Converse Results

Achievability

Random Graphs

Node Repair on Connected Graphs

Adway Patra & Alexander Barg

(University of Maryland, College Park)

JMM 2022

Introduction •O

Converse	Results
0000	

Achievability

Random Graphs

Node repair in distributed storage

Introduction •O

Converse	Results
0000	

Achievability

Random Graphs

Node repair in distributed storage

Each codeword symbol stored in a node.

Introduction • O

Converse	Results
0000	

Achievability

Random Graphs

Node repair in distributed storage

- Each codeword symbol stored in a node.
- Correct erasures while trying to minimize total data "moved".

Introduction • O

Converse	Results
0000	

Achievability

Random Graphs

Node repair in distributed storage

- Each codeword symbol stored in a node.
- Correct erasures while trying to minimize total data "moved".
- Total required transmission bounded by the Cut-set bound¹

$$B \leqslant \sum_{i=0}^{k-1} \min\{l, (d-i)\beta\}$$

¹Dimakis et. al, 2010

Introduction • O

Converse	Results
0000	

Achievability

Random Graphs

Node repair in distributed storage

- Each codeword symbol stored in a node.
- Correct erasures while trying to minimize total data "moved".
- Total required transmission bounded by the Cut-set bound¹

$$B \leqslant \sum_{i=0}^{k-1} \min\{l, (d-i)\beta\}$$

Different pairs of (*l*, *β*) satisfying the above with equality give rise to different points on the storage-bandwidth trade-off.

¹Dimakis *et. al*, 2010

Introduction O● Converse Results

Achievability

Random Graphs

Moving away from traditional setting

General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.
 - For example, if the helpers are on a line, the failed node being at the end, then $\frac{d(d+1)\beta}{2} = \Theta(d^2)$ transmission required.

Moving away from traditional setting

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.
 - For example, if the helpers are on a line, the failed node being at the end, then $\frac{d(d+1)\beta}{2} = \Theta(d^2)$ transmission required.

Question 1 : Is it possible to process the data to reduce communication?

Moving away from traditional setting

- General problem assumes d helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.
 - For example, if the helpers are on a line, the failed node being at the end, then $\frac{d(d+1)\beta}{2} = \Theta(d^2)$ transmission required.

Question 1 : Is it possible to process the data to reduce communication?

Question 2 : If so, then to what extent?

Introduction 00 Converse Results

Achievability

Random Graphs

Random Graphs

The bounds: How much can we process?

Node v_i holds random variable X_i .

Random Graphs

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.

Random Graphs

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

Random Graphs

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

•
$$H(S_i^f|X_i) = 0, H(X_f|S_1^f, \cdots, S_d^f) = 0.$$

The bounds: How much can we process?

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

•
$$H(S_i^f|X_i) = 0, H(X_f|S_1^f, \cdots, S_d^f) = 0.$$

Lemma

Let $v_f, f \in [n]$ be the failed node. For a subset of the helper nodes $E \subset D$ let R_E^f be a function of S_E^f such that

$$H(X_f|R_E^f, S_{D\setminus E}^f) = 0.$$

1) If $|E| \ge d - k + 1$, then

 $H(R_E^f) \ge l.$

2) If $|E| \leq d - k$, then

$$H(R_E^f) \geqslant \frac{|E|l}{d-k+1}.$$

Random Graphs

Proof of Lemma

• Given $X_{D\setminus E}$ the information contained in R_E^f is sufficient to repair v_f , i.e.,

 $H(W_f|R_E^f, W_{D\setminus E}) = 0.$

Random Graphs

Proof of Lemma

• Given $X_{D \setminus E}$ the information contained in R_E^f is sufficient to repair v_f , i.e.,

 $H(W_f|R_E^f, W_{D\setminus E}) = 0.$

• Take a set $A \subset E$ with $|A| = k - 1 - |D \setminus E|$. Now,

$$H(R_{E}^{f}, W_{D\setminus E}, W_{A}) = H(R_{E}^{f}, W_{D\setminus E}, W_{f}, W_{A}) \ge kl$$

by the MDS property.

Achievability 00000 Random Graphs

Proof of Lemma

• Given $X_{D \setminus E}$ the information contained in R_E^f is sufficient to repair v_f , i.e.,

 $H(W_f|R_E^f, W_{D\setminus E}) = 0.$

• Take a set $A \subset E$ with $|A| = k - 1 - |D \setminus E|$. Now,

 $H(R_{E}^{f}, W_{D \setminus E}, W_{A}) = H(R_{E}^{f}, W_{D \setminus E}, W_{f}, W_{A}) \geq kl$

by the MDS property.

$$H(R_E^f, W_{D\setminus E}, W_A) \leqslant H(R_E^f) + H(W_{D\setminus E}, W_A)$$
$$= H(R_E^f) + (k-1)l$$

Achievability 00000 Random Graphs

Proof of Lemma

• Given $X_{D\setminus E}$ the information contained in R_E^f is sufficient to repair v_f , i.e.,

 $H(W_f|R_E^f, W_{D\setminus E}) = 0.$

• Take a set $A \subset E$ with $|A| = k - 1 - |D \setminus E|$. Now,

 $H(R_{E}^{f}, W_{D \setminus E}, W_{A}) = H(R_{E}^{f}, W_{D \setminus E}, W_{f}, W_{A}) \geq kl$

by the MDS property.

$$H(R_E^f, W_{D\setminus E}, W_A) \leq H(R_E^f) + H(W_{D\setminus E}, W_A)$$
$$= H(R_E^f) + (k-1)l$$

The proof of Part (2) is similar.

Introduction 00 Converse Results

Achievability 00000 Random Graphs

Lower bound on communication

Random Graphs

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and *d* helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Converse Results

Achievability

Random Graphs

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Proposition

Let R_j^f be the random variable denoting the information flow from the *j*-th layer to the (j-1)-th layer. Then

$$H(R_j^f) \ge \min\left\{l, \frac{|\cup_{i=j}^t \Gamma_i(v_f)| \cdot l}{d-k+1}\right\}$$

Random Graphs

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Proposition

Let R_j^f be the random variable denoting the information flow from the *j*-th layer to the (j-1)-th layer. Then

$$H(R_j^f) \ge \min\left\{l, \frac{|\cup_{i=j}^t \Gamma_i(v_f)| \cdot l}{d-k+1}\right\}$$

Proof.

Take $E = \bigcup_{i=j}^{t} \Gamma_i(v_f)$.

Introduction 00 Converse Results

Achievability

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d-k+1}.$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d - k$.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.
Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.
- ▶ Needs to transmit at least $|D^*(v)| \cdot l/(d-k+1)$ symbols to its immediate parent in T_f .

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β_{total} for the repair of node v_f on the repair tree T_f is bounded as

$$\beta_{total} \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.
- ▶ Needs to transmit at least $|D^*(v)| \cdot l/(d-k+1)$ symbols to its immediate parent in T_f .
- Every node $v \in J_f$ needs to transmit at least *l* symbols to its immediate parent.

Random Graphs

Achieving the bounds: The Product Matrix Framework²

Random Graphs

Achieving the bounds: The Product Matrix Framework²

▶ Paremeters: $[n, k, d = 2(k - 1), l = k - 1, \beta = 1, M = k(k - 1)]$

²Rashmi et al., 2011

Random Graphs

Achieving the bounds: The Product Matrix Framework²

▶ Paremeters: $[n, k, d = 2(k - 1), l = k - 1, \beta = 1, M = k(k - 1)]$

Take two symmetric polynomials $s_1(y, z)$, $s_2(y, z)$ over field F_q of degree at most k - 2. The coefficients carry the message symbols.

Achieving the bounds: The Product Matrix Framework²

- ► Paremeters: $[n, k, d = 2(k 1), l = k 1, \beta = 1, M = k(k 1)]$
- Take two symmetric polynomials $s_1(y, z)$, $s_2(y, z)$ over field F_q of degree at most k 2. The coefficients carry the message symbols.

For distinct points a_1, \dots, a_n , node *i* stores $g^{(i)}(z) = s_1(a_i, z) + a_i^{k-1}s_2(a_i, z)$.

Achieving the bounds: The Product Matrix Framework²

- ▶ Paremeters: $[n, k, d = 2(k 1), l = k 1, \beta = 1, M = k(k 1)]$
- ► Take two symmetric polynomials s₁(y, z), s₂(y, z) over field F_q of degree at most k 2. The coefficients carry the message symbols.
- For distinct points a_1, \dots, a_n , node *i* stores $g^{(i)}(z) = s_1(a_i, z) + a_i^{k-1}s_2(a_i, z)$.

Recall: What we want to prove

A set of size at least d - k + 1 needs to transmit exactly *l* symbols for repair.

Achieving the bounds: The Product Matrix Framework²

- ▶ Paremeters: $[n, k, d = 2(k 1), l = k 1, \beta = 1, M = k(k 1)]$
- ► Take two symmetric polynomials s₁(y, z), s₂(y, z) over field F_q of degree at most k 2. The coefficients carry the message symbols.
- For distinct points a_1, \dots, a_n , node *i* stores $g^{(i)}(z) = s_1(a_i, z) + a_i^{k-1}s_2(a_i, z)$.

Recall: What we want to prove

A set of size at least d - k + 1 needs to transmit exactly *l* symbols for repair.

Failed node f, helper set $D, A \subset D$ with |A| = d - k + 1 = k - 1.

Achieving the bounds: The Product Matrix Framework²

- ▶ Paremeters: $[n, k, d = 2(k 1), l = k 1, \beta = 1, M = k(k 1)]$
- ► Take two symmetric polynomials s₁(y, z), s₂(y, z) over field F_q of degree at most k 2. The coefficients carry the message symbols.
- For distinct points a_1, \dots, a_n , node *i* stores $g^{(i)}(z) = s_1(a_i, z) + a_i^{k-1}s_2(a_i, z)$.

Recall: What we want to prove

A set of size at least d - k + 1 needs to transmit exactly *l* symbols for repair.

- Failed node f, helper set $D, A \subset D$ with |A| = d k + 1 = k 1.
- For $h \in D$ define $l^{(h)}(z) = \sum_{j=0}^{d-1} l_j^h z^j := \prod_{\substack{i \in D \\ i \neq h}} \frac{z-a_i}{a_h-a_i}$

Achieving the bounds: The Product Matrix Framework²

- ▶ Paremeters: $[n, k, d = 2(k 1), l = k 1, \beta = 1, M = k(k 1)]$
- ► Take two symmetric polynomials s₁(y, z), s₂(y, z) over field F_q of degree at most k 2. The coefficients carry the message symbols.
- For distinct points a_1, \dots, a_n , node *i* stores $g^{(i)}(z) = s_1(a_i, z) + a_i^{k-1}s_2(a_i, z)$.

Recall: What we want to prove

A set of size at least d - k + 1 needs to transmit exactly *l* symbols for repair.

- Failed node f, helper set $D, A \subset D$ with |A| = d k + 1 = k 1.
- For $h \in D$ define $l^{(h)}(z) = \sum_{j=0}^{d-1} l_j^h z^j := \prod_{\substack{i \in D \\ i \neq h}} \frac{z-a_i}{a_h-a_i}$
- The set A transmits the *l*-vector

$$\xi(f,A) = \sum_{h \in A} g^{(h)}(a_f) \begin{bmatrix} l_0^h + a_f^{k-1} l_{k-1}^h \\ l_1^h + a_f^{k-1} l_k^h \\ \vdots \\ l_{k-2}^h + a_f^{k-1} l_{2k-3}^h \end{bmatrix}$$

²Rashmi et al., 2011

Converse Results

Achievability

Random Graphs

Achieving the bounds: Proving correctness

Achievability

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z)=\sum_{i=0}^{l-1}(\xi(f,D))_i\,z^i.$

Achievability

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z) = \sum_{i=0}^{l-1} (\xi(f,D))_i z^i.$

• Consider the polynomial $H(z) = s_1(a_f, z) + z^{k-1}s_2(a_f, z) = \sum_{j=0}^{d-1} h_j z^j$, $\deg(H) \leq 2k - 3 = d - 1$.

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z)=\sum_{i=0}^{l-1}(\xi(f,D))_i\,z^i.$

► Consider the polynomial $H(z) = s_1(a_f, z) + z^{k-1}s_2(a_f, z) = \sum_{j=0}^{d-1} h_j z^j$, deg(*H*) ≤ 2*k* - 3 = *d* - 1.

> The polynomial corresponding to the failed node defined before can be written as

$$g^{(f)}(z) = \sum_{j=0}^{k-2} (h_j + a_f^{k-1} h_{k-1+j}) z^j.$$

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z)=\sum_{i=0}^{l-1}(\xi(f,D))_i\,z^i.$

► Consider the polynomial $H(z) = s_1(a_f, z) + z^{k-1}s_2(a_f, z) = \sum_{j=0}^{d-1} h_j z^j$, deg(*H*) ≤ 2*k* - 3 = *d* - 1.

> The polynomial corresponding to the failed node defined before can be written as

$$g^{(f)}(z) = \sum_{j=0}^{k-2} (h_j + a_f^{k-1} h_{k-1+j}) z^j.$$

Rephrasing, the contents of the node f is

$$(h_0 + a_f^{k-1}h_{k-1}, h_1 + a_f^{k-1}h_k, \dots, h_{k-2} + a_f^{k-1}h_{2k-3})^{\mathsf{T}}.$$

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z)=\sum_{i=0}^{l-1}(\xi(f,D))_i\,z^i.$

► Consider the polynomial $H(z) = s_1(a_f, z) + z^{k-1}s_2(a_f, z) = \sum_{j=0}^{d-1} h_j z^j$, deg(*H*) ≤ 2*k* - 3 = *d* - 1.

> The polynomial corresponding to the failed node defined before can be written as

$$g^{(f)}(z) = \sum_{j=0}^{k-2} (h_j + a_f^{k-1} h_{k-1+j}) z^j.$$

Rephrasing, the contents of the node f is

$$(h_0 + a_f^{k-1}h_{k-1}, h_1 + a_f^{k-1}h_k, \dots, h_{k-2} + a_f^{k-1}h_{2k-3})^{\mathsf{T}}.$$

At the same time, we can write H(z) in the Lagrange form $H(z) = \sum_{h \in D} H(a_h) l^{(h)}(z)$. where $H(a_h) = g^{(h)}(a_f)$ due to the symmetry of s_1, s_2 .

Random Graphs

Achieving the bounds: Proving correctness

Claim

The content of the failed node f coincides with the vector $\xi(f,D),$ i.e., $g^{(f)}(z)=\sum_{i=0}^{l-1}(\xi(f,D))_i\,z^i.$

► Consider the polynomial $H(z) = s_1(a_f, z) + z^{k-1}s_2(a_f, z) = \sum_{j=0}^{d-1} h_j z^j$, deg(*H*) ≤ 2*k* - 3 = *d* - 1.

> The polynomial corresponding to the failed node defined before can be written as

$$g^{(f)}(z) = \sum_{j=0}^{k-2} (h_j + a_f^{k-1} h_{k-1+j}) z^j.$$

Rephrasing, the contents of the node f is

$$(h_0 + a_f^{k-1}h_{k-1}, h_1 + a_f^{k-1}h_k, \dots, h_{k-2} + a_f^{k-1}h_{2k-3})^{\mathsf{T}}.$$

At the same time, we can write H(z) in the Lagrange form $H(z) = \sum_{h \in D} H(a_h) l^{(h)}(z)$. where $H(a_h) = g^{(h)}(a_f)$ due to the symmetry of s_1, s_2 .

It follows that the coefficients of the polynomial $g^{(f)}(z)$ is nothing but $\xi(f, D)$.

Converse Results

Achievability

Random Graphs

PM codes in Multi-linear Algebra framework

Converse Results

Achievability

Random Graphs

PM codes in Multi-linear Algebra framework

Some notation

Random Graphs

PM codes in Multi-linear Algebra framework

Some notation

For vector space U, define functional $\phi: U \to F$. For $V \subseteq U$, $\phi \upharpoonright V$ is the restriction of ϕ to V. The dual space of U is U^* .

Random Graphs

PM codes in Multi-linear Algebra framework

Some notation

- For vector space U, define functional $\phi: U \to F$. For $V \subseteq U$, $\phi \upharpoonright V$ is the restriction of ϕ to V. The dual space of U is U^* .
- ► The tensor product of *U* and *V*:

$$U \otimes V = \{\sum_{ij} a_{ij}\overline{u}_i \otimes \overline{v}_j, a_{ij} \in F\}.$$

 $T^pV := V \otimes V \otimes \cdots \otimes V, dim(T^pV) = n^p$

Random Graphs

PM codes in Multi-linear Algebra framework

Some notation

- For vector space U, define functional $\phi: U \to F$. For $V \subseteq U$, $\phi \upharpoonright V$ is the restriction of ϕ to V. The dual space of U is U^* .
- ▶ The tensor product of *U* and *V*:

$$U \otimes V = \{\sum_{ij} a_{ij}\overline{u}_i \otimes \overline{v}_j, a_{ij} \in F\}.$$

$$T^pV := V \otimes V \otimes \cdots \otimes V, \dim(T^pV) = n^p$$

► The symmetric product of *U* and *V*:

$$U \odot V = \{\sum_{i \leqslant j} a_{ij} \overline{u}_i \odot \overline{v}_j, a_{ij} \in F\}$$

 $S^{p}V = V \odot V \odot \cdots \odot V, \dim(S^{p}V) = {\binom{n+p-1}{p}}$

Converse Results

Achievability

Random Graphs

PM codes in Multi-linear Algebra framework

Random Graphs

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

▶ Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- ▶ Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot \binom{k}{2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.

▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

Intermediate Processing

• We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- ▶ Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.
- $\blacktriangleright x_f \otimes y_f \odot \overline{y}_1 = x_f \otimes \overline{y}_1 \odot y_f = \sum_{i \in D} a_i(x_i \otimes y_i) \odot y_f.$

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- ▶ Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot \binom{k}{2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- ▶ Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.
- $\blacktriangleright x_f \otimes y_f \odot \overline{y}_1 = x_f \otimes \overline{y}_1 \odot y_f = \sum_{i \in D} a_i(x_i \otimes y_i) \odot y_f.$
- Set A transmits $\sum_{i \in A} a_i \phi(x_i \otimes y_i \odot y_f)$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot {k \choose 2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

Intermediate Processing

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.
- $\blacktriangleright x_f \otimes y_f \odot \overline{y}_1 = x_f \otimes \overline{y}_1 \odot y_f = \sum_{i \in D} a_i(x_i \otimes y_i) \odot y_f.$
- Set A transmits $\sum_{i \in A} a_i \phi(x_i \otimes y_i \odot y_f)$.

Extension

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- ▶ Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot \binom{k}{2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

Intermediate Processing

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- ▶ Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.
- $\blacktriangleright x_f \otimes y_f \odot \overline{y}_1 = x_f \otimes \overline{y}_1 \odot y_f = \sum_{i \in D} a_i(x_i \otimes y_i) \odot y_f.$
- Set A transmits $\sum_{i \in A} a_i \phi(x_i \otimes y_i \odot y_f)$.

Extension

► This framework can be extended to get an MSR code with $n, k, d = \frac{(k-1)t}{t-1}, l = \binom{k-1}{t-1}, M = t\binom{k}{t}$ for any $t \ge 2$.

PM codes in Multi-linear Algebra framework

Code Construction [Duursma et al. 2021]

- ▶ Let $X = F^2$ and $Y = F^{k-1}$. Let $L := X \otimes S^2 Y$ and note that $\dim(L) = 2 \cdot \binom{k}{2} = M$. The encoding $\phi : L \to F$ correspond to the message symbols.
- For each $i \in [n]$, a pair of vectors $x_i \in X$ and $y_i \in Y$ such that
 - (i) Any 2 vectors of x_i 's spans X.
 - (ii) Any (k-1)-subset of y_i 's spans Y.
 - (iii) Any *d* subspaces $x_i \otimes y_i$ span $X \otimes Y$.
- ▶ The contents of node *i* corresponds to the restriction $\phi \upharpoonright x_i \otimes y_i \odot Y \in (x_i \otimes y_i \odot Y)^*$.

Intermediate Processing

- We wish to recover the restriction $\phi \upharpoonright x_f \otimes y_f \odot Y$.
- ▶ Helper node $i \in D$ sends ϕ evaluated at $x_i \otimes y_i \odot y_f$.
- $\blacktriangleright x_f \otimes y_f \odot \overline{y}_1 = x_f \otimes \overline{y}_1 \odot y_f = \sum_{i \in D} a_i(x_i \otimes y_i) \odot y_f.$
- Set A transmits $\sum_{i \in A} a_i \phi(x_i \otimes y_i \odot y_f)$.

Extension

- ► This framework can be extended to get an MSR code with $n, k, d = \frac{(k-1)t}{t-1}, l = \binom{k-1}{t-1}, M = t\binom{k}{t}$ for any $t \ge 2$.
- The same ideas of intermediate processing applies.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR
Random Graphs

Extension to Interior Point Codes: Moving away from MSR

Now focus on non-MSR interior points of the trade-off: $l > (d - k + 1)\beta$.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

Same lower bound is still applicable, i.e., any set of size at least *d* - *k* + 1 needs to transmit *l* symbols.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

- Same lower bound is still applicable, i.e., any set of size at least *d k* + 1 needs to transmit *l* symbols.
- Unlike the MSR point, this bound might not be tight anymore.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

- Same lower bound is still applicable, i.e., any set of size at least d k + 1 needs to transmit l symbols.
- Unlike the MSR point, this bound might not be tight anymore.
- ▶ Improvement: For any $E \subset D$, $H(R_E^f) \ge \frac{|E|l}{d}$. The bound is tighter for $|E| > (d k + 1)\beta d/l$.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

- Same lower bound is still applicable, i.e., any set of size at least d k + 1 needs to transmit l symbols.
- Unlike the MSR point, this bound might not be tight anymore.
- ▶ Improvement: For any $E \subset D$, $H(R_E^f) \ge \frac{|E|l}{d}$. The bound is tighter for $|E| > (d k + 1)\beta d/l$.

What can we achieve

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

- Same lower bound is still applicable, i.e., any set of size at least *d k* + 1 needs to transmit *l* symbols.
- Unlike the MSR point, this bound might not be tight anymore.
- ► Improvement: For any $E \subset D$, $H(R_E^f) \ge \frac{|E|l}{d}$. The bound is tighter for $|E| > (d k + 1)\beta d/l$.

What can we achieve

Explicit code constructions for interior points: Determinant Codes [Elyasi *et al.* 2016], Moulin Codes [Duursma *et al.* 2021] can be fit into the Intermediate Processing framework.

Random Graphs

Extension to Interior Point Codes: Moving away from MSR

- Now focus on non-MSR interior points of the trade-off: $l > (d k + 1)\beta$.
- Code constructions are not MDS anymore.
- A gap exists between functional and exact repair.

What about lower bounds?

- ► Same lower bound is still applicable, i.e., any set of size at least *d* − *k* + 1 needs to transmit *l* symbols.
- Unlike the MSR point, this bound might not be tight anymore.
- ► Improvement: For any $E \subset D$, $H(R_E^f) \ge \frac{|E|l}{d}$. The bound is tighter for $|E| > (d k + 1)\beta d/l$.

What can we achieve

- Explicit code constructions for interior points: Determinant Codes [Elyasi *et al.* 2016], Moulin Codes [Duursma *et al.* 2021] can be fit into the Intermediate Processing framework.
- A set of size at least d k + 1 need only transmit *l* symbols.

Introduction 00

Converse	Results
0000	

Achievability

Random Graphs

Random Graphs

Application to random graphs

Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.

Random Graphs

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.

Random Graphs

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.

Random Graphs

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.

Random Graphs

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.
 - Node repair possible with high probability.

Random Graphs

Application to random graphs

- Erdös-Rényi random graph $\mathcal{G}_{n,p}$: *n* nodes, each edge present with probability *p* independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.
 - Node repair possible with high probability.
- > Threshold behavior: We say that *t*-layer repair of the failed node *v* is possible if

 $P(|N_t(v)| \ge d) \to 1 \text{ as } n \to \infty.$

Random Graphs

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Random Graphs

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Proof by classical results:

Random Graphs

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let *t* be a fixed integer. Then *t* is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Proof by classical results:

If the above conditions hold, then diam(G) = t with high probability [See Bollobas '81; Frieze and Karoński 2015].

Random Graphs

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

- Proof by classical results:
 - If the above conditions hold, then diam(G) = t with high probability [See Bollobas '81; Frieze and Karoński 2015].
 - If $(np)^{t-1} = o(n)$ and $d = \Theta(n)$, then with high probability, d nodes are not reached in t 1 layers [Chung et. al. 2001].

Random Graphs

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Random Graphs

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Theorem

Let *t* be the threshold for repair. For $d = \Theta(n)$ let $d - k = \chi(n)$ be a function of *n* such that $\chi(n)n^{s-1}p^s \to 0$ where $s \leq t-1$ is the largest integer for which this condition holds. Then $\mathbb{P}(\beta_{\mathrm{IP}} \leq (t-s)d + o(n)) \to 1$.

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Theorem

Let *t* be the threshold for repair. For $d = \Theta(n)$ let $d - k = \chi(n)$ be a function of *n* such that $\chi(n)n^{s-1}p^s \to 0$ where $s \leq t-1$ is the largest integer for which this condition holds. Then $\mathbb{P}(\beta_{\mathrm{IP}} \leq (t-s)d + o(n)) \to 1$.

• Using Intermediate Processing, the scaling of the bandwidth can be brought down from t to t - s.

Converse Results

Achievability

Random Graphs

Concluding remarks

In sparsely connected graphs, it is possible to do better than simple relaying.

Converse Results

Achievability

Random Graphs

Concluding remarks

- In sparsely connected graphs, it is possible to do better than simple relaying.
- ▶ The intermediate processing technique is applicable to all *𝔽*-linear MSR codes as well as interior point codes and achieves the minimum possible communication in some cases.

Converse Results

Achievability

Random Graphs

Concluding remarks

- In sparsely connected graphs, it is possible to do better than simple relaying.
- ▶ The intermediate processing technique is applicable to all *𝔽*-linear MSR codes as well as interior point codes and achieves the minimum possible communication in some cases.
- For random graphs $\mathcal{G}_{n,p}$, in certain regimes, intermediate processing can give significant reductions in communication overhead.