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Abstract

Two latest variations of the private information retrieval (PIR) problem are considered in this
work. In the first one, we consider the problem of PIR from multiple storage nodes when the
underlying database is encoded using regenerating codes, i.e., the database has the ability to
recover from individual node failures. More specifically, we intend to design PIR schemes for
such databases that optimize the popular performance measure of download rate of a retrieval
scheme. We wish to maximize this rate when a user wants to retrieve a message privately
(in an information-theoretic sense) from the database. In this regard, firstly, we provide
some sub-optimal PIR schemes for a specific subclass of regenerating codes. Afterwards, we
focus on the more extensively explored Minimum Storage Regenerating (MSR) codes and
formally state and prove the PIR capacity of such codes. We also give a simple scheme to
achieve this capacity which is based on the similarly motivated construction for MDS codes.
Furthermore, we give a PIR scheme for a specific class of Minimum Bandwidth Regenerating
(MBR) codes that achieves the same rate as its minimum storage counterpart. In the second
part of this thesis, we take on the problem of PIR in graph-based replication systems with
possible node collusion. We discuss a recently proposed PIR scheme that provides perfect
privacy provided that the girth of the graph is larger than the degree of collusion. We give
an extension to this scheme that allows the user to circumvent this restriction by incurring a
reduction in the download rate. Finally, for any degree of collusion, we give an upper bound
on the download rate of linear PIR for a large family of graphs.
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Chapter 1

Introduction

Private Information Retrieval (PIR) is the problem of retrieval of a message among several
messages stored in a storage system without revealing any information about the identity of
the desired message to the database. The problem of PIR was first introduced in the seminal
paper by Chor et al. [2]. Since then, a considerable amount of research has been done in the
field of PIR. In the classical PIR problem, a user trying to download one message out of many
contacts multiple non-communicating storage nodes (or servers) that store the messages in
a replicative format (using repetition coding) such that no information about the identity
of the message is leaked to any of the nodes. The requirement of multiple storing entities is
justified by the observation that for the case of a single-server database, the only possible
privacy-preserving download scheme is the trivial one of downloading everything. On the
other hand, the efficiency of a retrieval scheme while maintaining user privacy becomes a
non-trivial concern in case of a database consisting of multiple servers in a distributed storage
setting. A well-accepted measure of efficiency for information-theoretic PIR schemes is the
download rate which is the number of desired bits retrieved per downloaded bit.

It was shown in [3] that the maximum rate of download for such a scheme termed the
PIR capacity is 1− 1

N

1− 1
Nm

for m equal-length messages stored in a replicative manner across
N nodes. The authors also presented an achievable scheme based on the idea of blind
interference alignment technique which was introduced for wireless networks in [4]. Although,
the redundancy introduced by the repetition coding scheme allows the system to tolerate
the maximum possible number of simultaneous node failures, it is somewhat wasteful of the
storage resources. To offer more efficient use of storage space, Maximum Distance Separable
(MDS) coded databases were considered for the PIR setting in [1] and the capacity expression
was derived to be 1−Rc

1−Rc
m where Rc is the code-rate k

n
of the underlying MDS [n, k] code.

Since distributed storage systems are prone to frequent node failures, regenerating codes
were proposed in [5]. These codes have the capability of replacing a failed node with an
exact or functional replica by contacting a subset of the surviving nodes while minimizing
the amount of data downloaded for repair. In this work, we have considered the problem of
PIR while the underlying distributed storage system is of a regenerating nature. It turns out
that for storage-optimal regenerating codes (i.e., the Minimum Storage Regenerating codes
to be formally defined later) the PIR capacity is exactly that of an MDS coded database.

An alternative way of reducing the storage overhead without sacrificing the simplicity
of replication coding is to use partial replication where a message is replicated in only a
subset of the nodes instead of all of them. This leads to a hypergraph structure in the
DSS where nodes denote vertices and edges denote messages. The most storage efficient
of such schemes is with overhead of 2 which leads to a graph structure. In [6], the authors
considered the problem of PIR on such graph-based replication systems (GPIR) with possible
node collusions. They gave a PIR scheme that provides perfect privacy achieving the rate of
1
n
, n being the number of nodes in the system, as long as there are no cycles in the subgraph

induced by the colluding nodes. Hence, the scheme is restricted to work only when the
maximum degree of collusion is less than the girth of the graph. In this work, an extension
of their scheme is given which allows the user to achieve perfect privacy even when the degree
of collusion is more than the girth of the graph by compromising on the download rate. In
fact, the scheme provides a trade-off between the maximum degree of collusion that needs
to be tolerated and the download rate. Additionally, we give the first generic upper bound
on the rate of linear PIR for a large class of graphs and any value of the degree of collusion.
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Chapter 2

Related Work

Having been introduced in [2], the basic PIR problem has seen a lot of practical variations
throughout the past few years. As stated before, the PIR capacity for replicative database
was found in [4] and the same for the MDS coded database in [1]. The problem of PIR with
colluding servers (TPIR) where at most T of the total number of servers may collude with
each other, was considered in [7] and later extended to byzantine and adversarial servers
with possible node collusions in [8] and [9]. The idea of symmetric PIR (SPIR), which
ensures the privacy of the messages other than the desired one from the retriever as well
as the privacy of the desired message from the individual nodes, was investigated in [10]
for replicated databases and was later extended to MDS coded databases in [11]. A further
extension of this SPIR problem was considered in [12] with different types of adversaries and
the capacity was derived in each scenario. In [13], the authors consider the problem of PIR
with available private side information (PIR-PSI) at the user end. The capacity of PIR-
PSI was derived in [14]. Further variations of this work are cache-aided PIR with uncoded
partial side information [15], single-server single-message PIR with coded side information
[16], single-server multi-message PIR with side information [17] and PIR-PSI under storage
constraints [18]. Two recent variations of the PIR scheme are asymmetrical PIR schemes
[19] which download at different rates from different servers and staircase PIR [20] which
presents an universally robust solution of the problem of unresponsive servers.

Regenerating codes were introduced in [5] to address the issue of frequent node failures
in erasure coded databases and to expedite the subsequent repairs. An [n, k, d] regenerating
code for n nodes allows the user to reconstruct the data by contacting any k of the n nodes
and allows any failed node to be regenerated by contacting any d of the remaining n − 1
nodes. Two types of node repairs are considered in the literature: functional repair and exact
repair. The problem of functional repair was shown to be connected to network multi-casting
problem in a directed graph [5]. On the other hand, the exact repair problem has a trade-off
between the amount of storage per node and the amount of download required for repair of
a node. Codes at the two extreme points: the Maximum Storage Regenerating (MSR) codes
and the Maximum Bandwidth Regenerating (MBR) codes are of fair interest and have been
vastly studied. The achievability of the MSR point was first shown in [21] for k = 2 and
d = n− 1. An MBR construction with d = n− 1 and an MSR code for d = k+1 performing
approximately-exact regeneration was given in [22]. A combination of functional and exact
regeneration i.e. a hybrid regeneration at the MSR point was proposed in [23]. All these
constructions require large field sizes. The Product-Matrix (PM) construction for both the
MSR and MBR points, proposed in [24], provides codes for almost all parameters (all n, k, d
values for MBR and all n, k, d ≥ 2k − 1 for MSR) and requires considerably smaller field
sizes. In [25], the authors showed that all other points except the MSR and MBR on the
storage-bandwidth trade-off are not achievable under exact repair.

The problem of PIR for regenerating codes was first considered in [26]. However, the
construction requires the number of nodes in the system to be exponential in the number
of messages, which, in real life scenarios, is not practical to implement. Very recently, there
has been a growing interest in the research community on this topic. Recent PIR scheme
constructions on the widely popular PM framework can be found in [27]-[28]. We introduce
some sub-optimal PIR schemes for the PM framework on both the MSR and MBR points
of interest. These schemes have the advantage of having rates 1− d

n
that are independent of

the number of messages in the database. Next, we give an explicit algorithm to construct
PIR schemes for achieving the PIR capacity of MSR codes which is the same as that of the
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MDS codes. Our construction is based upon the MDS PIR capacity achieving scheme and
works by treating MSR codes as vector MDS codes. A similar line of work can be found in
[29]. We also give a scheme for the specific PM MBR codes that achieves the same rate as
its MSR counterpart.

The notion of PIR for graph based replication systems was first proposed in [6]. This line
of research is more closely related to the problem of storage constrained PIR [30] where each
node is allowed to store only a fraction of the total data. Many real life practical data storage
systems such as Hadoop and Cassandra use such graph based storage techniques. To the
best of our knowledge, the question of the maximum possible PIR rate for such databases,
with possible node collusions, is, in general, not explored. A recent work of Jia et al. [31] has
answered the question of asymptotic capacity (when the number of messages becomes large)
for certain scenarios. In this work, we follows the model of [6] which primarily considers the
lowest storage overhead with a replication factor of 2. We first address a limitation of a PIR
scheme proposed by the authors and give a technique to make their scheme applicable to
wider scenarios, although by compromising in the download rate. Afterwards, we give an
upper bound on the linear TPIR rate for any value of T for a large family of graphs.

The following chapters are organized as follows. Chapter 3 gives some preliminaries about
regenerating codes that are useful in subsequent sections. We introduce our model for PIR
for regenerating codes and PIR for graph-based replication systems in Chapter 4. In Chapter
5, we introduce the sub-optimal schemes for the MSR and MBR PM codes. In Chapter 6,
we state the PIR capacity for MSR codes and give an explicit algorithm for constructing a
capacity achieving PIR scheme for any MSR code. We also show that same rates can be
achieved for the MBR PM codes as well. In Chapter 7, we briefly discuss the PIR scheme of
[6] and also provide our proposed extension. We then give the upper bound on linear TPIR
rates for a family of graphs. Finally, we draw conclusion in Chapter 8.
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Chapter 3

Preliminaries

3.1 Regenerating Codes
Distributed Storage Systems (DSS) are prone to frequent node failures. To combat this
random phenomenon, controlled redundancy is introduced in the system such that even
under the event of a certain number of node failures, the performance of the DSS from the
user perspective is not affected. Erasure codes such as Reed-Solomon codes are widely used
in DSS. An [n, k] erasure code allows the user to retrieve a message allowing at most n− k
arbitrary nodes to fail. To keep such failure tolerance property invariant with time, there
is a natural necessity of regeneration of the failed nodes. For MDS codes such as Reed-
Solomon codes, a trivial technique for regeneration of a failed node can be to download the
data contained in any k surviving nodes, decode the message from the downloaded data
and then re-encode it for the failed nodes. This asks for huge communication overheads and
hence more efficient regeneration is expected. In their seminal paper, Dimakis et al. [5] first
showed, by use of network coding arguments, that such efficient codes do indeed exist and
perform strictly superior to existing techniques.

A regenerating code [n, k, d, α, β, B] is used to store a message of size B, whose symbols
belong to a certain finite field Fq among n identical servers storing α coded symbols each
such that the following two conditions are satisfied.

• The original message can be retrieved by contacting any k out of n nodes and down-
loading their stored data.

• If a node fails, it can be regenerated by contacting any d out of n− 1 remaining nodes
and downloading β (≤ α) symbols from each of them. Hence, we have the parametric
relation

k ≤ d ≤ n− 1 (3.1)

Using the cut set bound of network coding, the authors in [5] showed that the parameters
of regenerating codes are constrained by the equation

B ≤
k−1∑
i=0

min{α, (d− i)β} (3.2)

This inequality not only provides an upper bound on the maximum possible information
that can be stored using a fixed regenerating code, but also gives a trade-off between storage
per node α and regeneration bandwidth γ = dβ. Along the storage-bandwidth trade-off
curve, the two extremal points are of significant interest. The point corresponding to the
Minimum Storage Regenerating (MSR) code has parameters

(αMSR, βMSR) =

(
B

k
,

B

k(d− k + 1)

)
(3.3)

It is clear from the expressions that having d = k at the MSR point does not provide us with
any savings in terms of download. To repair a failed node, a newcomer, restricted to contact
only k nodes, can only perform the trivial technique of regeneration for MDS codes. The
regeneration bandwidth turns out to be a decreasing function of d and hence is minimized
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when all the other nodes are contacted for repairing a failed node, i.e., at d = n− 1, having
the value of

γmin
MSR = α

(
n− 1

n− k

)
=

(
B

k

)(
n− 1

n− k

)
(3.4)

A bandwidth expansion factor is necessary for the reliability-redundancy optimality of the
MDS property.

The point on the other extreme of the curve, the Minimum Bandwidth Regenerating
(MBR) code has the parameters

(αMBR, βMBR) =

(
2Bd

2kd− k2 + k
,

2B

2kd− k2 + k

)
(3.5)

At this operating point, we have α = dβ and so MBR codes do not incur any repair band-
width expansion and download exactly the amount of information stored in the failed node.
However, at the point d = n− 1, we have

γmin
MBR = αmin

MBR =

(
B

k

)(
2n− 2

2n− k − 1

)
(3.6)

which shows that a storage expansion has been incurred for minimizing the bandwidth and
the codes are no longer optimal in the MDS sense.

3.2 Product-Matrix (PM) Codes
The product-matrix framework [24] provides regenerating code constructions for almost all
parameters of interest at the two extreme points of the trade-off curve (all [n, k, d] values
at the MBR point and all [n, k, d ≥ 2k − 1] values at the MSR point). An [n, k, d, α, β, B]
MSR PM code is described by an n× α code matrix C whose ith row corresponds to the α
symbols stored by the ith node. The code matrix is the product of an n× d encoding matrix
ψ and d× α message matrix M :

C = ψM (3.7)
Note that M possesses certain symmetry properties to facilitate regeneration and does not
necessarily contains dα independent message symbols. If a user contacts any set K of nodes
{i1, i2, . . . , ik} such that the cardinality, |K|, of the set equals k and downloads the stored
data, the information available to the user can be represented as ψKM where the matrix
ψK is a sub-matrix of ψ corresponding to these rows. The user must be able to decode the
original message from these kα symbols. If now a node, say f , fails, let the newcomer node
contact a set D of surviving nodes {h1, h2, . . . , hd} such that |D| = d. A node hj sends back
ψhj

Mµf where µf is a length α column vector that is dependent upon the failed node index
f . From the data sent back by the d helper databases, the newcomer should be able to
exactly reproduce the lost α symbols of the node f . In this framework, β is assumed to be
1 and the authors in [24] showed that this assumption is without loss of generality.

3.2.1 Minimum Storage Regenerating Codes
The parameter set of the MSR PM code can be expressed as

[n, k, d = 2k − 2, α = d− k + 1 = k − 1, β = 1, B = kα] (3.8)

The message matrix M is a d× α matrix

M =

[
S1

S2

]
(3.9)

where each of S1 and S2 is a α× α symmetric matrix containing
(
α+1
2

)
distinct independent

symbols each. Hence the total message symbols in the two matrices together is α(α + 1)
which is exactly B. The encoding matrix ψ is defined as

ψ =
[
ϕ ∆ϕ

]
(3.10)

where ϕ is an n × α matrix having any α rows linearly independent and ∆ is an n × n
diagonal matrix with distinct elements. Also the matrix ψ needs to be such that any d
rows are linearly independent. It was shown in [24] that one can construct codes for all
n− 1 ≥ d ≥ 2k − 2 by using an MSR code at d = 2k − 2 (Theorem 6 in [24]).
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3.2.2 Minimum Bandwidth Regenerating Codes
The parameter set of the MBR PM code can be expressed as

[n, k, d ≥ k, α = d, β = 1, B =

(
k + 1

2

)
+ k(d− k)] (3.11)

The message matrix M is defined as

M =

[
S T
T t 0

]
(3.12)

where S is a symmetric matrix of dimension k × k containing the first
(
k+1
2

)
symbols of the

message and the matrix T is of dimension k× (d− k) containing the other k(d− k) message
symbols. The encoding matrix ψ has the structure

ψ =
[
ϕ ∆

]
(3.13)

where ϕ is an n× k matrix having any k rows linearly independent and ∆ is an n× (d− k)
matrix such that, overall, any d rows of ψ are linearly independent.
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Chapter 4

System Model

In this section we describe the system model that we will be following. Since we have
two different problems to discuss, the two system models are also different and described
separately. Let [a], for some positive integer a, denote the set {1, 2, . . . , a} and [a1 : a2], for
some positive integers a1, a2 and a2 ≥ a1, denote the set {a1, a1 + 1, . . . , a2 − 1, a2}. For a
set of random variables {Ai : i ∈ [a]}, Aj1:j2 for 1 ≤ j1 ≤ j2 ≤ a denotes the set of random
variables {Aj1 , Aj1+1, Aj1+2, . . . , Aj2} and AK for K ⊆ [a] denotes {Ai : i ∈ K}. For any
matrix X, the rth row of matrix X is denoted by X(r) and for a set of indices K, XK denotes
the sub-matrix of X restricting its rows to those with indices in K. The transpose of the
matrix X is denoted by X t.

4.1 PIR for Regenerating Codes
We have n identical servers denoted by the set [n] = {1, 2, . . . , n} and they store m messages
{W1,W2, . . . ,Wm}. We fix an [n, k, d, α̃, β̃, B̃] regenerating code and take the size of each
message to be L = L̃B̃ where L̃ is some positive integer. The L symbols of each message are
independently chosen at random from a finite field Fq :

H(Wi) = L ∀ i ∈ [m] (4.1)

H(W1,W2, . . . ,Wm) =
m∑
i=1

H(Wi) = mL (4.2)

where H() is the entropy function with logarithm taken to the base q. The encoding of a
message of L symbols is done in the following way. Each block of B̃ message symbols is sepa-
rately encoded using the same encoding procedure of the above regenerating code. Since the
encoding of each such block is carried out independently of the other blocks, the regeneration
and reconstruction (i.e., decoding) of each such block can also be carried out independently
of all the other blocks of the same message. The resulting encoding of the message with L
symbols can be thought of as the encoding obtained using an [n, k, d, α, β,B = L] regener-
ating code that stores α = L̃α̃ symbols per node and requires β = L̃β̃ downloads from each
helper node during node regeneration. This idea is inspired by the concept of “striping of
data” as discussed in Section I-C of [24]. Such an encoding scheme gives us the flexibility
to increase L in multiples of B̃ by simply increasing L̃. This causes the parameters α, β,B
to increase accordingly while the underlying regenerating code parameters α̃, β̃, B̃ do not
change. In the limit, the file size L can be made to go to infinity simply by increasing L̃.
As L̃ → ∞, the parameters α, β, L (= B) → ∞ while the underlying regenerating code
parameters [n, k, d, α̃, β̃, B̃] remain fixed.

Let Yi denote the data stored at node i. Since the messages themselves are independent
and the encoding of each message is performed independently of the others, it follows that
Yi consists of m independent components {Y 1

i , Y
2
i , . . . , Y

m
i } with Y j

i being the component
corresponding to the jth message.

H(Y j
i ) = α ∀ j ∈ [m] (4.3)

H(Yi) = mα (4.4)
A user should be able to recover a message by accessing any subset K ⊂ N of cardinality k
and downloading the data corresponding to that message. So,

H(Wj|Y j
K) = 0 ∀ j ∈ [m] (4.5)
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which when combined with Equations (4.1)-(4.4) gives:

H(W1,W2, . . . ,Wm|YK) = 0 (4.6)

In the event of a node failure, the newcomer node contacts a subset D ⊂ N of nodes of
cardinality d and each of these helper nodes sends β symbols for the repair. Let us use Sh→f

to denote the random variable sent by helper node h for the repair of node f . Again using
independence arguments we can say that the variable Sh→f can be split into m independent
components {S1

h→f , S
2
h→f , . . . , S

m
h→f} where Sj

h→f is sent by helper node h for regeneration
of the data stored at node f corresponding to the jth message. From the regenerating code
parameters it follows that :

H(Sj
h→f ) = β ∀ j ∈ [m] (4.7)

I(Sj1
h→f ;S

j2
h→f ) = 0 ∀ j1, j2 ∈ [m] , j1 ̸= j2 (4.8)

which implies
H(Sh→f ) = mβ (4.9)

The regeneration property further states that

H(Sj
h→f |Y

j
h ) = 0 ∀ j ∈ [m] (4.10)

H(Y j
f |S

j
D→f ) = 0 ∀ j ∈ [m] (4.11)

where Sj
D→f ≡ {S

j
h→f : h ∈ D}. Now let us suppose that an user is interested in retrieving

a message Wj privately from the n nodes. The user has a realization of j private to him. A
set of queries {Q(j)

1 , Q
(j)
2 , . . . , Q

(j)
n } is prepared by the user such that individually the queries

reveal no information about the desired index j to any of the nodes :

I(j;Q
(j)
i ) = 0 ∀ i ∈ [n] (4.12)

Since the queries are prepared with no information about the original messages, we have

I(Q
(j)
1 , Q

(j)
2 , . . . , Q(j)

n ;W1,W2, . . . ,Wm) = 0 ∀ j ∈ [m] (4.13)

The ith node, upon receiving the query Q
(j)
i returns an answer variable A

(j)
i which is a

deterministic function of the data stored Yi and the received query Q(j)
i :

H(A
(j)
i |Q

(j)
i , Yi) = 0 ∀ i ∈ [n] (4.14)

Getting back all the answers (A
(j)
1 , A

(j)
2 , . . . , A

(j)
n ) from the n nodes, the user should be able

to recover the desired message with very small probability of error. From Fano’s inequality
it follows that :

H(Wj|A(j)
1 , . . . , A(j)

n , Q
(j)
1 , . . . , Q(j)

n ) = o(L) ∀ j ∈ [m] (4.15)

where o(L)
L
→ 0 as L→∞.

The rate of the PIR scheme is defined as the ratio of the size of the desired message to
the total download cost under the two constraints of equations (4.12) and (4.15) of privacy
and reliability respectively. The rate R is defined as

R =
H(Wj)∑n
i=1H(A

(j)
i )

(4.16)

The PIR capacity C is the supremum of the rate over all PIR schemes. As mentioned
before, since we are following the standard setting of information-theoretic PIR, we will be
neglecting the upload cost related to the queries and only focus on the download cost.
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4.2 PIR for Graph-based Replication Systems
We consider a distributed storage system (DSS) with n identical storage nodes (or servers),
denoted by the set [n]. There are m messages in the system denoted by W1,W2, . . . ,Wm.
Each message is of length L, for some integer L. The L symbols of each message are chosen
uniformly, randomly and independently from some underlying field Fq.

H(Wj) = L ∀ j ∈ [m] (4.17)

H(W1,W2, . . . ,Wm) =
m∑
j=1

H(Wj) = mL (4.18)

where H() is the entropy function with logarithm taken to the base q. Instead of conventional
replication, where each message is replicated at every node, we assume that each message
Wj is stored in a certain subset Rj ⊂ [n] of size 2. Hence, each message is replicated at
exactly two nodes. Further, we assume that for j1 ̸= j2 ,Rj1 ̸= Rj2 ∀j1, j2 ∈ [m], i.e., two
nodes can share at most one message.

Based upon this storage pattern, we can define an undirected graph G = (V,E) with
|V | = n, |E| = m, where an edge (i1, i2) ∈ E iff ∃ Rj = {i1, i2} for some j ∈ [m]. Clearly,
our previous assumption excludes the possibililty of any double edges in this graph. So
an edge (i1, i2) uniquely identifies the message Wj for which Rj = {i1, i2} and we will,
alternatively, call this the jth edge (message). The degree and the stored content of a vertex
(node) i are denoted by di and Yi. So, if the edges incident on node i are {j1, j2, . . . , jdi},
then

Yi =
[
Wj1 Wj2 . . . Wjdi

]t (4.19)

To retrieve desired message Wm̂, the user prepares queries {Q(m̂)
1 , Q

(m̂)
2 , . . . , Q

(m̂)
n } and sends

Q
(m̂)
i to node i. Since, we will only be considering linear PIR schemes, we can think of Q(m̂)

i

to be a li × diL matrix
Q

(m̂)
i =

[
Q

(m̂)
i,j1

Q
(m̂)
i,j2

. . . Q
(m̂)
i,jdi

]
(4.20)

where each Q
(m̂)
i,j is a li × L matrix. The ith node, upon receiving Q(m̂)

i , returns the answer
string

A
(m̂)
i = Q

(m̂)
i Yi =

[
Q

(m̂)
i,j1

Q
(m̂)
i,j2

. . . Q
(m̂)
i,jdi

] [
Wj1 Wj2 . . . Wjdi

]T (4.21)

which is of length li. The total download is D =
∑n

i=1 li and the rate of the PIR scheme is
R = L

D
.

To model the T -privacy constraint, we say that a set T ⊂ [n] of nodes of size at most
T can collude among themselves, i.e., they can exchange information about the queries sent
to them and the data they store. Alternatively, we model this by an adversary who has
complete knowledge of the storage pattern and has access to the queries and stored contents
of a set T ⊂ [n], |T | = T . We shall use these two terminologies interchangeably. We have
the following information-theoretic privacy constraint:

I(m̂;Q
(m̂)
T ) = 0 ∀ T ⊂ [n], |T | = T, ∀ m̂ ∈ [m] (4.22)

For notational simplicity, we will sometimes suppress the use of the desired message index
in the superscripts of all random variables. The intention should be clear from the context.
We write all the queries {Qi : i ∈ [n]} in the n×m matrix Q. The (i, j)th entry of Q is itself
a matrix Qi,j ∈ Fli×L

q if in the incidence matrix I of the graph G the (i, j)th entry is 1 and
an all-zero matrix of appropriate dimensions otherwise. The complete answer vector would
then be

A =
[
A1 A2 . . . An

]T
= Q

[
W1 W2 . . . Wm

]T (4.23)
For example, the query matrix and answer vector for K3, would be

A =

Q1,1 0 Q1,3

Q2,1 Q2,2 0
0 Q3,2 Q3,3

W1

W2

W3

 (4.24)

For a set T ⊂ [n] and S ⊂ [m], QT ,S will denote the submatrix of Q restricted to the
rows and columns corresponding to the nodes of T and messages of S. The notations QT ,:
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and Q:,S will be abbreviated to QT and QS whenever there is little chance of confusion. The
subgraph spanned by the nodes in T will be denoted by GT . The ranks of all the matrices
will be taken over the field Fq.

From the answer strings, the desired message Wm̂ would be recoverable iff there is a
linear transformation over Fq consisting of only row operations of the matrix Q to some
other matrix Q of the form

Q =

[
0 . . . Q̃m̂ . . . 0

X

]
(4.25)

where Q̃m̂ is an L × L full rank matrix and X is an arbitrary matrix. Since there are only
row operations allowed, we can say that

rank(

[
Qx,m̂

Qy,m̂

]
) = L (4.26)

where Rm̂ = {x, y}. We argue that for preserving privacy, the above rank condition has to
be true not only for the desired message Wm̂ but for all the messages. In other words, the
following has to be satisfied

rank(

[
Qi1,j

Qi2,j

]
) = L ∀ j ∈ [m],Rj = {i1, i2} (4.27)

The reason is as follows. The adversary has full knowledge of the underlying graph, i.e., the
storage pattern of messages, and he is in control of any T nodes for 2 ≤ T ≤ n, the identities
of which are not known to the user. If for any message index j ∈ [m], the above rank
condition is not satisfied then an adversary who has control over the nodes of Rj = {i1, i2}

can calculate the rank of
[
Qi1,j

Qi2,j

]
and hence deduce that Wj can not be the desired message.

This is a breach of perfect privacy and hence the above relationship must hold true.

12



Chapter 5

Sub-optimal PIR Schemes for PM
Codes

5.1 PIR Scheme for MSR PM Codes
We propose a scheme that achieves the rate 1− d

n
for when the underlying code is an MSR

PM code with parameters [n = d + k, k, d ≥ k, α̃ = d − k + 1, β̃ = 1, B̃ = kα̃]. The m
messages stored in the database each is of size L = kα̃ (i.e., L̃ = 1 and hence α = α̃, β = β̃)
and encoded using the product-matrix MSR code across n nodes. The user wants to retrieve
message Wm̂ where m̂ ∈ [m]. User prepares queries {Q(m̂)

1 , . . . , Q
(m̂)
n } where each Q

(m̂)
i is a

α×mα matrix and can be written as

Q
(m̂)
i = U + V

(m̂)
i ∀ i ∈ [n] (5.1)

U is a randomly chosen matrix from the space of all α ×mα matrices with elements from
the field Fq. The matrix V (m̂)

i has the structure

V
(m̂)
i =

[
Oα×(m̂−1)α X

(m̂)
i Oα×(m−m̂)α

]
(5.2)

where O is the all-zero matrix having the dimensions in the sub-script and the α×α matrix
X

(m̂)
i is chosen as follows

1. Choose any d number of nodes D from the n nodes {1, 2, . . . , n} and set X(m̂)
i =

Oα×α ∀ i ∈ D.

2. For the remaining (n− d) nodes, set X(m̂)
i = Iα×α ∀ i ∈ [n] \D

The ith node upon receiving query matrix Q(m̂)
i will return answer string A(m̂)

i as

A
(m̂)
i = Q

(m̂)
i Yi (5.3)

The following claims further study and verify the properties of this scheme.
Claim 5.1.1: From all the {A(m̂)

i : i ∈ [n]}, the user is able to recover Wm̂.
Proof: Consider the set D that was randomly chosen at the users end for which all-zero
matrix was set as X(m̂)

i . For these nodes

A
(m̂)
i (r) = Q

(m̂)
i (r)Yi = U(r)Yi ∀ r ∈ [α] (5.4)

Following the notations introduced in section 3.2.1, we can express Yi as

Yi =Mψ(i)t (5.5)

where M is the mα × d matrix [ M1 | M2 | . . . | Mm ]t where each Mj ∀ j ∈ [m] is the
d×α message matrix corresponding to to the jth message Wj according to the MSR format
of Equation (3.9). Note that A(m̂)

i (r) is the inner product of two equal-length vectors and
hence it is a single element from Fq. If we now take the set {A(m̂)

i (r) : i ∈ D}, we can write
this in matrix form

A
(m̂)
D (r) = U(r)Mψt

D (5.6)
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where ψD is the sub-matrix of ψ having rows indexed by D. From the properties of ψ, we
know that ψD is invertible and so we can calculate the length-d vector U(r)M . Now take
any node i′ ∈ [n] \D for which X

(m̂)
i = Iα. For these nodes

A
(m̂)
i′ (r) = Q

(m̂)
i′ (r)Yi′ = U(r)Yi′ + V

(m̂)
i′ (r)Yi′

= U(r)Mψt
i′ + erY

m̂
i′

(5.7)

where er is the α length unit vector having a 1 in the rth position. Since we know the
encoding matrix ψ and we have already calculated U(r)M , from Equation (5.7) we can
cancel the interference term U(r)Mψt

i′ to get only erY m̂
i′ which is nothing but the rth coded

symbol in the i′th node corresponding to the user’s desired message Wm̂. Doing this for all
i′ ∈ [n] \ D , and all r ∈ [α], we have a total of kα coded symbols corresponding to Wm̂

from k databases. This information is sufficient for decoding the desired message as per the
properties of the underlying code. ■
Claim 5.1.2: The rate of this PIR scheme is 1− d

n
.

Proof: The rate of a PIR scheme, as defined in Section 4, is

R =
H(Wm̂)∑n
i=1H(A

(m̂)
i )

(5.8)

Considering one term in the denominator sum,

H(A
(m̂)
i ) =

α∑
r=1

H(A
(m̂)
i (r)|A(m̂)

i (r − 1), . . . , A
(m̂)
i (1))

=
α∑

r=1

H(U(r)Yi + V
(m̂)
i (r)Yi|U(r − 1)Yi + V

(m̂)
i (r − 1)Yi, . . . , U(1)Yi + V

(m̂)
i (1)Yi)

=
α∑

r=1

H(U(r)Yi + V
(m̂)
i (r)Yi)

=
α∑

r=1

H(A
(m̂)
i (r))

= α
(5.9)

where the third equality in Equation (5.9) follows from the independence of the rows of the
random matrix U . So, the rate of the scheme becomes

R =
H(Wm̂)∑n
i=1H(A

(m̂)
i )

=
kα

nα

=
(n− d)α
nα

= 1− d

n

(5.10)

■
Claim 5.1.3: The retrieval scheme discussed here is private in the sense described in Section
4.
Proof: We have to prove that the condition of privacy of Equation (4.12) is satisfied for
this retrieval scheme. For a node i ∈ [n],

I(j;Q
(j)
i ) = H(Q

(j)
i )−H(Q

(j)
i |j) (5.11)
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Consider the second term.

H(Q
(j)
i |j) = −

∑
R∈F(α×mα)

q

∑
m̂∈[m]

Pr(Q
(j)
i = R, j = m̂) logPr(Q

(j)
i = R|j = m̂)

= −
∑

R∈F(α×mα)
q

∑
m̂∈[m]

Pr(U = R− V (m̂)
i )Pr(j = m̂) logPr(U = R− V (m̂)

i )

= −
∑

R′∈F(α×mα)
q

∑
m̂∈[m]

Pr(U = R′)Pr(j = m̂) logPr(U = R′)

= −
∑

R′∈F(α×mα)
q

Pr(U = R′) logPr(U = R′)

= −
∑

R′∈F(α×mα)
q

Pr(Q
(j)
i − V

(j)
i = R′) logPr(Q

(j)
i − V

(j)
i = R′)

= −
∑

R′′∈F(α×mα)
q

Pr(Q
(j)
i = R′′) logPr(Q

(j)
i = R′′)

= H(Q
(j)
i )

(5.12)

which gives us I(j;Q(j)
i ) = 0 and hence proving the privacy of the discussed scheme. ■

Remark: The above described scheme puts a constraint on the number of servers present in
the system i.e. n = d+ k. Note that, even for the values of n > d+ k, we can still make use
of the scheme by choosing any random subset of d + k nodes among n and operating only
on these nodes and leaving the other nodes idle. Since, these working nodes can be chosen
at random from the whole set, the privacy requirements are not violated.

5.2 PIR Scheme for MBR PM Codes
Now, we propose a similar scheme for the Product-Matrix MBR code that achieves the same
rate as its counterpart. We take the parameters [n = d + k, k, d ≥ k, α̃ = d, β̃ = 1, B̃ =
k(d − k) +

(
k+1
2

)
] and choose k to be odd. Same as Section 5.1, L̃ is taken to be 1 which

implies that the m messages each are of length L = k(d− k) +
(
k+1
2

)
and α = α̃, β = β̃. It is

easy to see that the query matrices {Q(m̂)
i : i ∈ [n]} described by Equations (5.1)-(5.2) can

also be used in this setting to have a PIR scheme. However, the rate of this scheme is now
less then 1− d

n
simply because the numerator in (5.10) is now less than kα. To get the same

rate, we now have to reduce the number of sub-queries per node, i.e., reduce the number of
rows in the matrices {Q(m̂)

i : i ∈ [n]}. This is done in the following manner.
The query matrices {Q(m̂)

i : i ∈ [n]} have the same structure as in Equation (5.1) but the
number of rows are limited to d− k−1

2
. The matrices V (m̂)

i for i ∈ [n], m̂ ∈ [m] have similar
structure to Equation (5.2) and the dimensions are changed to (d− k−1

2
)×md.

V
(m̂)
i =

[
O(d− k−1

2
)×(m̂−1)d X

(m̂)
i O(d− k−1

2
)×(m−m̂)d

]
(5.13)

The main difference lies in choosing the matrix X
(m̂)
i . The (d − k−1

2
) × d matrix X

(m̂)
i for

this scheme is chosen as

• For a set D ⊂ [n] of cardinality d, set X(m̂)
i = O((d− k−1

2
)×d).

• For the other k nodes of K ≡ [n] \ D ≡ {i1, i2, . . . , ik}, the matrix has the following
structure

X
(m̂)
il

=

[
Zl O( k+1

2
×(d−k))

O((d−k)×k) I(d−k)×(d−k)

]
(5.14)

The matrices {Zl : l ∈ [k]} each of dimension k+1
2
× k are chosen according to the following

Algorithm 1.
The ith node upon receiving query matrix Qi will return answer string Ai as

A
(m̂)
i = Q

(m̂)
i Yi (5.15)
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Algorithm 1: Determining matrices {Zl : l ∈ [k]}
Result: Set of Matrices {Zl : l ∈ [k]}

1 Initialization: Set all rows of Zl to the unit vector e1 of length k
2 with entry 1 in the first position for all l ∈ [k]
3 r ← 1, sh← 0, count← 0, thres← k;
4 while r ≤ k+1

2
do

5 l← 1;
6 while l ≤ k do
7 Right Shift Zl(r) cyclically by an amount sh;
8 count← count+ 1;
9 if count ≥ thres then

10 sh← sh+ 1;
11 count← 0;
12 thres← thres− 1;
13 end
14 l← l + 1;
15 end
16 r ← r + 1;
17 end

Each row of the matrix X
(m̂)
i corresponds to one query vector sent to node i and hence is

responsible of retrieving (privately) one symbol among the α (= d) coded symbols of the
m̂th message stored in the ith node. Hence each such row will be a unit vector of length
d and the position of the unit element 1 will denote which of the α coded symbols we are
trying to (privately) retrieve from that node in that round of query. To get an intuition of
the structure of the X(m̂)

i matrices, let us look at the encoded symbols stored in the set of
nodes K. [

Y m̂
i1

Y m̂
i2

. . . Y m̂
ik

]
=

[
S T
T t 0

]
ψt
K

=

[
S T
T t 0

] [
ϕt
K

∆t
K

]
=

[
Sϕt

K + T∆t
K

T tϕt
K

] (5.16)

Observe that, the last (d−k) entries of Y m̂
il

are functions of the T matrix only which contains
k(d− k) independent desired message symbols. To recover them, we need k(d− k) linearly
independent coded symbols. That is exactly what is being done by the identity matrix at the
lower right corner in Equation (5.14) where the linear independence is taken care of by the
properties of the ϕ matrix. Now, the rest of the k top entries of each Y m̂

il
, are now functions

of the matrix S only (since T has already been recovered) and this matrix contains k(k+1)
2

independent message symbols. Downloading exactly these many coded symbols should be
sufficient to recover the matrix S instead of downloading all k2 related symbols from all
k nodes. That is what the Z-matrices are designed to do. The following claim formally
proves this idea. The X-matrices for k = 3, d = 4 and k = 5, d = 8 are given for a clearer
understanding of the structure. 1 0 0 0

0 1 0 0
0 0 0 1

  1 0 0 0
0 1 0 0
0 0 0 1

  1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Claim 5.2.1: After receiving all the {A(m̂)

i : i ∈ [n]}, the user will be able to successfully
decode the desired message Wm̂.
Proof: For a subset D ∈ [n] with |D| = d, we had set X(m̂)

i to all-zero matrix. For these
nodes, Equation (5.4)-(5.6) are valid for similar reasoning as before. Denote (d− k−1

2
) = b.

Consider a node i ∈ [n] \D and take r = b, that is, consider the last row of Qi. We have

A
(m̂)
i (b) = Q

(m̂)
i (b)Yi = U(b)Yi + V

(m̂)
i (b)Yi

= U(b)Mψ(i)t + ebY
m̂
i

(5.17)

After cancelling the interference term U(b)Mψt
i , we are left with ebY

m̂
i where eb is the d

length unit vector having a 1 at the last coordinate. From k nodes we retrieve k such coded
symbols corresponding to the message Wm̂. Recall the encoding procedure of MBR PM
codes

Y m̂
i =Mm̂ψ(i)

t

=

[
S T
T t 0

] [
ϕ(i) ∆(i)

]t
=

[
Sϕ(i)t + T∆(i)t

T tϕ(i)t

] (5.18)

Note that S is a k × k symmetric matrix and T is a k × (d − k) rectangular matrix with
unique message symbols. From the above equation, we have the relationship for the retrieved
symbols from the k nodes,

Y m̂
K (d) = T t(d− k)ϕt

K (5.19)
where K = [n] \ D = {i1, i2, . . . , ik} of cardinality k. From the properties of the encoding
matrix, ϕt

K is invertible, and hence, we can recover the (d− k)th row of T t. Continuing, this
process for r = b− 1, . . . , b− (d− k) + 1, we can completely recover the matrix T .

Among the (d− k) + (k+1)
2

query vectors sent to each database, the last (d− k) are used
to decode the matrix T . Now we will show that from the rest of the (k+1)

2
queries, we are

able to recover the matrix S. The construction of the matrix Zl will come in handy and the
proof will follow by induction argument.

A
(m̂)
i (r) = U(r)Mψt

i +X
(m̂)
i (r)Mm̂ψ

t
i ∀ i ∈ K = [n] \D , r ∈

[
k + 1

2

]
(5.20)

We can cancel out the first term by using the responses of the nodes in D and hence are left
with

A
(m̂)
il

(r)− U(r)Mψ(il)
t = X

(m̂)
il

(r)Mm̂ψ(il)
t

= Zl(r)[Sϕ(il)
t + T∆(il)

t] ∀ l ∈ [k], r ∈
[
k + 1

2

] (5.21)

This is an equation in d variables from which we can cancel the terms of the already known
T matrix to get an equation in k variables from the rth row of the S matrix. Now, consider
the scenario when all r′− 1 previous rows of S have already been decoded(starting from the
first row) for some r′ ∈ [k]. Due to the symmetric structure of S, among the k variables from
the r′th row of S forming the equations, r′ − 1 variables are known and hence we are left
with equations of k− r′ +1 variables. We need this many linearly independent equations to
solve this system. But this is exactly the number of downloads Algorithm 1 performs for the
r′th row and the linear independence property follows from the properties of the ϕ matrix.
So we can decode the r′th row. Also, we download exactly k equations in k variables for row
r′ = 1. This completes the decodability proof. ■
Claim 5.2.2: The rate achieved by this scheme is 1− d

n
.
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Proof: Following the arguments in Equation (5.9) of Claim 5.1.2, we have

H(A
(m̂)
i ) = d− k − 1

2
(5.22)

So the rate can be written as
R =

H(Wm̂)∑n
i=1H(A

(m̂)
i )

=
(d− k)k +

(
k+1
2

)
n(d− k−1

2
)

=
k(d− k−1

2
)

n(d− k−1
2
)

= 1− d

n

(5.23)

■
Claim 5.2.3: The retrieval scheme described here is private in the sense described in
Chapter 4.
Proof: The proof is similar to the one proved in Claim 5.1.3 and hence not repeated here.
■
Remark : Observe that both for the MSR and MBR points, the proposed algorithms have
rates that are independent of the number of messages m.
Remark (Case of even k): The implicit assumption in Algorithm 1 is that of k to be an
odd number as otherwise the value of k+1

2
becomes a fraction. Another alternative way to

think of this requirement is that, since we are essentially retrieving the matrix S in equation
(5.18) from the k+1

2
queries from the set of nodes K = [n] \ D, the download is optimized

since S has exactly k(k+1)
2

independent message symbols. The case of even value of k can
also be tackled by allowing asymmetrical traffic from the set K that is downloading different
number of symbols from different nodes and judiciously choosing the matrices X(m̂)

il
which

now will have different number of rows to conform with the asymmetrical traffic for l ∈ [k].
This modification does not violate the privacy guarantees as long as the asymmetrical traffic
across the k nodes of K are distributed independently of the desired message index.
Example 1: Let us understand the above described scheme through an example. We take
a PM MBR code with parameters [n = 7, k = 3, d = 4, α = 4, β = 1, B = 9] and three
messages {Wj : j = 1, 2, 3}. Message Wj is represented in the matrix form as Mj and the
encoding matrix ψ has the Vandermonde structure over F11.

Mj =

[
Sj Tj
T t
j 0

]
=


uj,1 uj,2 uj,3 uj,7
uj,2 uj,4 uj,5 uj,8
uj,3 uj,5 uj.6 uj.9
uj.7 uj,8 uj,9 0

 (5.24)

ψ =



1 1 1 1
1 2 4 8
1 3 9 5
1 4 5 9
1 5 3 4
1 6 3 7
1 7 5 2


(5.25)

The contents of the first three nodes are given in Table 1 for better understanding.
Say the user wants to retrieve W2. The query matrices {Qi}s are 3× 12 matrices of the

form in Equation (5.1) with U chosen to be a random matrix over F11 and V
(m̂)
i is of the

form
V

(m̂)
i =

[
O(3×4) X

(m̂)
i O(3×4)

]
(5.26)

Without loss of generality , let us choose the set D to be the nodes {4, 5, 6, 7} and the set
K to be {1, 2, 3}. So

Q4 = Q5 = Q6 = Q7 = U (5.27)
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Node 1 Node 2 Node 3
u1,1 + u1,2 + u1,3 + u1,7 u1,1 + 2u1,2 + 4u1,3 + 8u1,7 u1,1 + 3u1,2 + 9u1,3 + 5u1,7
u1,2 + u1,4 + u1,5 + u1,8 u1,2 + 2u1,4 + 4u1,5 + 8u1,8 u1,2 + 3u1,4 + 9u1,5 + 5u1,8
u1,3 + u1,5 + u1,6 + u1,9 u1,3 + 2u1,5 + 4u1,6 + 8u1,9 u1,3 + 3u1,5 + 9u1,6 + 5u1,9

u1,7 + u1,8 + u1,9 u1,7 + 2u1,8 + 4u1,9 u1,7 + 3u1,8 + 9u1,9
u2,1 + u2,2 + u2,3 + u2,7 u2,1 + 2u2,2 + 4u2,3 + 8u2,7 u2,1 + 3u2,2 + 9u2,3 + 5u2,7
u2,2 + u2,4 + u2,5 + u2,8 u2,2 + 2u2,4 + 4u2,5 + 8u2,8 u2,2 + 3u2,4 + 9u2,5 + 5u2,8
u2,3 + u2,5 + u2,6 + u2,9 u2,3 + 2u2,5 + 4u2,6 + 8u2,9 u2,3 + 3u2,5 + 9u2,6 + 5u2,9

u2,7 + u2,8 + u2,9 u2,7 + 2u2,8 + 4u2,9 u2,7 + 3u2,8 + 9u2,9
u3,1 + u3,2 + u3,3 + u3,7 u3,1 + 2u3,2 + 4u3,3 + 8u3,7 u3,1 + 3u3,2 + 9u3,3 + 5u3,7
u3,2 + u3,4 + u3,5 + u3,8 u3,2 + 2u3,4 + 4u3,5 + 8u3,8 u3,2 + 3u3,4 + 9u3,5 + 5u3,8
u3,3 + u3,5 + u3,6 + u3,9 u3,3 + 2u3,5 + 4u3,6 + 8u3,9 u3,3 + 3u3,5 + 9u3,6 + 5u3,9

u3,7 + u3,8 + u3,9 u3,7 + 2u3,8 + 4u3,9 u3,7 + 3u3,8 + 9u3,9

Table 5.1: Content of first three nodes in Example 1

Q1 = U +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0


Q2 = U +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0


Q3 = U +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0


(5.28)

The answer strings from the nodes can be wriiten as

Ai = UYi = UMψt
i ∀ i ∈ {4, 5, 6, 7} (5.29)

where M is the matrix [M t
1 |M t

2 |M t
3 ]

t. Writing this in matrix form:

[
A4 A5 A6 A7

]
= UM


1 1 1 1
4 5 6 7
5 3 3 5
9 4 7 2

 (5.30)

from which we find the 3× 4 matrix UM . The answer strings from the rest of the nodes are

A1 = UMψt
1 +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

Y1
= UMψt

1 +
[
Y 2
1 (1) Y 2

1 (2) Y 2
1 (4)

]t
A2 = UMψt

2 +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

Y2
= UMψt

2 +
[
Y 2
2 (1) Y 2

2 (2) Y 2
2 (4)

]t
A3 = UMψt

3 +

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

Y3
= UMψt

3 +
[
Y 2
3 (1) Y 2

3 (3) Y 2
3 (4)

]t

(5.31)

Since we already know the matrix UM , we can cancel the interference of UMψt
i from Ai for

i ∈ {1, 2, 3} and get the matrix Y 2
1 (1) Y 2

2 (1) Y 2
3 (1)

Y 2
1 (2) Y 2

2 (2) Y 2
3 (3)

Y 2
1 (4) Y 2

2 (4) Y 2
3 (4)

 (5.32)
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From the last row we can decode u2,7, u2,8, u2,9 which in turn causes the three first row
elements to be three linearly independent equations in three unknowns u2,1, u2,2, u2,3 and can
also be decoded. The first two elements in row 2 are now functions of two unknowns u2,4, u2,5
only and can be decoded and the last unknown message symbol u2,6 is decoded from the
third element of the second row since all other variables are known. Hence the message is
decoded correctly. The privacy of the scheme is also apparent.
Remark: We would like to mention here that these schemes are very similar to the ones
independently proposed in [27] and [32].
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Chapter 6

PIR Capacity of MSR Codes

In this section, we derive the PIR capacity for all MSR codes. It turns out that the capacity
expression is the same as that of an [n, k] scalar MDS code as derived in [1]. In this regard,
we would like to mention that similar observations were also made in [29] and an achievability
scheme identical to the one described in the next chapter and applicable to a much broader
class of codes was proposed.

6.1 Converse Proof
Theorem 1. For an [n, k, d, α, β,B] MSR coded distributed storage system, storing m files
of equal size L = B, the PIR capacity is

CMSR =
1− ( k

n
)

1− ( k
n
)m

(6.1)

i.e., for a fixed number of files, the capacity depends only on the ratio k
n

and is independent
of the regenerating parameters d, α, β.

Intuitively, this follows simply from the fact that MSR codes are, in fact, vector MDS
codes. We formally prove this by first proving, in this section, that the RHS expression
of Equation (6.1) is indeed an upper bound on the download rate of any such PIR scheme
for MSR coded databases. The achievability scheme described in Chapter 6.2 establishes
equality, proving Theorem 1. We proceed by first observing the following property:
Lemma 6.1: For any PIR scheme for an [n, k, d, α, β,B] MSR coded database with m
independent messages each of size L = B, for any set K = {i1, i2, . . . , ik} ⊂ [n] with |K| = k
and any j ∈ [m], the following property is satisfied

H(A
(j)
K |Q

(j)
K ) =

k∑
a=1

H(A
(j)
ia
|Q(j)

ia
) (6.2)

Proof: Following the system model and parameter definitions of Chapter 4, without loss of
generality we assume K to be the set of first k nodes {1, 2, . . . , k}. We first prove that,

H(YK) =
k∑

i=1

H(Yi) (6.3)

Due to the mutual independence of messages (equations (4.3)-(4.5)), we need only focus on
the variables {Y j

i : i ∈ [n]} for a specific j ∈ [m]. Note that, H(Y j
i ) = α ∀ i ∈ [n], i.e., each

node stores α coded symbols corresponding to message Wj. From the variables {Y j
i : i ∈ K},

the user should be able to retrieve the message Wj. So

L = H(Wj) ≤ H(Y j
K)

≤
k∑

i=1

H(Y j
i )

≤ kα

(6.4)
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But for MSR codes, L = kα. This means all inequalities are in fact satisfied with equality
and hence

H(Y j
K) =

k∑
i=1

H(Y j
i ) (6.5)

which gives

H(YK) =
k∑

i=1

H(Yi) (6.6)

Since the answer strings A(m̂)
i are functions of (Yi, Q(m̂)

i ), the variables {A(m̂)
i : i ∈ K} are

conditionally independent conditioned on {Q(m̂)
i : i ∈ K}.

H(A
(m̂)
K |Q

(m̂)
K ) =

k∑
i=1

H(A
(m̂)
i |Q

(m̂)
i ) (6.7)

■
With this result, we proceed to the capacity derivation in the same way as [1]. We

reproduce the derivation here just for the sake of completeness. We state the two important
lemmas that will be used. The proof of these two lemmas is directly from [1].
Lemma 6.2: The interference from undesired messages is upper bounded as

L

(
1

R
− 1 +

o(L)

L

)
≥ I(W2:m;Q

(1)
1:n, A

(1)
1:n|W1)

Proof:

I(W2:m;Q
(1)
1:n, A

(1)
1:n|W1)

= I(W2:m;Q
(1)
1:n, A

(1)
1:n,W1) (6.8)

= I(W2:m;Q
(1)
1:n, A

(1)
1:n) + I(W2:m;W1|Q(1)

1:n, A
(1)
1:n)

= I(W2:m;Q
(1)
1:n) + I(W2:m;A

(1)
1:n|Q

(1)
1:n) + o(L) (6.9)

= I(W2:m;A
(1)
1:n|Q

(1)
1:n) + o(L) (6.10)

= H(A
(1)
1:n|Q

(1)
1:n)−H(A

(1)
1:n|Q

(1)
1:n,W2:m) + o(L)

≤
n∑

i=0

H(A
(1)
i )−H(W1, A

(1)
1:n|Q

(1)
1:n,W2:m)

+H(W1|Q(1)
1:n,W2:m, A

(1)
1:n) + o(L) (6.11)

=
L

R
−H(A

(1)
1:n|Q

(1)
1:n,W1:m)

−H(W1|Q(1)
1:n,W2:m) + o(L) (6.12)

=
L

R
− L+ o(L) (6.13)

= L

(
1

R
− 1 +

o(L)

L

)
where (6.8) follows from the independence of messages, (6.9) follows from (4.15), (6.10)
follows from (4.13), (6.11) follows from chain rule of entropy, (6.12) follows from (4.14) and
(6.13) follows from (4.13), (4.14) and message independence. ■
Lemma 6.3:

I(Wm̂:m;Q
(m̂−1)
1:n , A

(m̂−1)
1:n |W1:m̂−1) ≥

k

n
I(Wm̂+1:m;Q

(m̂)
1:n , A

(m̂)
1:n |W1:m̂)

+
kL(1− o(L)

L
)

n

Proof:

I(Wm̂:m;Q
(m̂−1)
1:n , A

(m̂−1)
1:n |W1:m̂−1)
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=
1(
n
k

)(n
k

)
I(Wm̂:m;Q

(m̂−1)
1:n , A

(m̂−1)
1:n |W1:m̂−1)

≥ 1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

I(Wm̂:m;Q
(m̂−1)
K , A

(m̂−1)
K |W1:m̂−1) (6.14)

=
1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

I(Wm̂:m;A
(m̂−1)
K |Q(m̂−1)

K ,W1:m̂−1) (6.15)

=
1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

[
H(A

(m̂−1)
K |Q(m̂−1)

K ,W1:m̂−1)

−H(A
(m̂−1)
K |Q(m̂−1)

K ,W1:m)
]

=
1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

∑
i∈K

H(A
(m̂−1)
i |Q(m̂−1)

i ,W1:m̂−1) (6.16)

=
1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

∑
i∈K

H(A
(m̂)
i |Q

(m̂)
i ,W1:m̂−1) (6.17)

=
1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

[H(A
(m̂)
K |Q

(m̂)
K ,W1:m̂−1) (6.18)

≥ 1(
n
k

)(n
k

) ∑
K⊂N :|K|=k

[H(A
(m̂)
K |Q

(m̂)
1:n ,W1:m̂−1)

≥ k

n
H(A

(m̂)
1:n |W1:m̂−1, Q

(m̂)
1:n ) (6.19)

=
k

n
I(Wm̂:m;A

(m̂)
1:n |W1:m̂−1, Q

(m̂)
1:n ) (6.20)

=
k

n
I(Wm̂:m;A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂−1) (6.21)

=
k

n

[
I(Wm̂:m;A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂−1)

+I(Wm̂:m;Wm̂|A(m̂)
1:n , Q

(m̂)
1:n ,W1:m̂−1)− o(L)

]
(6.22)

=
k

n
[I(Wm̂:m;Wm̂, A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂−1)− o(L)]

=
k

n
[I(Wm̂:m;Wm̂|W1:m̂−1) + I(Wm̂:m;A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂)− o(L)]

=
k

n
[L+ I(Wm̂+1:m;A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂)− o(L)]

=
k

n
I(Wm̂+1:m;A

(m̂)
1:n , Q

(m̂)
1:n |W1:m̂) +

kL(1− o(L)
L

)

n

where (6.14) follows from properties of mutual information, (6.15) follows from (4.14), (6.16)
follows from Lemma 5.1, (6.17) follows from (4.12) and (4.14), (6.18) again follows from
Lemma 5.1, (6.19) follows from Han’s inequality, (6.20) follows from (4.14), (6.21) follows
from (4.13), (6.22) follows from (4.15) and message independence. ■

Proof of the upper bound on rate: With these lemmas we proceed to prove the upper
bound on the PIR download rate. We start with Lemma 6.2 :

L

(
1

R
− 1 +

o(L)

L

)
≥ I(W2:m;Q

(1)
1:n, A

(1)
1:n|W1)() (6.23)

≥ k

n
I(W3:m;A

(2)
1:n, Q

(2)
1:n|W1:2) +

kL(1− o(L)
L

)

n
≥ . . .

≥ (
k

n
)m−2I(Wm:m;A

(m−1)
1:n , Q

(m−1)
1:n |W1:m−1)

+(
k

n
+ (

k

n
)2 + . . .+ (

k

n
)m−2)L(1− o(L)

L
)

≥ (
k

n
+ (

k

n
)2 + . . .+ (

k

n
)m−1)L(1− o(L)

L
)
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where (6.23) is from Lemma 6.2 and subsequent steps are by using Lemma 6.3 successively.
By rearranging we have

1

R
≥ (1 +

k

n
+ (

k

n
)2 + . . .+ (

k

n
)m−1)(1− o(L)

L
) (6.24)

By taking L→∞ , o(L)
L
→ 0 and we have

R ≤ 1∑m−1
i=0 ( k

n
)i

=
1− k

n

1− ( k
n
)m

(6.25)

6.2 Achievability of the PIR Capacity (based on [1])
In this section we propose a PIR scheme that achieves the PIR rate upper bound of MSR
codes with equality and hence completes the proof of Theorem 1. Since the rate of this scheme
is equal to capacity, this scheme performs strictly better than any algorithms previously
suggested for such codes. The algorithm possesses the properties of a PIR scheme described
in [3] i.e. symmetry across messages, symmetry across databases and efficient exploitation
of side information and are, in intuition, similar to the algorithm for MDS coded databases
described by Banawan et al. in [1] and to the achievability scheme described in [29] for a
much broader class of array codes. To build the intuition, we will first discuss an example of
the original scheme of [1] for MDS coded databases and then extend the techniques to MSR
codes by using the fact that MSR codes are essentially vector MDS codes. Afterwards, we
shall give a similar scheme for MBR PM codes.

6.2.1 PIR Scheme for MDS Codes
For an [n, k] MDS coded database, with m messages each of size L = knm, each “stripe” of
length k is encoded using the [n, k] scalar MDS code and stored across the n nodes. For every
such coded stripe, downloading any k out of n coded symbols is sufficient to decode that
stripe due to the MDS property. For the undesired messages, such a stripe, once decoded,
acts as side information that can be exploited while downloading desired coded symbols
from the n−k nodes that did not originally participate in the download of the stripe (of the
undesired message). This is the fundamental idea for the efficient use of side information
that leads to the capacity-achieving property of the scheme of [1].
Example 1: We present an example with small parameter values: n = 3, k = 2,m = 3, L =
knm = 2 · 33 = 54, m̂ = 1. The L symbols (each belonging to Fq) of each message is divided
into L′ = nm stripes of length k and coded using a [3, 2] MDS code. For each message
there is a unique permutation πj, j ∈ [m], over the L′ indices of the stripes which is chosen
randomly over all such permutations and is known only at the user end. We denote by C(j)

r

as the rth coded stripe (after permutation is applied to the indices) of the jth message for
r ∈ [L′], j ∈ [m]. The ith coded symbol of C(j)

r stored in node i, i ∈ [n], is denoted by C
(j)
i,r .

If the query Qi for the ith node contains C(j)
i,r that means the node is asked to return the

π−1
j (r)th coded symbol of the jth message. The following Table 6.1 gives the queries to the

3 nodes for this example that achieve the PIR capacity of MDS codes.
Note that, for any message j ∈ [m], any stripe index r ∈ [L′] appears at most once in a

query Qi, whether as an individual symbol or in a sum of symbols. From a node’s perspective,
the total number of symbols requested from a message (both as individual symbol and as part
of sum) is the same for all messages and this holds for all nodes. The actual stripe indices
of a message requested from a node is determined by the random permutation on the user
end which is unknown to the node. Finally another private randomly chosen permutation is
applied to each query itself to remove any possibility of inference of the desired index from
the order of C(j)

i,r s in the query.
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Q
(1)
1 Q

(1)
2 Q

(1)
3

C
(1)
1,1 C

(1)
2,1 C

(1)
3,2

C
(1)
1,2 C

(1)
2,3 C

(1)
3,3

C
(1)
1,4 C

(1)
2,4 C

(1)
3,5

C
(1)
1,5 C

(1)
2,6 C

(1)
3,6

C
(1)
1,7 C

(1)
2,7 C

(1)
3,8

C
(1)
1,8 C

(1)
2,9 C

(1)
3,9

C
(1)
1,10 C

(1)
2,10 C

(1)
3,11

C
(1)
1,11 C

(1)
2,12 C

(1)
3,12

C
(2)
1,1 C

(2)
2,1 C

(2)
3,2

C
(2)
1,2 C

(2)
2,3 C

(2)
3,3

C
(2)
1,4 C

(2)
2,4 C

(2)
3,5

C
(2)
1,5 C

(2)
2,6 C

(2)
3,6

C
(2)
1,7 C

(2)
2,7 C

(2)
3,8

C
(2)
1,8 C

(2)
2,9 C

(2)
3,9

C
(2)
1,10 C

(2)
2,10 C

(2)
3,11

C
(2)
1,11 C

(2)
2,12 C

(2)
3,12

C
(3)
1,1 C

(3)
2,1 C

(3)
3,2

C
(3)
1,2 C

(3)
2,3 C

(3)
3,3

C
(3)
1,4 C

(3)
2,4 C

(3)
3,5

C
(3)
1,5 C

(3)
2,6 C

(3)
3,6

C
(3)
1,7 C

(3)
2,7 C

(3)
3,8

C
(3)
1,8 C

(3)
2,9 C

(3)
3,9

C
(3)
1,10 C

(3)
2,10 C

(3)
3,11

C
(3)
1,11 C

(3)
2,12 C

(3)
3,12

C
(1)
1,13 + C

(2)
1,3 C

(1)
2,13 + C

(2)
2,2 C

(1)
3,14 + C

(2)
3,1

C
(1)
1,14 + C

(2)
1,6 C

(1)
2,15 + C

(2)
2,5 C

(1)
3,15 + C

(2)
3,4

C
(1)
1,16 + C

(2)
1,9 C

(1)
2,16 + C

(2)
2,8 C

(1)
3,17 + C

(2)
3,7

C
(1)
1,17 + C

(2)
1,12 C

(1)
2,18 + C

(2)
2,11 C

(1)
3,18 + C

(2)
3,10

C
(1)
1,19 + C

(3)
1,3 C

(1)
2,19 + C

(3)
2,2 C

(1)
3,20 + C

(3)
3,1

C
(1)
1,20 + C

(3)
1,6 C

(1)
2,21 + C

(3)
2,5 C

(1)
3,21 + C

(3)
3,4

C
(1)
1,22 + C

(3)
1,9 C

(1)
2,22 + C

(3)
2,8 C

(1)
3,23 + C

(3)
3,7

C
(1)
1,23 + C

(3)
1,12 C

(1)
2,24 + C

(3)
2,11 C

(1)
3,24 + C

(3)
3,10

C
(2)
1,13 + C

(3)
1,13 C

(2)
2,13 + C

(3)
2,13 C

(2)
3,14 + C

(3)
3,14

C
(2)
1,14 + C

(3)
1,14 C

(2)
2,15 + C

(3)
2,15 C

(2)
3,15 + C

(3)
3,15

C
(2)
1,16 + C

(3)
1,16 C

(2)
2,16 + C

(3)
2,16 C

(2)
3,17 + C

(3)
3,17

C
(2)
1,17 + C

(3)
1,17 C

(2)
2,18 + C

(3)
2,18 C

(2)
3,18 + C

(3)
3,18

C
(1)
1,25 + C

(2)
1,15 + C

(3)
1,15 C

(1)
2,25 + C

(2)
2,14 + C

(3)
2,14 C

(1)
1,26 + C

(2)
2,13 + C

(3)
3,13

C
(1)
1,26 + C

(2)
1,18 + C

(3)
1,18 C

(1)
2,27 + C

(2)
2,17 + C

(3)
2,17 C

(1)
1,27 + C

(2)
2,16 + C

(3)
3,16

Table 6.1: Queries for MDS coded database with n = 3.k = 2
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6.2.2 PIR Scheme for MSR codes
With the idea of the MDS PIR scheme in mind, we move to constructing schemes for MSR
codes. The simple intuition for this is that MSR codes have the vector MDS property and
the PIR scheme discussed in the last section is not restricted to scalar symbols. We shall
follow the general MSR code framework rather than work with a more specific setting like
the Product-Matrix structure. We take an [n, k, d, α̃, β̃, B̃ = kα̃] MSR code for some feasible
parameter values α̃, β̃. Let x be a kα̃ length message vector : x = [x1 x2 . . . xk]

t where
each xi ∈ Fα̃

q ,∀ i ∈ [k] is a row vector of dimension α̃. The nα̃ × kα̃ systematic encoding
matrix G can be written as

G =



Iα̃ 0
. . .

0 Iα̃
A1,1 . . . A1,k

... . . . ...
An−k,1 . . . An−k,k


(6.26)

where Iα̃ is the α̃ × α̃ identity matrix and Au,v for u ∈ [n − k], v ∈ [k], are α̃ × α̃ encoding
matrices such that the desired MSR properties are satisfied. The encoded vector y of length
nα̃ is simply y = Gx = [y1 y2 . . . yn]

t where yi ∈ Fα̃
q is the row vector of α̃ coded

symbols stored in the ith node, i.e., yi = Gix where Gi is the matrix G restricted to the rows
(i− 1)α̃ + 1 to iα̃. The assumption of systematic encoding is without loss of generality.

We take the message sizes to be L = α̃knm. We divide the long string of message symbols
into stripes of kα̃ message symbols. Each stripe is encoded independently using the above
MSR code to nα̃ coded symbols and stored across the n nodes as described above. Since, the
regeneration property of each such stripe is independently preserved, we can think of this
as each message of size L being encoded using an [n, k, d, α = α̃nm, β = β̃nm, B = B̃nm =

α̃knm] MSR code. For message j, we denote the rth stripe of size kα̃ as the vector B(j)
r for

r ∈ [nm]. For this stripe the corresponding α̃ coded symbols stored in node i are GiB
(j)
r .

Initial Random Permutation : For each message j ∈ [m], we choose a random permutation
πj over the stripe indices [nm] such that

GiB
(j)
πj(r)

= C
(j)
i,r ∀ j ∈ [m], i ∈ [n], r ∈ [nm] (6.27)

This permutation for each message is privately and independently chosen by the user and
the database has no information regarding this. Notice the difference from the notation of
the previous section. Instead of a single coded symbol in Fq, C(j)

i,r now corresponds to a
vector (in Fα̃

q ) of coded symbols of the πj(r)th stripe of message Wj stored in the ith node.
Additionally, we introduce the term ‘z-sum’, for 1 ≤ z ≤ m, to denote a sum of the form
C

(j1)
i,r1

+C
(j2)
i,r2

+ . . .+C
(jz)
i,rz

where addition is defined over the vector space Fα̃
q and the message

indices {j1, j2, . . . , jz} are all distinct i.e., each component of the sum belongs to a different
message. The type of a z-sum is described by the z-tuple (j1, j2, . . . , jz) involved in the z-
sum. For a fixed value of z ∈ [m], there are exactly

(
m
z

)
different types of z-sum. A 1-sum

is trivially defined as simply C
(j1)
i,r1

. An instance of a (j1, j2, . . . , jz)-type z-sum corresponds
to a possible value of the tuple (r1, r2, . . . , rz) where ri ∈ [nm],∀i ∈ [z]. To increment an
instance means to increment each component of it by 1 i.e., incrementing (r1, r2, . . . , rz) gives
us (r1 + 1, r2 + 1, . . . , rz + 1). For a type (j1, j2, . . . , jz) not containing the desired message
index, the set of z-tuples (r1, r2, . . . , rz) corresponding to the instances that are downloaded
from node i is denoted by Ii,z. It will be clear later that Ii,z depends only on i and z and
does not depend on the specific values of {j1, j2, . . . , jz}. A query Q(m̂)

i , for node i, consists
of a collection of sub-queries where each sub-query is a request to node i to return a specific
instance of a z-sum. With this initial setup and the notation explained, we now give the
algorithm for retrieval of message Wm̂.

1. Initial download of desired message: For the desired message (with index m̂), starting
from node 1, we download the α̃-dimensional vector related to stripe 1 from subsequent
k nodes i.e. we download C(m̂)

1,1 , C
(m̂)
2,1 , . . . , C

(m̂)
k,1 from nodes 1, 2, . . . , k respectively. The

α̃-dimensional vectors corresponding to stripe 2 of the desired message are downloaded
starting from node k + 1 and proceeding to another k nodes in a round-robin fashion
i.e., download C

(m̂)
(k+1) mod n,2, C

(m̂)
(k+2) mod n,2,
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. . . , C
(m̂)
2k mod n,2 from the nodes (k + 1) mod n, (k + 2) mod n, . . . , 2k mod n respec-

tively. This is continued up to stripe id n · km−1. After completing this procedure,
for each stripe id r ∈ [n · km−1], we shall have exactly k α̃-dimensional vectors from
k different nodes from which we can decode the original rth stripe of length kα̃ using
the vector MDS property.

2. Preserving message symmetry: To preserve message symmetry property for every node,
we download equal number of symbols (equal number of α̃-dimensional vectors) from
each of the other messages from each node. The above procedure is repeated for each
j ∈ [m] \ {m̂}. Note that, due to the initial permutation, the original ids of the stripes
which are decoded can be different for different messages i.e., the true ids are not
necessarily 1, 2, . . . , n ·km−1. Further, it can be verified that, for each message, exactly
km α̃-dimensional vectors have been downloaded from each node up until now.

3. Exploitation of side information in next round: From node i, exactly km stripe ids for a
message index j ∈ [m] have been queried. But we know that, cumulatively from all the
n nodes, the first n·km−1 stripe ids have been queried and decoded for all the messages.
Hence, for a node i, (n − k) · km−1 stripe ids for a message index j ∈ [m] were not
queried from that node and by our definition this corresponds to the set [n ·km−1]\Ii,1.
For each message index j ∈ [m]\ m̂, we download the 2-sum of type (m̂, j) from node i
with instances (rm̂, rj), ∀ rj ∈ [n ·km−1]\Ii,1 and rm̂ is a stripe id that was not queried
in the first step. The value of rm̂ is gradually incremented starting from n · km−1 + 1
in such a way that for every value of rm̂, an instance of (rm̂, rj) is downloaded from
exactly k nodes, keeping the constraint on rj as described above for all j ∈ [m] \ m̂.
Up until now, we have been only concerned with 2-sums with types that included the
desired message index. To preserve message symmetry, we need to download instances
of 2-sums of the type (j1, j2), ∀ j1, j2 ∈ [m] \ m̂, j1 ̸= j2. For each such type, the
instance (r1, r2), is gradually incremented, starting from (n · km−1 + 1, n · km−1 + 1),
such that each such instance is downloaded from exactly k nodes. This goes on until
equal number of instance downloads for all types of 2-sums for all nodes is established.
Since, each instance of the form C

(j1)
i,r1

+ C
(j2)
i,r2

, where j1, j2 ∈ [m] \ m̂, is downloaded
from exactly k nodes, the sum of the rth1 stripe of Wj1 and rth2 stripe of Wj2 is decodable
by linearity of the encoding scheme. These are used as side information in subsequent
rounds.

4. Subsequent rounds: In the zth round, we download z-sums. For the types of z-sums
including the desired message index, we use the side information of the (z−1)th round.
To be more specific, for a type (m̂, j1, j2, . . . , jz−1), from node i, we download instances
(rm̂, r1, r2, . . . , rz−1), ∀ (r1, r2, . . . , rz−1) ∈ [nz−2·km−z+2+1 : nz−1·km−z+1]\Ii,z−1 and rm̂
is chosen to be a new stripe id starting from n·km−1+

∑z−2
a=1

(
m−1
a

)
·n·km−a−1 ·(n−k)a+1

and incremented in a similar fashion as before. For a type (j1, j2, . . . , jz) not containing
the desired message index, the instance (r1, r2, . . . , rz) is gradually incremented such
that each instance is downloaded from exactly k nodes. This goes on till equal number
of instance downloads for all types of z-sums, whether containing the desired message
index or not, have been established.

5. Permutation in the order of the queries: Finally, for each node, a permutation over
the sub-queries of the query for that node is randomly chosen by the user and applied
without the database’s knowledge. The purpose is to preserve the privacy even in
the event of complete knowledge of the retrieval scheme by the nodes. If not for this
permutation, the nodes could have inferred the index of the desired message by simply
observing the first round of sub-queries.

The following Algorithm 2 gives an explicit technique of building the queries for the above
scheme. Note that, the initial and final permutations have not been explicitly written in the
algorithm. The analysis of the algorithm including the explanation of notation follows.
Analysis of Algorithm 2 : The algorithm takes as input the parameter values of [n, k,m]

and the desired index m̂ and outputs the queries Qi (Q(m̂)
i to be consistent with our previous

notation) for each node i ∈ [n]. As stated before, the queries are basically collection of
sub-queries where each sub-query denotes an instance of a type of z-sum being requested
from that node. With all the counters initialized to index 1, we proceed as follows:
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Algorithm 2: Determining queries {Qi}
Result: Set of Queries {Qi : i ∈ N} for desired message m̂
Input: Number of databases n, Number of messages m, Reconstruction parameter

k, Desired message m̂
1 Initialization:
2 For each message in [m] initialize a block index
3 counter countj to 1;
4 For desired message m̂ define S ≡ [m] \ m̂;

// LOOP1
5 for node in 1 : n · km do
6 Add C

(m̂)
((node−1) mod n)+1,countm̂

to Q((node−1) mod n)+1

7 if node mod k == 0 then
8 countm̂ ← countm̂ + 1;
9 end

10 end
// LOOP2

11 for z in 1 : m− 1 do
12 y ← km−z+1 · (n− k)z−1

// SUB-LOOP1
13 for Each subset R of S of such that |R| = z do

// SUB-SUB-LOOP1
14 for node in 1 : n · y do
15 Add CR

((node−1) mod n)+1,countR
to Q((node−1) mod n)+1;

16 if node mod k == 0 then
17 countR ← countR + 1;
18 end
19 end
20 countR ← countR − n·y

k
;

21 a← 1; x← a · k;
// SUB-SUB-LOOP2

22 for node in 1 : n·y·(n−k)
k

do
23 Add C

(m̂)
(x mod n)+1,countm̂

+ CR
(x mod n)+1,countR

to Q(x mod n)+1;
24 x← x+ 1;
25 if node mod (n− k) == 0 then
26 countR ← countR + 1;
27 a← a+ 1; x← a · k;
28 end
29 if node mod k == 0 then
30 countm̂ ← countm̂ + 1;
31 end
32 end
33 end
34 end
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• LOOP1 visits each node, starting from node 1, in a round-robin fashion and increments
countm̂ every k iterations. This ensures that for each of the first n · km−1 stripe
ids of the desired message, exactly k α̃-dimensional vectors are downloaded from k
different nodes and hence that corresponding stripe is decodable due to the vector
MDS property. After this initial download phase, we enter LOOP2 which progresses
in subsequent rounds from 1 to m− 1.

• Each iteration of LOOP2 operates for a value of z ∈ [m−1]. SUB-LOOP1 iterates, for
a fixed value of z, on all possible types of z-sums not containing the desired message
index. For each such type, we do the following:
In SUB-SUB-LOOP1, z-sums of the form CR

i,countR
≡ C

(j1)
i,countj1

+C
(j2)
i,countj2

+. . .+C
(jz)
i,countjz

where R = (j1, j2, . . . , jz) is the type of the current iteration of SUB-LOOP1 and
countR = (countj1 , countj2 , . . . , countjz) is an instance and each jl ∈ [m] \ m̂, l ∈ [z],
are downloaded. The logic in Line 16-18 ensures that each such instance is downloaded
from exactly k nodes and hence decodable (as a sum, not individually, for z > 1 as
explained before). For z = 1, SUB-SUB-LOOP1 simply replicates the task performed
by LOOP1, but for all the undesired messages. In this way, it establishes message
symmetry. The task of using the side information to obtain new desired message
symbols is performed by SUB-SUB-LOOP2. Firstly, Line 20 resets the increments
done in SUB-SUB-LOOP1. For message Wj, with j ∈ [m] \ m̂, if the instance countj
was downloaded from nodes {i1, i2, . . . , ik} in SUB-SUB-LOOP1, then the instance
(countm̂, countj) is downloaded from nodes [n] \ {i1, i2, . . . , ik}. As explained before,
countm̂ is a new stripe id which was not queried before and is incremented in a k-round-
robin fashion. For z > 1, the algorithm proceeds in a sort of recursive manner. SUB-
SUB-LOOP1 downloads new instances of types containing only undesired messages,
ensuring decodability (as a sum) of these instances for use as side information. For
each such instance countR, that is downloaded from a set of nodes {i1, i2, . . . , ik},
SUB-SUB-LOOP2 downloads (z + 1)-sum instance (countm̂, countR) from nodes [n] \
{i1, i2, . . . , ik}. This proceeds till z = m − 1, when the SUB-SUB-LOOP2 downloads
z-sums with z = m.

So in the zth round exactly y·(n−k)
k

α̃-dimensional vectors are downloaded due to SUB-SUB-
LOOP2 from each node for each (z + 1)-sum containing the desired message and in the
(z+1)th round these many α̃-dimensional vectors are downloaded due to SUB-SUB-LOOP1
from each node for each (z+1)-sum not containing the desired message. This ensures message
symmetry and database symmetry.
Claim 6.2.1: The rate of this scheme is 1−( k

n
)

1−( k
n
)m

.
Proof: To calculate the rate, first we show that the number of stripes of desired message
downloaded by this scheme is nm. To do that, we simply need to keep track of the variable
countm̂ which gets initialized to 1. This variable is incremented in Lines 8 and 30 of Algorithm
2. LOOP1 starting at Line 5 runs n · km times incrementing countm̂ every k iterations. So
the number of increments is n · km−1. Next we proceed to LOOP2, having SUB-LOOP1 at
Line 13 running for each possible subset of size z which contains SUB-SUB-LOOP2 at Line
22 which contains the increment operation at Line 30. Careful calculation easily gives us the
number of increments of countm̂ in the zth round, which turns out to be n ·

(
m−1
z

)
· km−z+1 ·

(n− k)z−1 · (n−k)
k
· 1
k
= n ·

(
m−1
z

)
· km−z−1 · (n− k)z. So the final value of countm̂

countm̂ = n · km−1 +
m−1∑
z=1

(
m− 1

z

)
· n · km−z−1 · (n− k)z

= n ·

[
m−1∑
z=0

(
m− 1

z

)
· km−z−1 · (n− k)z

]
= nm

(6.28)

For each value of countm̂, exactly k α̃-dimensional vectors, with same stripe id, from k differ-
ent nodes are downloaded. By the vector MDS property, the corresponding stripe of message
is decodable. So, indeed the complete message is decodable. Now in a similar manner the
number of undesired stripes downloaded can be calculated by observing SUB-SUB-LOOP1
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at Line 14 of the algorithm. The total number of α̃-dimensional vectors downloaded from
all nodes having no component from the desired message is

m−1∑
z=1

(
m− 1

z

)
· n · km−z+1 · (n− k)z−1 =

nm · k2 − n · km+1

n− k
(6.29)

Now we can calculate the rate to be

R =
Size of message

Total number of symbols downloaded

=
α̃knm

α̃knm + α̃nm·k2−n·km+1

n−k

=
nm

nm + nm·k−n·km
n−k

=
nm+1 − k · nm

nm+1 − n · km

=
1− k

n

1− ( k
n
)m

(6.30)

■
Claim 6.2.2: The scheme is private in the sense of Chapter 4.
Proof: It is clear from the algorithm that for any message a particular stripe id appears at
most once in query Qi of a node, whether as a single vector or z-sum of vectors. Symmetry
across messages and across databases are also established since the same number of instances
are downloaded for each z-sum irrespective of whether it contains the desired message index
or not, and each node contributes equally to each z-sum. Due to the initial permutation
over block ids, the true realizations of block ids for a query Qi is completely random and
hence independent of the desired message index. The final permutation of each query further
ensures that the order of sub-queries in which they arrive at a node i reveals no information
about the desired message index. Hence the condition of privacy in Chapter 4 i.e., I(j;Q(j)

i ) =
0 is indeed satisfied for this scheme for every i ∈ [n]. ■

6.3 A Similar PIR Scheme for PM MBR Codes
The scheme described in the previous section is optimal in terms of rate and works on any
MSR code parameters [n, k, d, α̃, β̃]. In this section, we propose a similar scheme for the
product-matrix MBR code that achieves the same rate of 1− k

n

1−( k
n
)m

. Since the MBR code
also allows you to reconstruct the original message by contacting any k out of n nodes, a
simple trivial PIR scheme would be to just repeat Algorithm 2 for PM MBR parameters
[n, k, d, α̃ = d, β̃ = 1, B̃ = k(d − k−1

2
)] and file sizes L = B̃nm. But this causes unnecessary

downloads since kα̃ = kd ≥ k(d − k−1
2
). Intuitively, this is because the MBR codes, unlike

MSR codes, are not storage optimal.
By using the symmetric structure of the message matrix in the PM MBR encoding

procedure described by Equation (3.12), we can reduce this overhead. The idea is that for
an [n, k, d, α̃, β̃, B̃] PM MBR code, since there are exactly B̃ independent message symbols,
we need exactly B̃ coded symbols out of the total kd coded symbols stored in the k nodes.
This is not something new as we have already seen use of this property in the suboptimal
scheme of Section 5.2. The following claim formally states and proves this property.
Claim 6.3.1: If a message of size B̃ = k(d − k−1

2
) is encoded using a [n, k, d, α̃, β̃, B̃] PM

MBR code and stored across n nodes, there exists a (possibly asymmetric) download strategy
that downloads exactly B̃ coded symbols from any k out of n nodes such that, the user is
able to decode the original message.
Proof: For an [n, k, d, α̃, β̃, B̃] PM MBR code the coded symbols can be represented by a
d× n matrix C

C =Mψt (6.31)
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The coded symbols stored at the ith node for i ∈ [n] can be written as a d× 1 vector Ci

Ci =Mψ(i)t

=

[
S T
T t 0

] [
ϕ(i) ∆(i)

]t
=

[
Sϕ(i)t + T∆(i)t

T tϕ(i)t

] (6.32)

Observe that the last (d − k) entries of Ci are functions of the T matrix only. Each row of
the T matrix contains k independent message symbols. And so any such row of k symbols
is encoded into n symbols by the matrix ϕt (of dimension k × n). Since any k rows of ϕ
are linearly independent by construction, the encoding is MDS and hence to retrieve the k
message symbols it is sufficient to download any k out of n symbols. This property holds for
all the last (d − k) rows of C. So we need k(d − k) downloads for retrieving the complete
matrix T .

Once we have the matrix T , by using symmetry of M , each of the top k rows of C also
becomes an [n, k] MDS code. But we can use the symmetry of the matrix S to further
reduce the amount of download. Without loss of generality, we start from the first row.
We need k coded symbols to retrieve the k corresponding message symbols of the first row
of S. Now considering the second row, notice that due to symmetry we already know one
message symbol of this row. Hence we need only download k − 1 coded symbols for this
row to completely decode this row of S. For successive rows we can have further reduction
in required downloads until finally at the kth row we only need to download a single coded
symbol. This way the complete matrix S can be recovered. The total required download for
this strategy is

∑k
i=1(k − i+ 1) + k(d− k) = k(k+1

2
) + k(d− k) = B̃. ■

To describe a specific download strategy, we use k d-dimensional binary vectors for each
node participating in the reconstruction process. The position of ‘1’s in each vector denotes
which coded symbols we need to download from that node. We give an algorithm that finds
the necessary vectors for an [n, k, d, α̃, β̃, B̃] PM MBR code. This has the same structure
and intuition of Algorithm 1 with the difference that it outputs vectors instead of matrices.

Algorithm 3: Determining download strategy
Result: Set of Vectors {xl : l ∈ [k]} of length d.

1 Initialization: Set the last (d− k) entries of each vector to 1 and all other entries to
0.

2 r ← 1, l ← 1, count← 1, thres← k;
3 while thres > 0 do
4 Set the rth entry of xl to 1;
5 l← (l mod k) + 1;
6 count← count+ 1;
7 if count == thres then
8 thres← thres− 1;
9 count← 1;

10 r ← r + 1;
11 end
12 end

Note that, there is not one unique optimal download strategy. Algorithm 3 just gives one
of these. Also, for a fixed n, the download strategy depends on the two parameters k and d.
After we have the download strategy for the specific [n, k, d, α̃ = d, β̃ = 1, B̃ = k(d − k−1

2
)]

PM MBR code, we follow the similar steps as described in the previous section on MSR
codes. Each file is now of size L = B̃nm = k(d − k−1

2
)nm and each block (in the previous

section, we used “stripe” to be consistent with the general MSR encoding scheme, but in this
section the word “block” is more appropriate with regard to the PM framework) of size B̃
is encoded using the PM MBR code. To generate the queries, the same Algorithm 1 applies
but with a slight modification. Recall from the previous section that in the zth round of
Algorithm 1, a z-sum of the form C

(j1)
i,countj1

+C
(j2)
i,countj2

+ . . .+C
(jz)
i,countjz

was downloaded where
C

(jl)
i,countjl

(l ∈ [z]) denoted the α̃-dimensional coded vector stored in node i corresponding

31



to the block id (after permutation) countjl , ‘+’ denoted element-wise vector sum over Fα̃
q

and j1, j2, . . . , jz ∈ [m] are all distinct. For an instance (countj1 , countj2 , . . . , countjz), the
download was carried out from exactly k nodes such that the decodability could be ensured.

The modification is as follows. For an instance, instead of downloading all α̃ symbols
of the resulting vector sum from all the k nodes, we download a subset of symbols from
each node. That subset is determined by the vectors {xl : l ∈ [k]}. To be more specific,
assume that according to Algorithm 1, an instance (countj1 , countj2 , . . . , countjz) of a type
(j1, j2, . . . , jz) is to be downloaded from a subset K = {i1, i2, . . . , ik} ⊂ [n]. Instead of
downloading all the α̃ symbols of the z-sums from some node ia ∈ K, we only download
those symbols that are indexed by having a ‘1’ in the corresponding vector xa, for a ∈ [k],
as given by Algorithm 2. With this simple modification, we are able to reduce the download
requirements without compromising in the decodability.
Claim 6.3.2: The rate achieved by this scheme is also 1− k

n

1−( k
n
)m

.
Proof: The rate calculation trivially follows from that of Claim 6.2.1 as the numerator and
denominator of Equation (6.14) now are multiples of k(d − k−1

2
) instead of kα̃. Hence this

scheme achieves the same rate of 1− k
n

1−( k
n
)m

. ■
Claim 6.3.3: The scheme is private in the sense of Chapter 4.
Proof: The only modification to the PIR scheme of MSR codes is that of following a
download strategy instead of downloading all α̃ symbols of a z-sum. Since this modification
is applied irrespective of whether the z-sum contains the desired message index or not, the
modification does not hurt the privacy arguments. ■
Remark : For odd values of k, all the vectors generated by Algorithm 3 have equal Hamming
weights i.e., the number of ‘1’s in each vector is the same. Hence, in this case the number
of downloaded symbols across nodes is the same. But, in case of even values of k, we can
observe that the Hamming weights of these vectors are different. So, it may seem that an
asymmetrical download traffic arises in this case. But, due to the round-robin structure of
the algorithm, the overall traffic still remains symmetrical.
Rate comparison with previous schemes : While the rate of 1− k

n

1−( k
n
)m

for MSR codes is
proved to be optimal, no such claim can be made for MBR codes. In fact, we would like to
point out that the scheme in [28] outperforms our PM MBR PIR scheme when the number
of messages in the system becomes large. Figure 6.1 gives a comparison of the rates of the
two schemes for fixed parameters of [n = 6, k = 3, d = 4] and varying number of messages.

Figure 6.1: Rate Comparison of PIR schemes for PM MBR codes
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Chapter 7

GPIR with T-privacy

7.1 A Scheme for GPIR with T-privacy

7.1.1 Preliminaries
In this section, we briefly describe the TPIR scheme construction of Raviv et al. [6] for
2-replication graph-based storage systems. The construction achieves the rate of 1

n
for all

applicable cases and preserves the privacy of the desired message against an adversary con-
trolling at most T nodes as long as the T nodes do not induce a cycle. In the next section,
we shall propose a technique that circumvents this apparent limitation of the scheme by
compromising on the download rate.

We describe the scheme for L = 1. The characteristic of the field is taken to be 2. Upon
requiring the message Wm̂ ∈ Fq, the user prepares the n×m query matrix Q as follows:

Q = diag(γ)Im̂diag(υ) (7.1)

where γ ∈ F∗
q
n and υ ∈ F∗

q
m are randomly chosen vectors, diag(.) is a square diagonal matrix

containing the given vector in its main diagonal . The matrix Im̂ is obtained from the
incidence matrix of the graph G by multiplying the upper +1 entry of the m̂th column with
a random field element h ∈ F∗

q \ {1}. After getting back the answers, the user has access
to A = diag(γ)Im̂diag(υ)

[
W1 W2 . . . Wm

]t from which it calculates I · diag(γ)−1A =

I · Im̂diag(υ)
[
W1 W2 . . . Wm

]t
= (h− 1)υm̂Wm̂ where I is the all ones vector.

For the complete proof of privacy, we refer the reader to [6]. Here we simply restate the
two results that describe the graceful degradation of perfect privacy in the case when the
adversary controlled nodes induce a cycle.
Lemma 2 from [6]: For any cycle S ⊂ [m], the matrix QS is full rank if and only if
m̂ ∈ S.
Corollary 1 from [6]: An adversary controlling a set T of servers can narrow down the
set of possible values of m̂ to

ST =
(
∩lk=1Ck

)
\
(
∪l′k=1C ′k

)
(7.2)

where C1, . . . , Cl are all cycles in GT that contain m̂ and C ′1, . . . , C ′l′ are all cycles in GT that
do not contain m̂.

Clearly, this scheme is restricted in the sense that perfect privacy is achieved only when
T is strictly less than the girth of G. The following example demonstrates how we can get
around this limitation by incurring some extra downloads.

Example 2: Consider the following graph in Figure 7.1a with n = 5,m = 8. The incidence
matrix is given by

I =


1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 1


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(a) Given graph G (b) Modified graph G′

Figure 7.1: An example demonstrating the technique of Section 3. (a) gives the original graph
describing the DSS with girth 3. (b) gives the modified graph of girth 4 with one extra node

and for m̂ = 1 the query matrix is given by

Q =


γ1 0 0 0 0
0 γ2 0 0 0
0 0 γ3 0 0
0 0 0 γ4 0
0 0 0 0 γ5



h 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 1





υ1 0 0 0 0 0 0 0
0 υ2 0 0 0 0 0 0
0 0 υ3 0 0 0 0 0
0 0 0 υ4 0 0 0 0
0 0 0 0 υ5 0 0 0
0 0 0 0 0 υ6 0 0
0 0 0 0 0 0 υ7 0
0 0 0 0 0 0 0 υ8


This PIR scheme has a rate of 1

5
and offers perfect privacy against T = 2. The reason it

is not perfectly private against T = 3 can be deduced by observing the modified incidence
matrix Im̂. It can be verified that if T induces a cycle with edges S then the submatrix of Im̂
row-restricted to T and column-restricted to S will have full rank if and only if the desired
message belongs to S. What we do to remedy this restriction is to virtually transform the
original graph G = (V,E) to another graph G′ = (V ′, E ′) with |E ′| = |E| and |V ′| > |V |
such that there are no 3-cycles in G′. In reality, what we will be doing is to send more than
one query to some nodes (in this example, we send two queries instead of one to node 5)
such that the supports of these queries do not intersect. The following gives the modified
query matrix:

Q′ =


γ1 0 0 0 0 0
0 γ2 0 0 0 0
0 0 γ3 0 0 0
0 0 0 γ4 0 0
0 0 0 0 γ5 0
0 0 0 0 0 γ6




h 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1





υ1 0 0 0 0 0 0 0
0 υ2 0 0 0 0 0 0
0 0 υ3 0 0 0 0 0
0 0 0 υ4 0 0 0 0
0 0 0 0 υ5 0 0 0
0 0 0 0 0 υ6 0 0
0 0 0 0 0 0 υ7 0
0 0 0 0 0 0 0 υ8


An adversary observing node 5 has access to both the bottom two queries of Q′. So now the
observable nodes in the virtual graph G′ are T ′ = T ∪{6} if previously T had contained node
5. We redefine the edges according to the modified incidence matrix. The set S remains
unchanged and it can be easily verified that I ′m̂ row-restricted to T ′ and column-restricted to
S now has full rank irrespective of whether the desired message had belonged to the cycle in
the original graph or not. The rate of this PIR scheme is 1

6
(compared to the previous rate

of 1
5
) and it is perfectly private against T = 3. The transformed graph G′ does not contain

any 3-cycles but does contain 4-cycles which means it is not perfectly private against T = 4.
For that, we need to introduce more virtual nodes which further decrease the rate. Hence,
there is a trade-off between the collusion resistance capability and the download rate of the
PIR scheme.

7.1.2 An Algorithm to Increase the Collusion Resistance of Raviv
et al.’s PIR Scheme

In this section, we give an algorithm that generalizes the idea discussed in Example 1. The
simple idea is to introduce extra virtual nodes in the graph such that the resulting graph has
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a girth strictly greater than the desired collusion resistance degree. Every introduction of a
virtual node decreases the rate of the PIR scheme and the best possible rate can be found
by finding the minimum possible number of virtual node introductions required to make the
resulting graph have the desired girth. Note that the following algorithm, although effective
in all scenarios, might not always be the optimal way of finding such a graph.

Algorithm 4: Transforming graph G

Result: Modifed graph G′ = (V ′, E ′)
Input: Graph G = (V,E), Collusion Degree T

1 Step 1: Initialize by setting V ′ ≡ V and E ′ ≡ E;
2 Step 2: Identify the smallest length cycles C1, C2, . . . , Cr of length σ
3 Step 3: If σ > T , STOP;
4 Step 4: Find a node x with the highest degree among all nodes of {Ci : i ∈ [r]};
5 Step 5: Identify all the edges of {Ci : i ∈ [r]} that contain this node

and split these edges into disjoint sets such that
no two edges of the same cycle belong to the same set;

6 Step 6: Remove node x from V ′;
7 Step 7: For every set of edges found in Step 5, do the following:

→ Add a new vertex x′ to V ′;
→ Modify the edges previously incident on x to be incident on x′;

8 Step 8: GO BACK to Step 2 and REPEAT;

Lemma 7.1.1: The PIR scheme described by Raviv et al. when applied on the modified
graph G′ results in perfect privacy against an adversary controlling any T nodes on the
original graph G.
Proof: Intuitively, the proof follows because the modified graph G′ has girth greater than
T . Formally, we follow similar arguments given in the proof of Proposition 1 in [6]. It suffices
to prove that Pr(Q′

T ′ = M) is fixed for any valid M ∈ supp(Q′
T ′) irrespective of the index

of the desired message. For a given M , fix a node i0 ∈ T ′ and fix the corresponding value of
γi0 . Every nonzero entry in the ith0 row of Q′

T ′ is equally likely among (q−1) possibilities and
independent due to the randomness in the corresponding multipliers from the α vector. Let
j0 be one column for which the other non-zero column entry also belongs to Q′

T ′ . Conditioned
on the value of αj0 , this entry is equally likely among the (q − 1) possibilities due to the
corresponding entry in the random γ vector. Since, the |T ′| colluding nodes do not induce
a cycle anymore in G′, proceeding in such a Breadth-First Search fashion does not lead to
any discrepancy. It easily follows that

Pr(Q′
T ′ =M) =

1

(q − 1)|supp(Q
′
T ′ )|

(7.3)

and it is independent of the desired message index. ■

7.2 An Upper Bound for the PIR Rate

7.2.1 Main Result
A cycle cover of a graph G is a set of cycles which are subgraphs of G and contain all vertices
of G. If the cycles of the cover have no vertices in common, the cover is called vertex-disjoint.
We consider the set of graphs for which there exists a vertex disjoint cycle cover. Let G be
the set of all such graphs. The following theorem gives an upper bound on the linear TPIR
rate for a DSS described by any graph belonging to G.

Theorem 2. For a DSS described by a graph G = (V,E) ∈ G with |V | = n nodes storing
|E| = m messages, the rate R of any linear TPIR scheme for arbitrary value of T is upper-
bounded as follows:

R ≤


T

(T−1)n
, for 2 ≤ T < c1
T

(T−1)n+
∑s

i=1 ci
, for cs ≤ T < cs+1, 1 ≤ s < r

1
n
, for cr ≤ T ≤ n

(7.4)
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where c1, c2, . . . , cr are the cycle-lengths in a vertex disjoint cycle cover of the graph in
non-decreasing order.

We shall delegate the proof of this theorem to Section 7.2.2. Here, we shall prove the
lemmas that will be useful in proving the bound in the next section.

Lemma 7.2.1: In a valid Q matrix, which satisfies the PIR privacy and decodability
requirements for some desired message against an adversary in control of at most T nodes,
any set of ρ columns, for ρ ≤ (T − 1), must have full column rank.

Proof. We prove this by induction on T . Note that the base case for T = 2 has already been
proved in (4.27). We assume the property to be true for some (T − 1) nodes, i.e., when the
adversary controls at most (T −1) nodes, any set of ρ ≤ (T −2) columns of a valid Q matrix
have full column rank. Now consider an adversary controlling any T nodes and a set S of
T − 1 columns of Q. Each column of Q represents an edge in the graph G describing the
DSS. If the subgraph induced by the edges in S is connected, then the maximum number
of nodes T in this induced subgraph is T . Since, the adversary is able to control at most T
nodes, it will be able to observe both the Qi1,j, Qi2,j matrices for all j ∈ S,Rj = {i1, i2} ⊂ T .
To preserve privacy, for every message j ∈ S, the adversary should be able to find a linear
transformation of QT ,S to a matrix of the following form:

QT ,S →
[
0 Qj 0
X 0 Y

]
(7.5)

where Qj is full rank L×L and the number of columns in X and Y sum to T − 2 ( actually
(T − 2)L over Fq to be exact). By induction assumption these submatrices are full column
rank and hence QT |S is full column rank.

Now consider the other scenario when the subgraph induced by the edges in S is not
connected. Let S1 ⊂ S be a maximal subset whose edges do induce a connected subgraph.
Then the Q matrix restriced to the columns of S has the following form (subject to column
permutation) [

X 0
0 Y

]
(7.6)

where X has |S1| columns and Y has |S \ S1| columns. By induction assumption both these
matrices are full column rank and hence QS itself has full column rank. This completes the
proof.

Lemma 7.2.2: For a valid Q matrix, if the adversary is able to control any T nodes and
the graph G describing the DSS has a cycle of length cl ≤ T , then the cl columns indexed
by the edges of the cycle must have full column rank.

Proof. The case cl < T follows from Lemma 7.2.1. So we need to prove only for cl = T .
Let S denote the edges that constitute the cycle. The subgraph induced by S has exactly
T nodes. Let this set of nodes be T . An adversary observing these T nodes has access to
both matrices Qi1,j, Qi2,j for all j ∈ S,Rj = {i1, i2} ⊂ T . By similar logic of the previous
lemma, for any j ∈ S, the adversary should be able to find a linear transformation of QT ,S
to a matrix of the form of (7.5) where X and Y together have T − 1 columns and are full
column rank by Lemma 7.2.1. Hence, the T columns of Qobs have full column rank.

7.2.2 Proof of Theorem 2
In this section, we prove Theorem 2. For that we introduce some new notation. Let
G = (V,E) be the graph, with |V | = n, |E| = m, which describes the DSS and has a
vertex disjoint cycle cover. The kth cycle of the cycle cover is denoted by Ck = (Vk, Ek) and
there are r cycles for some r ∈ Z+. The length of the kth cycle is |Vk| = ck and, without loss
of generality, we assume c1 ≤ c2 ≤ . . . ≤ cr. Note that,

∑r
k=1 cr = n ≤ m. We will consider

three separate cases.

Case I : When T < c1, consider the cycle Ck of length ck, k ∈ [r]. Without loss of generality,
index the ck nodes by the set [ck] and the edge between node i and node (i mod ck) + 1
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as edge i for i ∈ [ck]. Let Q′ be the submatrix of Q restricted to these nodes and edges.
Notice that due to the circular structure, any successive T − 1 columns of Q′ indexed by
{j, j + 1, . . . , (j + T − 2 mod ck) + 1} have nonzero entries only at the rows indexed by
{j, j +1, . . . , (j + T − 1 mod ck) + 1}. Since every such set of T − 1 columns of Q′ have full
column rank (over Fq) by Lemma 7.2.1, we have the following equation:

(j+T−1 mod ck)+1∑
p=j

lp ≥ (T − 1)L ∀ j ∈ [ck] (7.7)

Summing the ck equations we have

T

ck∑
p=1

lp ≥ (T − 1)ckL

=⇒
∑
p∈Vk

lp ≥
(T − 1)ckL

T
(7.8)

Finally summing up over all k ∈ [r]

r∑
k=1

∑
p∈Vk

lp ≥
(T − 1)L

T

r∑
k=1

ck (7.9)

As each node belongs to exactly one cycle Ck, the LHS is just a sum over all nodes of the
graph. So,

n∑
p=1

lp ≥
(T − 1)nL

T

=⇒ L∑n
p=1 lp

≤ T

(T − 1)n
(7.10)

Case II : When cs ≤ T < cs+1 for some s < r, for every k ≤ s, we apply Lemma 7.2.2 to
the nodes of the kth cycle. We have∑

p∈Vk

lp ≥ ckL ∀ k ≤ s (7.11)

For all k > s, we apply Lemma 7.2.1 as before to get∑
p∈Vk

lp ≥
(T − 1)ckL

T
∀ k > s (7.12)

Summing up we get
n∑

p=1

lp ≥
∑
k≤s

ckL+
∑
k>s

(T − 1)ckL

T

=
(T − 1)n+

∑s
k=1 ck

T
L

=⇒ L∑n
p=1 lp

≤ T

(T − 1)n+
∑s

k=1 ck
(7.13)

Case III : Finally, for the case T ≥ cr, we simply apply Lemma 7.2.2 for all the cycles to
get

r∑
k=1

∑
p∈Vk

lp ≥
r∑

k=1

ckL (7.14)

As before, the LHS is just a sum over all nodes of the graph and we get

L∑n
p=1 lp

≤ 1

n
(7.15)
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Remark: Our system model for GPIR described in Chapter 4.2 assumes that for any two
j1, j2 ∈ [m] and j1 ̸= j2, Rj1 ̸= Rj2 which implies no two nodes share more than one message.
This assumption is directly inherited from the system model of [6] which is crucial for the
correctness of their proposed PIR scheme. However, we draw the reader’s attention to the
fact that the correctness of the two lemmas in Section 7.2.1 and the proof of Theorem 2
in Section 7.2.2 do not require this assumption. Hence, the upper bound of Theorem 2 is
applicable to not just graphs but also multigraphs that have a vertex disjoint cycle cover.
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Chapter 8

Conclusion

In this work, we have tried to explore some open areas of private information retrieval. The
work on PIR for MDS codes [8] and the gradual tendency of distributed storage towards
the requirement of node repair naturally raised the question of PIR for regenrating codes.
Our contributions in Chapter 5 along with recent similar findings of [27] and [28] partly
answer this question. The schemes of Chapter 5 although sub-optimal, have the advantage
of having download rates that are independent of the number of messages present in the
database. Also, these schemes are capable of working on very small message sizes. The
question of optimal download rate, i.e., the PIR capacity for MSR codes directly follows
from the similar analysis of MDS codes as pointed out in [29] and discussed in detail in
Chapter 6. In Section 6.3, we showed that the idea behind the capacity achieving PIR
scheme for the class of MSR codes can also be extended to the specific class of PM MBR
codes with a slight modification to the former. Hence, it is possible to achieve the same PIR
rate for the MBR codes as is optimally possible for the MSR codes. But, as explained at
the end of Section 6.3, this can not be the maximum possible rate for MBR codes as PIR
schemes giving higher rates have already been discovered using the PM framework of the
codes. An explicit capacity expression for the general class of MBR codes and achievability
schemes for this capacity seem pertinent questions that need to be answered in this regard.

The work on PIR for graph-based replication systems is motivated by, as pointed out
in [6], the contradicting requirements of the simplicity offered by replication based storage
and the need for reduction in storage overhead. In such scenarios, partial replication of
messages can provide a sweet spot for the system designer. In Section 7.1.1, we discussed
the TPIR scheme proposed in [6] which is somewhat limited by the necessity of the girth
of the graph being smaller than the collusion degree T . We showed in Section 7.1.2, that
application of this scheme is also possible when this requirement is not met provided we are
allowed to tolerate some extra download. Our analysis is based on the idea of transforming
a given graph to a new graph with more number of nodes such that it does not contain any
cycle of length T or smaller. Although, we provide an algorithm to successfully perform this
transformation, we do not claim optimality in terms of number of nodes added. Finding
out such optimal algorithms, which can be an interesting problem of Graph Theory in itself,
might be of interest since it directly relates to the download rate. Finally, in Section 7.2,
we gave an upper bound on the linear TPIR rate for a large family of graphs. The bound,
interestingly, is only a small multiplicative constant away from the rate obtained by Raviv
et al.’s scheme in some cases (namely Case I in the proof of Theorem 2) and the constant
decreases with increase in the value of T . In other cases, Raviv et al.’s scheme is not directly
applicable and the use of our algorithm further decreases the rate from 1

n
. Bridging these

gaps between the achievable rate and the upper bound might be interesting future directions
for the GPIR problem.

39



Bibliography

[1] K. Banawan and S. Ulukus, “The capacity of private information retrieval from coded
databases,” IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1945–1956,
March 2018.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information
retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, November 1998. [Online]. Available:
http://doi.acm.org/10.1145/293347.293350

[3] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE Transac-
tions on Information Theory, vol. 63, no. 7, pp. 4075–4088, July 2017.

[4] S. A. Jafar, “Blind interference alignment,” IEEE Journal of Selected Topics in Signal
Processing, vol. 6, no. 3, pp. 216–227, June 2012.

[5] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Net-
work coding for distributed storage systems,” IEEE Transactions on Information The-
ory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[6] N. Raviv and I. Tamo, “Private information retrieval in graph based replication sys-
tems,” in 2018 IEEE International Symposium on Information Theory (ISIT), June
2018, pp. 1739–1743.

[7] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval with
colluding databases,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp.
2361–2370, April 2018.

[8] K. A. Banawan and S. Ulukus, “Private information retrieval from byzantine and col-
luding databases,” 2017 55th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 1091–1098, 2017.

[9] R. Tajeddine, O. W. Gnilke, D. A. Karpuk, R. Freij, and C. Hollanti, “Robust private
information retrieval from coded systems with byzantine and colluding servers,” 2018
IEEE International Symposium on Information Theory (ISIT), pp. 2451–2455, 2018.

[10] H. Sun and S. A. Jafar, “The capacity of symmetric private information retrieval,” in
2016 IEEE Globecom Workshops (GC Wkshps), Dec 2016, pp. 1–5.

[11] Q. Wang and M. Skoglund, “Symmetric private information retrieval for MDS coded
distributed storage,” in 2017 IEEE International Conference on Communications (ICC),
May 2017, pp. 1–6.

[12] ——, “Secure symmetric private information retrieval from colluding databases with
adversaries,” 2017 55th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 1083–1090, 2017.

[13] S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson, “Private
information retrieval with side information: The single server case,” in 2017 55th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), Oct 2017,
pp. 1099–1106.

[14] Z. Chen, Z. Wang, and S. Jafar, “The capacity of private information retrieval with
private side information,” 2017. [Online]. Available: http://arxiv.org/abs/1709.03022

40



[15] Y. Wei, K. Banawan, and S. Ulukus, “Cache-aided private information retrieval with
partially known uncoded prefetching: Fundamental limits,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 6, pp. 1126–1139, June 2018.

[16] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “Capacity of single-server single-message
private information retrieval with coded side information,” 2018. [Online]. Available:
http://arxiv.org/abs/1806.00661

[17] A. Heidarzadeh, B. Garcia, S. Kadhe, S. Y. E. Rouayheb, and A. Sprintson, “On
the capacity of single-server multi-message private information retrieval with side
information,” 2018. [Online]. Available: http://arxiv.org/abs/1807.09908

[18] Y. Wei and S. Ulukus, “The capacity of private information retrieval with
private side information under storage constraints,” 2018. [Online]. Available:
http://arxiv.org/abs/1806.01253

[19] K. A. Banawan and S. Ulukus, “Asymmetry hurts: Private informa-
tion retrieval under asymmetric traffic constraints,” 2018. [Online]. Available:
http://arxiv.org/abs/1801.03079

[20] R. Bitar and S. E. Rouayheb, “Staircase-PIR: Universally robust private information
retrieval,” 2018. [Online]. Available: http://arxiv.org/abs/1806.08825

[21] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-based storage
via interference alignment,” in 2009 IEEE International Symposium on Information
Theory, June 2009, pp. 2276–2280.

[22] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit construction
of optimal exact regenerating codes for distributed storage,” 2009 47th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 1243–1249,
2009.

[23] Y. Wu, “A construction of systematic MDS codes with minimum repair bandwidth,”
IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3738–3741, June 2011.

[24] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for
distributed storage at the MSR and MBR points via a product-matrix construction,”
IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, Aug 2011.

[25] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Distributed storage
codes with repair-by-transfer and nonachievability of interior points on the storage-
bandwidth tradeoff,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp.
1837–1852, 2012.

[26] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download ensures
perfectly private information retrieval,” in 2014 IEEE International Symposium on
Information Theory, June 2014, pp. 856–860.

[27] C. Dorkson and S. Ng, “Private information retrieval using product-matrix minimum
storage regenerating codes,” 2018. [Online]. Available: http://arxiv.org/abs/1805.07190

[28] J. Lavauzelle, R. Tajeddine, R. Freij-Hollanti, and C. Hollanti, “Private
information retrieval schemes with regenerating codes,” 2018. [Online]. Available:
http://arxiv.org/abs/1811.02898

[29] S. Kumar, H. Lin, E. Rosnes, and A. G. i Amat, “Achieving private information
retrieval capacity in distributed storage using an arbitrary linear code,” CoRR, vol.
abs/1712.03898, 2017. [Online]. Available: http://arxiv.org/abs/1712.03898

[30] M. Abdul-Wahid, F. Almoualem, D. Kumar, and R. Tandon, “Private information
retrieval from storage constrained databases - coded caching meets PIR,” CoRR, vol.
abs/1711.05244, 2017. [Online]. Available: http://arxiv.org/abs/1711.05244

[31] Z. Jia and S. A. Jafar, “On the asymptotic capacity of x-secure t-private information
retrieval with graph based replicated storage,” CoRR, vol. abs/1904.05906, 2019.
[Online]. Available: http://arxiv.org/abs/1904.05906

41



[32] C. Dorkson and S. Ng, “Multi-message private information retrieval us-
ing product-matrix MSR and MBR codes,” 2018. [Online]. Available:
http://arxiv.org/abs/1808.02023

42


