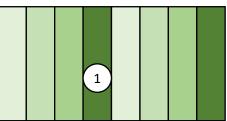
Can be thought of as a product of two cycles of length m

$$H_Z = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

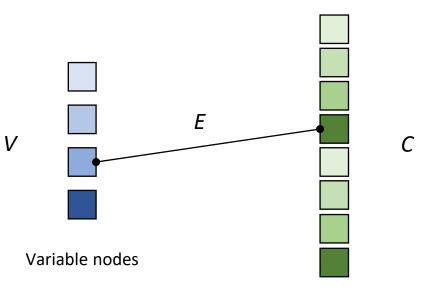
Tanner Graph

Parity check matrix H



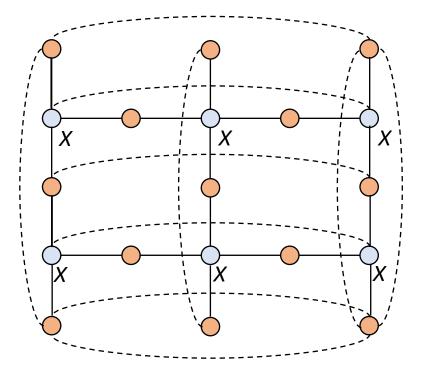


Tanner graph (V, C, E) (bipartite)



Check nodes

Tanner graph of Toric Code (m = 2)



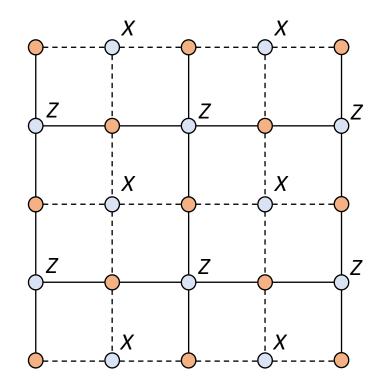
- Variable node
- O Check node

Tanner graph with 2m² left vertices and m² right vertices

Can do the same thing with the face-edge incidence matrix ie H_Z

Tanner graph of Toric Code (*m* = 2)

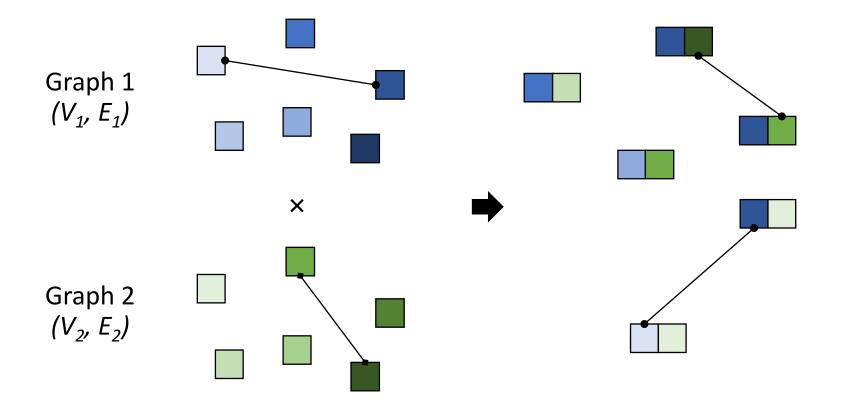
Combining the two Tanner graphs we get...



Can be thought of as a product of two cycles of length 2m

Graph Products

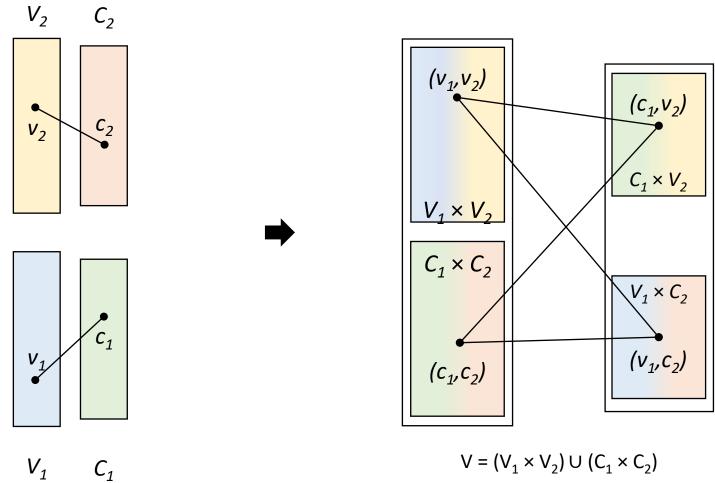
Product of two graphs G_1 and G_2 , has vertex set $V_1 \times V_2$. The vertices (x,y) and (x',y') are connected if x = x' and y, y' are connected in G_2 or y = y' and x, x' are connected in G_1 .



Question

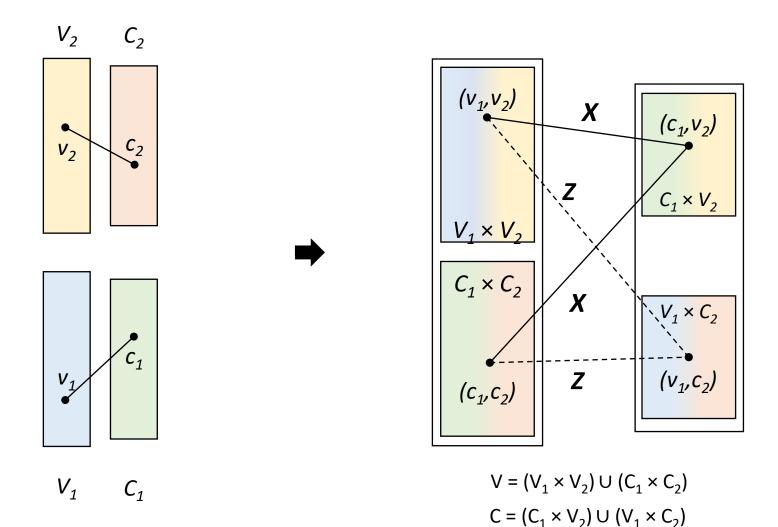
What if we take products of arbitrary graphs?

Product of Tanner Graphs



 $C = (C_1 \times V_2) \cup (V_1 \times C_2)$

Product of Tanner Graphs



This graph product gives a CSS code

Proposition – Let $\mathcal{G}_1 = (V_1, C_1, E_1)$ and $\mathcal{G}_2 = (V_2, C_2, E_2)$ be two Tanner graphs. Then we have

$$\mathcal{C}_X(\mathcal{G}_1 \times \mathcal{G}_2)^\perp \subseteq \mathcal{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)$$

- Let $v_i \in V_i$ and $c_i \in C_i$ for i = 1, 2
- h_X(c₁, v₂) is the row of H_X corresponding to check node (c₁, v₂)
- $h_z(v_1, c_2)$ is the row of H_z corresponding to check node (v_1, c_2)
- <h_x(c₁, v₂), h_z(v₁, c₂)> = # nodes adjacent to both in V
- If v_i is not adjacent to c_i in \mathcal{G}_i for any i, then this number is 0
- Otherwise this number is 2.

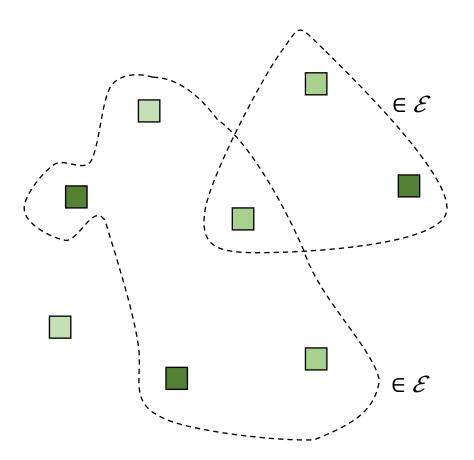
Question

We have a CSS code 🚱

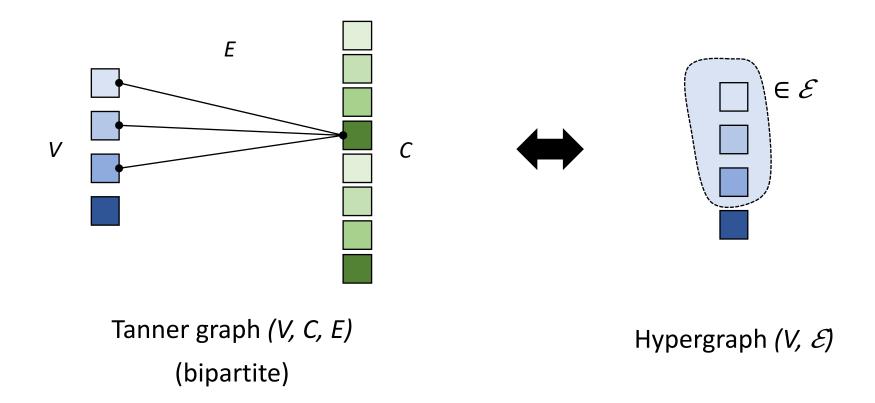
What about dimension and distance? 🚱

Hypergraph (V, E)

A 'graph' in which each (hyper)edge connects more than one vertex



Bipartite (Tanner) Graphs and Hypergraphs



The neighbourhood of a check node becomes a hyperedge.

Hypergraph Products

Generalization of graph products

Product of two <u>hypergraphs</u> \mathcal{H}_1 and \mathcal{H}_2 , has vertex set $V=V_1 \times V_2$. Hyperedges of the product are of the form

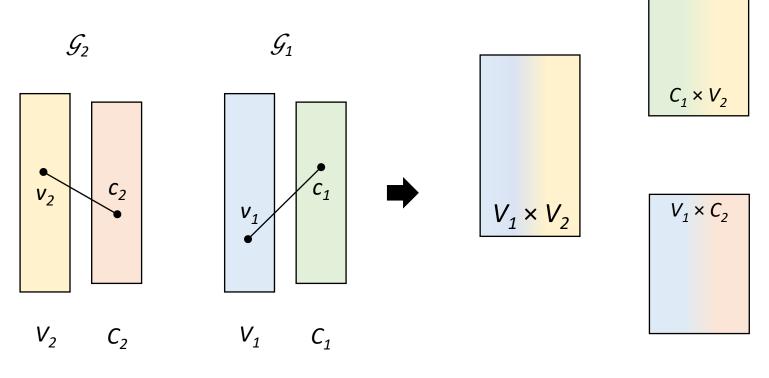
- $\{v_1\} \times e_2 \text{ or }$
- $e_1 \times \{v_2\}$

where e_1 and e_2 are in \mathcal{E}_1 and \mathcal{E}_2 respectively.

We can define a <u>new product</u> \otimes of Tanner graphs by using this definition and the equivalence between Tanner graphs and hypergraphs

Hypergraph Products in terms of Tanner graphs

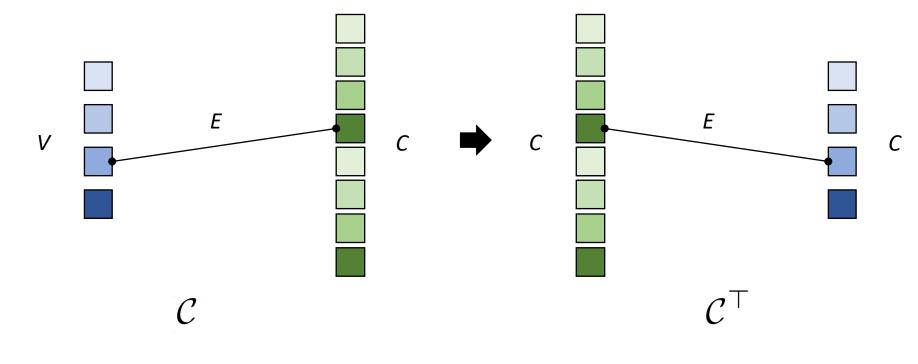
Induced subgraph of $G_1 \times G_2$ with variable node set $V_1 \times V_2$ and check node set $(C_1 \times V_2) \cup (V_1 \times C_2)$



 $\mathcal{G}_1 \otimes \mathcal{G}_2$

Transpose of a Tanner Graph

Tanner graph (V, C, E)



 $\dim(\mathcal{C}) = |V| - |C| + \dim(\mathcal{C}^{\top})$

Connection to Product Codes

For two binary linear codes of C_1 and C_2 of length n_1 and n_2 the product code $C_1 \otimes C_2$ is made up of codewords in the form of $n_1 \times n_2$ binary matrices with columns in C_1 and rows in C_2

$$\dim(\mathcal{C}_1\otimes\mathcal{C}_2)=\dim\mathcal{C}_1\dim\mathcal{C}_2$$

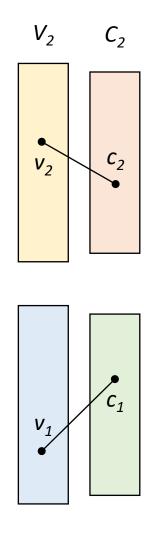
Proposition: The Tanner graph for $C_1 \otimes C_2$ is given by $G_1 \otimes G_2$

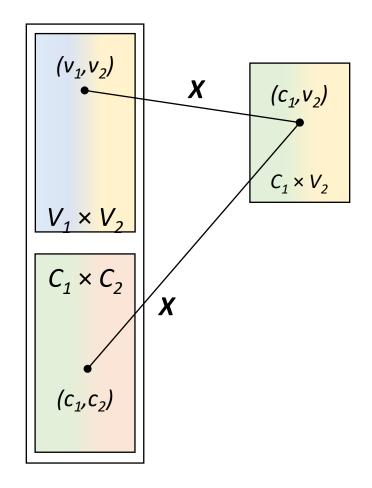
CSS Codes from Product Codes

With these definitions, we redefine the previously defined CSS code using Tanner graphs \mathcal{G}_1 and \mathcal{G}_2 .

$$\mathcal{G}_1 \times_X \mathcal{G}_2 = (\mathcal{G}_1^\top \otimes \mathcal{G}_2)^\top$$
$$\mathcal{G}_1 \times_Z \mathcal{G}_2 = (\mathcal{G}_1 \otimes \mathcal{G}_2^\top)^\top$$
$$\mathcal{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)^\top = \mathcal{C}_1^\top \otimes \mathcal{C}_2$$
$$\mathcal{C}_Z (\mathcal{G}_1 \times \mathcal{G}_2)^\top = \mathcal{C}_1 \otimes \mathcal{C}_2^\top$$

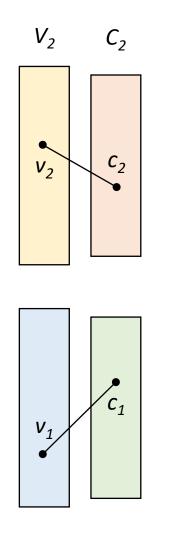
X code from $\mathcal{C}_1 \otimes \mathcal{C}_2$

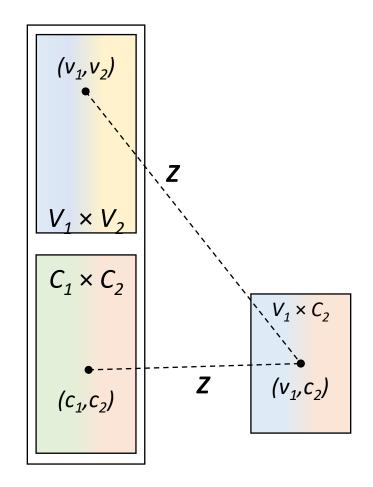




 $V_1 \qquad C_1$

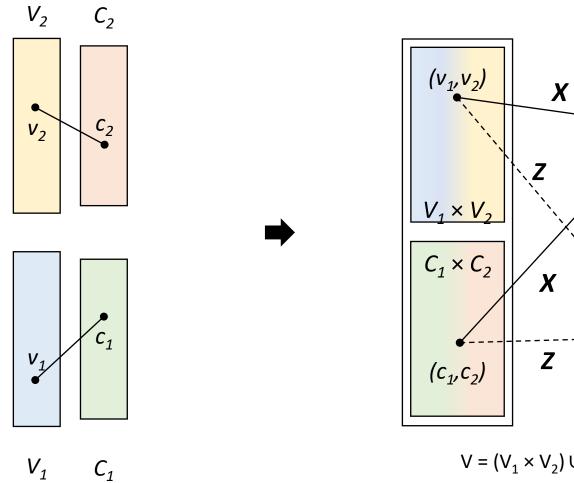
Z code from $\mathcal{C}_1 \otimes \mathcal{C}_2$





 $V_1 \qquad C_1$

CSS Codes Assemble!



 $V = (V_1 \times V_2) \cup (C_1 \times C_2)$ $C = (C_1 \times V_2) \cup (V_1 \times C_2)$

(C₁,V₂)

 $C_1 \times V_2$

 $\sqrt{V_1 \times C_2}$

(v₁,c₂)

Finally, the dimension...

$$\dim(\mathcal{C}_X(\mathcal{G}_1 \times \mathcal{G}_2)) = n_1 n_2 + r_1 r_2 - r_1 n_2 + \dim(\mathcal{C}_X(\mathcal{G}_1 \times \mathcal{G}_2)^\top) = n_1 n_2 + r_1 r_2 - r_1 n_2 + k_1^\top k_2$$

Similarly...

$$\dim(\mathcal{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)) = n_1 n_2 + r_1 r_2 - r_2 n_1 + k_2^\top k_1$$

And...

$$k_{\mathcal{Q}} = \dim(\mathcal{C}_X(\mathcal{G}_1 \times \mathcal{G}_2)) - (n_1 n_2 + r_1 r_2 - \dim(\mathcal{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)))$$
$$= k_1 k_2 + k_1^\top k_2^\top$$

Minimum Distance

Let d_i be the minimum distance of \mathcal{G}_i and $d_i^{\,\mathsf{T}}$ be the minimum distance of $\mathcal{G}_i^{\,\mathsf{T}}$, then

$$d_{\mathcal{Q}} \ge \min(d_1, d_2, d_1^{\top}, d_2^{\top})$$

Equality is achieved when none of the four codes is trivial.

Subsequent Work 💻 (N qubits)

<u>Construction</u>	Minimum Distance	<u>Dimension</u>
Toric Code	\sqrt{N}	2
This paper (hypergraph products, tilings)	\sqrt{N}	cN
Couvreur-Delfosse-Zemor (Cayley Graphs, no topology)	\sqrt{N}	\sqrt{N}
Evra-Kaufman-Zemor (high dimensional expanders)	$\sqrt{N}\log(N)$	'about' \sqrt{N}
Hastings-Haah-O'Donnell (fibre bundle codes)	$N^{3/5}/\mathrm{poly}\log(N)$	$N^{3/5}$
Panteleev-Kalachev (lifted product)(3 days back)	$N/\log N$	$\log N$

Thank you! 🙋 🙋