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» Each codeword symbol stored in a node.
> Correct erasures while trying to minimize total data "moved".

> Total required transmission bounded by the Cut-set bound’

k—1

B < Zmin{l, (d—1i)B}

i=0

> Different pairs of (1, 8) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.
"Dimakis et. al, 2010
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> General problem assumes d helper nodes are chosen from the direct neighbors of the failed
node, i.e., high connectivity.

» What can be done for sparsely connected graphs?
> Simple answer: Relaying of repair data.
P Choose a suitable spanning tree, having the failed node at the root.
> Each node forwards the helper data of its descendants, possibly supplementing with its own.

> Same data gets transmitted multiple times.

» Total required communication depends on the structure of the tree.

> For example, if the helpers are on a line, the failed node being at the end, then M = O(d*)
transmission required.

[ Question 1 : Is it possible to process the data to reduce communication? ]
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Moving away from traditional setting

> General problem assumes d helper nodes are chosen from the direct neighbors of the failed
node, i.e., high connectivity.

» What can be done for sparsely connected graphs?
> Simple answer: Relaying of repair data.
P> Choose a suitable spanning tree, having the failed node at the root.
> Each node forwards the helper data of its descendants, possibly supplementing with its own.

> Same data gets transmitted multiple times.

» Total required communication depends on the structure of the tree.

> For example, if the helpers are on a line, the failed node being at the end, then W = O(d*)
transmission required.

Question 1 : Is it possible to process the data to reduce communication?

Question 2 : If so, then to what extent?
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» Node v; holds random variable X;.

> For failed node vy, d helper nodes vy, - - - ,v4. Helper node v; would have sent S’; to vy in
case of direct connectivity.

> Operating at the MSR point: H(Xy) =, H(S]) = 8 = =

> H(S[|X) = 0,H(X[S], - ,§)) =0.

Lemma
Letvy,f € [n] be the failed node. For a subset of the helper nodes E C D IetR’;. be a function of
SfE such that

H(X|R,, S, ) = 0.

E29D\
1) If|E| > d —k+1, then
H(R,) > L.
2) If|E| < d — k, then
H(Ry) > —El

d—k+1
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Proof of Lemma

> Given Xp\ ¢ the information contained in RfE is sufficient to repair vy, i.e.,
H(Wy|R;, W) = 0.
> Take asetA C Ewith |A| =k — 1 — |[D\E|. Now,
H(Ry, Wp\ g, Wa) = H(Rl;, Wp\ g, Wy, Wa) > kI

by the MDS property.
>

H(R/; Wp\g, Wa) < H(R};) + H(Wp\g, Wa)
= H(RL) + (k— 1)1

> The proof of Part (2) is similar.



Introduction Converse Results Achievability Random Graphs
(e]e] [e]e] o] 00000 0000

Lower bound on communication



Introduction

(e]e]

Random Graphs

Converse Results Achievability
0000

[e]e] o] 00000

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.

Ti(vr): set of helper nodes at distance i from the failed node.
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Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.

Ti(vr): set of helper nodes at distance i from the failed node.

Proposition
LetRf be the random variable denoting the information flow from the j-th layer to the (j — 1)-th
layer. Then

iy,
H(R/ > min {l Id’ ];Jrf)1| }

Proof.
Take E = Uj_T'i(vf). ]
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity ;o1 for
the repair of node vy on the repair tree Ty is bounded as

D*(v)|l
ﬁtotal > Zl+ Z %

Vel vevI\({y o)

where D*(v) : set of descendants of v including itself.
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity ;o1 for
the repair of node vy on the repair tree Ty is bounded as

D*(v)|l
ﬁrotal > Zl+ Z %

velp  veV(Ip)\({y}uly)
where D*(v) : set of descendants of v including itself.

Proof.
> For every non-root node v ¢ J¢, we have |D*(v)| < d — k.

> Any outflow of information out of the subtree spanned by D* (v) passes through the node v.
> Needs to transmit at least |[D*(v)| - I/(d — k + 1) symbols to its immediate parent in 7;.

> Every node v € Jr needs to transmit at least / symbols to its immediate parent.
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Achieving the bounds: The Product Matrix Framework?®
» Paremeters: [n,k,d =2(k—1),l=k—1,8=1,M = k(k—1)]
> Take two symmetric polynomials s, (y, z), s2(y, z) over field F, of degree at most k — 2. The
coefficients carry the message symbols.
> For distinct points a, - - - , a, node i stores g (z) = s, (ai,2) + & 's2(ai, 2).

Recall: What we want to prove

A set of size at least d — k + 1 needs to transmit exactly / symbols for repair.

> Failed node f, helper set D,A C Dwith |[A| =d —k+1=k— 1.
z—a;

> For h € D define [ (z) = S0} 7 := Mep a4
1

2Rashmi et al., 2011
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Achieving the bounds: The Product Matrix Framework?®
> Paremeters: [n,k,d =2(k—1),l=k—1,8=1,M = k(k — 1)]

> Take two symmetric polynomials s, (y, z), s2(y, z) over field F, of degree at most k — 2. The
coefficients carry the message symbols.

> For distinct points a, - - - , a, node i stores g (z) = s, (ai,2) + & 's2(ai, 2).

Recall: What we want to prove

A set of size at least d — k + 1 needs to transmit exactly / symbols for repair.

> Failed node f, helper set D,A C Dwith |[A| =d —k+1=k— 1.

z—a;

> For h € D define I (z) = 32071 1hal := 1‘[,:%,1 —
1

» The set A transmits the [-vector

h k—1

Ig +ap o,
0+ d'n
£(,4) =Y e"(ay)
heA .
k—1

1272 +a; lgk73

2Rashmi et al., 2011
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Yo (6, D))i .
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> Consider the polynomial H(z) = sy (ar,z) + & 's2(ar, z) = 2;1:—(} hid,
deg(H) <2k —3=d— 1.
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> Consider the polynomial H(z) = sy (ar,z) + & 's2(ar, z) = Z]‘.’:_Ol hid,
deg(H) <2k —3=d— 1.

» The polynomial corresponding to the failed node defined before can be written as
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g(f) (Z) = Z(hj + a}c_]hk_l.w‘)zj.
=0



Introduction

Converse Results
(e]e]

Achievability
0000

Random Graphs
[¢] le]e]e}

0000
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The content of the failed node f coincides with the vector £(f, D), ie., g (z)
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> Consider the polynomial H(z) = sy (ar,z) + & 's2(ar, z) = Z;-]:_ol hjd,
deg(H) <2k —3=d— 1.

» The polynomial corresponding to the failed node defined before can be written as

k—2

g(f) (Z) = Z(hj + a}c_]hk_l.w')zj.
=0

> Rephrasing, the contents of the node f is

(ho + a;_lhk—lyhl + a}(_lhh N a;_lhzk—3)T~
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Achieving the bounds: Proving correctness

The content of the failed node f coincides with the vector £(f, D), ie., g¥)(z) =

Yisol€(f, D))

> Consider the polynomial H(z) = sy (ar,z) + & 's2(ar, z) = ZJ‘.’:_OI hjd,
deg(H) <2k —3=d— 1.

» The polynomial corresponding to the failed node defined before can be written as

k=2
gD =D+ a;_lhk—1+j)2j~

j=0
> Rephrasing, the contents of the node f is

(ho + a;_lhk—lzhl + a}(_lhm N a;_thk—3)T~

> At the same time, we can write H(z) in the Lagrange form H(z) = 3", H(an)I" (2).
where H(ay,) = g (a;) due to the symmetry of sy, s,.
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Achieving the bounds: Proving correctness

The content of the failed node f coincides with the vector £(f, D), ie., g¥)(z) =
Yo (6, D))i .

> Consider the polynomial H(z) = sy (ar,z) + & 's2(ar, z) = ZJ‘.’:_OI hjd,
deg(H) <2k —3=d— 1.

» The polynomial corresponding to the failed node defined before can be written as

k—2

D@ => i+ a}c_lhk—1+j)2j~
=0

> Rephrasing, the contents of the node f is
(ho + a;_lhk—lzhl + a}(_lhm N a;_thk—3)T~

> At the same time, we can write H(z) in the Lagrange form H(z) = 3", H(an)I" (2).
where H(ay,) = g (a;) due to the symmetry of sy, s,.

> It follows that the coefficients of the polynomial g¢") (z) is nothing but £(f, D).
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PM codes in Multi-linear Algebra framework

Some notation

> For vector space U, define functional ¢ : U — F. For V. C U, ¢ [ V is the restriction of ¢ to
V. The dual space of U is U*.

» The tensor product of U and V:

U@V ={)_ aji ®Vaj € F}.
i

TPV :=VQV®- - QV,dim(TPV) = n?
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PM codes in Multi-linear Algebra framework

Some notation

> For vector space U, define functional ¢ : U — F. For V. C U, ¢ [ V is the restriction of ¢ to
V. The dual space of U is U*.

» The tensor product of U and V:

U@V ={)_ aji ®Vaj € F}.
i

TPV :=VQV®- - QV,dim(TPV) = n?

» The symmetric product of U and V:

UoV={>_ aji; ©¥,a; € F}
i<y

SV=VOVe---oV,dnsv)= ("""
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> LetX =F2and ¥ = F*~!. Let L := X ® §?Y and note that dim(L) = 2 - (§) = M. The
encoding ¢ : L — F correspond to the message symbols.
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PM codes in Multi-linear Algebra framework
Code Construction [Duursma et al. 2021]
> LetX =F2and ¥ = F*~!. Let L := X ® §?Y and note that dim(L) = 2 - (§) = M. The
encoding ¢ : L — F correspond to the message symbols.

> Foreach i € [n], a pair of vectors x; € X and y; € Y such that
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Code Construction [Duursma et al. 2021]

> LetX =F2and ¥ = F*~!. Let L := X ® §?Y and note that dim(L) = 2 - (§) = M. The
encoding ¢ : L — F correspond to the message symbols.
> Foreach i € [n], a pair of vectors x; € X and y; € Y such that
(i) Any 2 vectors of x;'s spans X.
(i) Any (k — 1)-subset of y;'s spans Y.
(iii) Any d subspaces x; ® y; span X ® Y.

> The contents of node i corresponds to the restriction ¢ [x; @ yi @Y € (x; @ yi © Y)*.

Intermediate Processing
> We wish to recover the restriction ¢ [ x; @ yr © Y.
> Helper node i € D sends ¢ evaluated at x; ® y; © yy.
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PM codes in Multi-linear Algebra framework
Code Construction [Duursma et al. 2021]
> LetX =F2and ¥ = F*~!. Let L := X ® §?Y and note that dim(L) = 2 - (§) = M. The
encoding ¢ : L — F correspond to the message symbols.
> Foreach i € [n], a pair of vectors x; € X and y; € Y such that
(i) Any 2 vectors of x;'s spans X.

(i) Any (k — 1)-subset of y;'s spans Y.
(iii) Any d subspaces x; ® y; span X ® Y.

> The contents of node i corresponds to the restriction ¢ [x; @ yi @Y € (x; @ yi © Y)*.

Intermediate Processing
> We wish to recover the restriction ¢ [ x; @ yr © Y.
> Helper node i € D sends ¢ evaluated at x; ® y; © yy.
> X @OV =X ®F Oy =D iep ailxi ® i) © yr.
> Set A transmits 3,4 aid(xi @ yi © yr)-

Extension

> This fram?work can be extended to get an MSR code with
_ k=Dt 5 _ k=1 _ (K
nk,d==%,1=(,"),M=1(;) forany r > 2.
> The same ideas of intermediate processing applies.
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> Code constructions are not MDS anymore.

> A gap exists between functional and exact repair.

What about lower bounds?

» Same lower bound is still applicable, i.e., any set of size at least d — k + 1 needs to transmit /
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» Unlike the MSR point, this bound might not be tight anymore.
» Improvement: Forany E C D, H(R’;) > %. The bound is tighter for |E| > (d — k + 1)8d/1.

What can we achieve

> Explicit code constructions for interior points: Determinant Codes [Elyasi et al. 2016], Moulin
Codes [Duursma et al. 2021] can be fit into the Intermediate Processing framework.
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Extension to Interior Point Codes: Moving away from MSR

» Now focus on non-MSR interior points of the trade-off: [ > (d — k4 1)8.
> Code constructions are not MDS anymore.

> A gap exists between functional and exact repair.

What about lower bounds?

» Same lower bound is still applicable, i.e., any set of size at least d — k + 1 needs to transmit /
symbols.

» Unlike the MSR point, this bound might not be tight anymore.
» Improvement: Forany E C D, H(R’;) > %. The bound is tighter for |E| > (d — k + 1)8d/1.

What can we achieve

> Explicit code constructions for interior points: Determinant Codes [Elyasi et al. 2016], Moulin
Codes [Duursma et al. 2021] can be fit into the Intermediate Processing framework.

> A set of size at least d — k + 1 need only transmit / symbols.
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Application to random graphs

» Erdds-Rényi random graph G, ,: n nodes, each edge present with probability p
independently of others.

» An [n, k,d] MSR code defined with C; stored in node i.

» For asymptotically positive rates, d = O(n).

logn
n

v

Operate inp > region, i.e., connected region.

> Node repair possible with high probability.

v

Threshold behavior: We say that ¢-layer repair of the failed node v is possible if

P(|N;(v)| 2 d) — lasn — co.
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Application to random graphs: Repair threshold

Proposition
Letd = 6n,0 < § < 1 be a constant and let t be a fixed integer. Then ¢ is the threshold depth for
repair if

(np)' ="' = o(n), p'n"~' —2logn — co.

> Proof by classical results:

> If the above conditions hold, then diam(G) = r with high probability [See Bollobas '81; Frieze and
Karonski 2015].

> If (np)' ! = o(n) and d = O(n), then with high probability, d nodes are not reached in r — 1 layers
[Chung et. al. 2001].
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> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.
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» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1

> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.

Theorem
Let ¢ be the threshold for repair. Ford = ©(n) letd — k = x(n) be a function of n such that
x(n)n*~1p* — 0 where s < t — 1 is the largest integer for which this condition holds. Then

P(Bwp < (t —s)d + o(n)) — 1.
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Application to random graphs: Repair bandwidth

» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1

> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.

Theorem
Let ¢ be the threshold for repair. Ford = ©(n) letd — k = x(n) be a function of n such that
x(n)n*~1p* — 0 where s < t — 1 is the largest integer for which this condition holds. Then

P(Bwp < (t —s)d + o(n)) — 1.

> Using Intermediate Processing, the scaling of the bandwidth can be brought down from 7 to
t—s.
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Concluding remarks

> In sparsely connected graphs, it is possible to do better than simple relaying.

> The intermediate processing technique is applicable to all F-linear MSR codes as well as
interior point codes and achieves the minimum possible communication in some cases.

» For random graphs G, p, in certain regimes, intermediate processing can give significant
reductions in communication overhead.
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