Information Flow on Trees : A Survey

Adway Patra Dept. of Electrical and Computer Engineering University of Maryland, College Park Maryland, United States of America apatra@umd.edu

April 21, 2020

lzu.jpg

Extension to DAGs

イロト イヨト イヨト イヨト

Introduction

Introduction

Consider a tree T = (V, E).

- Each edge behaves as an independent, identical channel *M* on alphabet *A*.
- A symbol σ_ρ selected uniformly at the root from A.
- For $(x, y) \in E$, x being the parent, $P(\sigma_y = j | \sigma_x = i) = M_{ij}$.

Question

Is it possible to reconstruct the root symbol σ_{ρ} by observing the symbols σ_{L_n} at any depth n.

Intuition

Obviously, the answer depends on T and M, but how?

Main Results

Definition

The reconstruction problem for T and M is solvable if $\forall i, j \in A$,

$$\lim_{n \to \infty} D_V(P_n^i, P_n^j) > 0$$

where $P_n^l \equiv P(\sigma_{L_n} | \sigma_{\rho} = l)$.

- Intuitively, if the conditional distributions are different, we can distinguish.
- Similar definition possible in terms of the mutual information $I(\sigma_{\rho}; \sigma_{L_n})$.

Theorem

Let *M* be the Binary Symmetric Channel (BSC(ϵ)). Consider the problem of reconstructing σ_{ρ} from σ_{L_n} of *T*,

• If
$$br(T)(1-2\epsilon)^2 > 1$$
, then $\inf_{n \to \infty} I(\sigma_{\rho}; \sigma_{L_n}) > 0$.

2) If
$$br(T)(1-2\epsilon)^2 < 1$$
, then $\inf_{n \to \infty} I(\sigma_{\rho}; \sigma_{L_n}) = 0$.

where br(T) is the branching number of the tree and is a fundamental graph property [W. Evans et al., 2000].

Adway Patra

(1)

Discussions

Very popular in statistical physics. Taking M to be the BSC(e) gives the Ising Model.

$$\mathcal{G}(\sigma) = Z(t)^{-1} \exp(\frac{\sum_{u \sim v} J\sigma_u \sigma_v}{t})$$
⁽²⁾

t: temperature, Z(t): a normalizing constant, J>0: the interaction strength and is related to ϵ as $\frac{\epsilon}{1-\epsilon}=\exp(-\frac{2J}{t})$. $_{\rm Eulop}$

⁽²⁾ When only the census at the n^{th} layer is available, the reconstruction problem is census solvable when $br(T)|\lambda_2(M)|^2 > 1$ and not census solvable if $br(T)|\lambda_2(M)|^2 < 1$. **Applicable for all channels M.

Important conclusion : Reconstruction by global majority is as good as maximum likelihood reconstruction.

・ロ・・ (日・・ 日・・ 日・・

Extension to DAGs

This problem was recently extended to the scenario of Directed Acyclic Graphs.

- Each edge is BSC(ϵ). Each node now has indegree $d \ge 2$. For every vertex in L_k , uniformly chose d vertices from L_{k-1} and construct the directed edges.
- Each node acts as a Boolean logic gate performing a (possibly node specific) Boolean operation on the noisy inputs to produce a single Boolean output which is then broad-casted downwards.
- Two fundamental differences from the tree model:
 - Unlike trees, the layer sizes do not need to scale exponentially.
 - The in-degree is more than one so information processing is possible at nodes.
- It was shown that the threshold is:

$$\epsilon_{maj} = \frac{1}{2} - \frac{2^{d-2}}{\left\lceil \frac{d}{2} \rceil \left(\lceil \frac{d}{2} \rceil \right)}$$
(3)

i.e., for $\epsilon < \epsilon_{maj}$, the majority decision rule can asymptotically recover the root-bit where as for $\epsilon > \epsilon_{maj}$ even knowing the exact structure of the graph and using maximum likelihood decision rule, it is not possible to recover the root [Makur *et al.*, 2019].