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Abstract—Consider a tree network T where an information bit
is placed at the root. Each edge of the tree acts as an independent
channel and the information "progresses downwards" from the
root towards the leaves. What can we deduce about the original
information bit from the knowledge of the bits at any depth n?
This problem can be further extended to the domain of any set
of networks where a fixed acyclic direction of information flow
is maintained. In this short survey article, we try to summarize
some of the major results relevant to this question of broadcasting
in graphs. We shall mostly focus on tree networks, briefly
describing the system model, important results and connection
to various fields of statistical physics and biology. Then we shall
move on to a very recent extension of this question to random
directed acyclic graphs and summarize the answers to similar
questions.

Index Terms—broadcasting, network, tree, directed acyclic
graphs

I. INTRODUCTION

Consider a tree T = (V,E) and a channel M on finite
alphabet A. For i, j ∈ A, let P (M(i) = j) = Mij and M
defines an ergodic Markov chain. At the root ρ, a symbol
from σρ ∈ A is chosen according to some initial distribution
π. For an edge e ≡ (x, y) ∈ E, x being the parent having
the symbol σx = i, probability that σy = j is Mij . Hence,
each edge acts as an independent identical channel. We denote
σLn

= (σv)v∈Ln
where Ln is the set of nodes at level n of T

and cn(i) = |{v ∈ Ln : σv = i}|. Denoting the total variation
distance between distributions P and Q as DV (P,Q), we say
that the reconstruction problem for T and M is solvable if
∀ i, j ∈ A,

lim
n→∞

DV (P in, P
j
n) > 0 (1)

where P ln denotes the conditional distribution of σLn
given

σρ = l. Similarly, we say that the reconstruction problem is
census solvable if ∀ i, j ∈ A,

lim
n→∞

DV (P̃ in, P̃
j
n) > 0 (2)

where P̃ ln denotes the conditional distribution of cn given
σρ = l. Equivalently, these definitions can also be defined
in terms of the mutual information I(σρ;σLn

) (respectively
I(σρ; cn)). We denote ∆n(π) to be the success probability of
the maximum likelihood (optimal) reconstruction algorithm of
the initial symbol.

Fig. 1. A binary tree with each edge a BSC(ε)

II. SUMMARY OF IMPORTANT RESULTS

The following equivalent notions from [1] follow from the
analysis based upon the fact that σLn follows a Markov chain.

Proposition 1 (2.1 from [1]): For tree T and channel M ,
the following conditions are equivalent:

1) The reconstruction problem is solvable.
2) There exists a π for which limn→∞ I(σρ;σLn

) > 0.
3) If π is uniform on A, then limn→∞ I(σρ;σLn) > 0.
4) For any distribution π with mini πi > 0, it holds that

limn→∞ I(σρ;σLn
) > 0.

5) There exists π for which limn→∞∆n(π) > maxi πi.
Analogous results also exist for cn.
A special case of interest is when M is the Binary Symmetric
Channel (BSC) with error probability ε. This is the ferromag-
netic Ising Model in statistical physics. More specifically, if
we associate bits {0, 1} with {+1,−1} spins, then the joint
distribution of the vertices of any finite depth broadcasting
sub-tree corresponds to the Boltzmann-Gibbs distribution on
the sub-tree (see [2]). The Gibbs distribution is given by

G(σ) = Z(t)−1 exp(

∑
u∼v Jσuσv

t
) (3)

where t is the temperature, Z(t) is a normalizing constant,
J > 0 is the interaction strength and is related to ε as
ε

1−ε = exp(− 2J
t ). It was shown in [2] that the threshold for

reconstruction depends on an inherent tree property called the
Branching Number br(T ) as follows:



Definition 1 ( [3]): For an edge e ∈ E, let |e| denote the
number of edges, including itself, on the path from ρ to e.
The Branching Number br(T ) is defined as the supremum of
real numbers λ ≥ 1, such that T admits a positive flow from
the root to infinity, if on every edge e, the flow is bounded by
λ−|e|.

Theorem 1 (Theorem 1.1 from [2]): Consider the problem
of reconstructing σρ from σLn of T ,

1) If br(T )(1− 2ε)2 > 1, then infn→∞ I(σρ;σLn
) > 0.

2) If br(T )(1− 2ε)2 < 1, then infn→∞ I(σρ;σLn
) = 0.

The proof is based upon upper and lower bounds on the
quantity I(σρ;σLn). Notice that (1− 2ε) is the second largest
eigen-value of M in this case.

For census solvability, it turns out that the above threshold
is applicable to all channels M . That is the reconstruction
problem is census solvable when br(T )|λ2(M)|2 > 1 and
not census solvable if br(T )|λ2(M)|2 < 1 [4], [5]. The non-
solvability when equality holds is proven for some specific
instance in [4].

The above theorems together show that, reconstruction
by global majority is as good as maximum likelihood re-
construction. In evolutionary biology, given a bi-coloring of
the boundary of a tree T , a parsimonious coloring of the
internal nodes is a bi-coloring that minimizes total number
of bi-colored edges. For a fixed tree and small ε > 0, the
maximum likelihood algorithm gives the same root value as
one of the parsimonious colorings. But [6] showed that for
ε ∈ ( 1√

2
, 34 ], maximum likelihood (i.e., majority rule) succeeds

in reconstruction while parsimony fails.

III. RESULTS ON DIRECTED ACYCLIC GRAPHS

We discuss a very recent extension of the above problem
to random Directed Acyclic Graphs (DAG) [7]. Consider a
directed graph with a single source vertex and every other non-
source vertex having in-degree d ≥ 2. Let Lk denote the set
of vertices at layer k, i.e., the vertices at k-hop distance from
the root. For every vertex in Lk, uniformly chose d vertices
from Lk−1 and construct the directed edges. Thus we have a
DAG. Now a Bernoulli( 12 ) bit is chosen at the root. Each edge
of the graph acts as an independent BSC(ε). Each node acts
as a Boolean logic gate performing a (possibly node specific)
Boolean operation on the noisy inputs to produce a single
Boolean output which is then broad-casted downwards. One
can identify two fundamental differences from the tree model:
• Unlike trees, the layer sizes do not need to scale expo-

nentially.
• The in-degree is more than one so information processing

is possible at nodes.
The question arises, can the benefits of the later overpower
the shortcoming of the former and allow reconstruction of the
root at any layer with sub-exponential size?

It was shown in [7] that for d ≥ 3 and all Boolean
processing functions to be d-input majority rule, εmaj is a
threshold for reconstruction where

εmaj =
1

2
− 2d−2

dd2e
(
d
d d2 e
) (4)

Theorem 2: For a random DAG with d ≥ 3 and majority
processing functions (where ties are broken by outputting
random equally likely bits), the following phase transition
phenomenon occurs around εmaj :

1) If ε ∈ (0, εmaj) and the number of vertices per level
satisfies Lk ≥ C(ε, d) log k for all sufficiently large k,
then the reconstruction is possible in the sense that

lim sup
k→∞

P(Maj(Lk) 6= σρ) <
1

2
(5)

where Maj(·) is the majority decoder.
2) If ε ∈ (εmaj ,

1
2 ) and the number of vertices per level sat-

isfies Lko(D(ε, d)−k), then reconstruction is impossible
in the sense that

lim
k→∞

||P 0
k|G − P

1
k|G|| = 0 G− a.s. (6)

where P lk|G is the conditional distribution of the bits
at layer k given the structure of G and σρ = l. Here,
C(ε, d) and D(ε, d) are functions of ε and d described
in detail in [7].

Thus, for ε < εmaj , the majority decision rule can asymptoti-
cally recover the root-bit where as for ε > εmaj even knowing
the exact structure of the graph and using maximum likelihood
decision rule, it is not possible to recover the root. The paper
also established the same threshold value for using single
vertex reconstruction instead of majority rule reconstruction
under the same assumptions. An explicit way to construct such
DAGs for which the reconstruction is possible has also been
given by using the ideas of regular bipartite lossless expander
graphs.

IV. CONCLUSION

The purpose of this survey is to give a brief introduction
to the latest and most important results in the domain of
information broadcasting on graph networks. Such models
are frequently encountered in fields of phylogeny, statistical
physics and very recently in learning theory. The reader is
referred to the corresponding papers for further details and
various open problems.
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