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» Each codeword symbol stored in a node.

> Correct erasures while trying to minimize total data "moved".
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Node repair in distributed storage

X2 1
B
B X3 )1
l@‘ﬁ/
Erasure Xy 1
Xs |1

» Each codeword symbol stored in a node.
> Correct erasures while trying to minimize total data "moved".

> Total required transmission bounded by the Cut-set bound

k—1
B< Y min{l, (d—i)B}
i=0
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Moving away from traditional setting

> General problem assumes degree at least d for all nodes, i.e., high connectivity.
» What can be done for sparsely connected graphs?

> Simple answer: Relaying of repair data.

P Choose a suitable spanning tree, having the failed node at the root.

> Each node forwards the helper data of its descendants, possibly supplementing with its own.
> Same data gets transmitted multiple times.

> Total required communication depends on the structure of the tree.

[ Question 1 : Is it possible to process the data to reduce communication? ]
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Moving away from traditional setting

> General problem assumes degree at least d for all nodes, i.e., high connectivity.
» What can be done for sparsely connected graphs?

> Simple answer: Relaying of repair data.

P Choose a suitable spanning tree, having the failed node at the root.

> Each node forwards the helper data of its descendants, possibly supplementing with its own.
> Same data gets transmitted multiple times.

> Total required communication depends on the structure of the tree.

Question 1 : Is it possible to process the data to reduce communication?

Question 2 : If so, then to what extent?
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The bounds: How much can we process?

» Node v; holds random variable X;.

> For failed node vy, d helper nodes vy, - - - ,v4. Helper node v; would have sent S’; to vy in
case of direct connectivity.

> Operating at the MSR point: H(Xy) =, H(S]) = 8 = =

> H(S[|X) = 0,H(X[S], - ,§)) =0.
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The bounds: How much can we process?

» Node v; holds random variable X;.

> For failed node vy, d helper nodes vy, - - - ,v4. Helper node v; would have sent S’; to vy in
case of direct connectivity.

> Operating at the MSR point: H(Xy) =, H(S]) = 8 = =

> H(S[|X) = 0,H(X[S], - ,§)) =0.

Lemma
Letvy,f € [n] be the failed node. For a subset of the helper nodes E C D IetR’;. be a function of
SfE such that

H(X|R,, S, ) = 0.

E29D\
1) If|E| > d —k+1, then
H(R,) > L.
2) If|E| < d — k, then
H(Ry) > —El

d—k+1
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Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.

Ti(vr): set of helper nodes at distance i from the failed node.
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Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.

Ti(vr): set of helper nodes at distance i from the failed node.

Proposition
LetRf be the random variable denoting the information flow from the j-th layer to the (j — 1)-th
layer. Then
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Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.

Ti(vr): set of helper nodes at distance i from the failed node.

Proposition
LetRf be the random variable denoting the information flow from the j-th layer to the (j — 1)-th
layer. Then

iy,
H(R/ > min {l Id’ ];Jrf)1| }

Proof.
Take E = Uj_T'i(vf). ]
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity 3 for the
repair of node vy on the repair tree Ty is bounded as

ID* ()|t

B> 1+ > T

Vel vevI\({y o)

where D*(v) : set of descendants of v including itself.
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity 3 for the
repair of node vy on the repair tree Ty is bounded as

D*(v)|l
BT O o
velp  veV(Ip)\({yruly)
where D*(v) : set of descendants of v including itself.

Proof.
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity 3 for the
repair of node vy on the repair tree Ty is bounded as

D*(v)|l
BT O o
velp  veV(Ip)\({yruly)
where D*(v) : set of descendants of v including itself.

Proof.

> For every non-root node v ¢ J¢, we have |D*(v)| < d — k.
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> Any outflow of information out of the subtree spanned by D* (v) passes through the node v.
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Lower bound on communication

If the repair graph is a tree, then

Proposition
LetJ; = {v € V(Ty)\{vs} : ID*(v)| = d — k + 2}. The total communication complexity 3 for the
repair of node vy on the repair tree Ty is bounded as

ID* ()|t
> l _—
D S
velr  veV(TH)\({v}uiy)
where D*(v) : set of descendants of v including itself.

Proof.
> For every non-root node v ¢ J¢, we have |D*(v)| < d — k.

> Any outflow of information out of the subtree spanned by D* (v) passes through the node v.
> Needs to transmit at least |[D*(v)| - I/(d — k + 1) symbols to its immediate parent in 7;.

> Every node v € Jr needs to transmit at least / symbols to its immediate parent.
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Example

> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.
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Achieving the bounds: Using MSR Product Matrix codes

Example
> Takean [n=5,k=3,d =4,1=2,8=1,B = 6] MSR Product
Matrix code.
vi

mip - mpp

> M=5,%] = M2 s Wsya = [<I>,A<I’], C=9M.
my1 My
my N3

1% V3

V4 Vs
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Achieving the bounds: Using MSR Product Matrix codes

Example
> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.
Vi

myy o mp
> M=[5,5]" = Mz , Wsys = [<I>,A<I’], C=UM.

myy m)

my  m3

V2 v3

> Node i sends y; = \I/iM<1>1T = (98 + )\iCDiS2)<I>{.

V4 Vs
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Achieving the bounds: Using MSR Product Matrix codes

Example

> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.

mi| mi2

vy
> M=5,%] = ZZ ZZ  Usyy = [@,AD], C = UM.
my M3
2 v

V. 3
» Node i sends yi = \IfiMq)lT = (‘I)iS] + )\iCDiS2)<I>{.

) ) T _
> Node 1 inverts matrix ¥p to get MP! = [Sl d)lT] =T, 'yp and
2%

calculates ®15; + AP S;.
V4 Vs
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Achieving the bounds: Using MSR Product Matrix codes

Example

> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.

mi| mi2

> M=[5,5]" = ZZ ZZ  Usyy = [@,AD], C = UM.
my M3

» Node i sends yi = \IfiMq)lT = (‘I)iS] + )\iCDiS2)<I>{.

: ) T _
> Node 1 inverts matrix ¥p to get MP! = [Sl d)lT] =T, 'yp and / \
2%
calculates ®15; + AP S;.

Random Graphs
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Example
> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.
vy
myp mp
> M=5,%] = M2  Usyy = [@,AD], C = UM.
ma1 M)
my - m3
V2 v3
»> Node i sends y; = \IfiMq)lT = (‘I),'S] + )\iCDiS2)<I>{.
. ) . ML 1
> Node 1 inverts matrix ¥p to get M®} = saT| = ¥, 'yp and
2%
calculates ®15; + AP S;.
V4 Vs

> Observe C;r = [12 >\112] M@; = fR]\I/ElyD = UI’DyD
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Achieving the bounds: Using MSR Product Matrix codes

Example

> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.

Vi
mi mi
> M=[5,8])" = Z;T ZZ ,Usyq = [B,AD], C = UM.
mpp mo3
2 V3

v
»> Node i sends y; = \IfiMq)lT = (‘I),'S] + )\iCDiS2)<I>{.

ML

> Node 1 inverts matrix ¥p to get MP! = [S o7
2%

] =¥, 'yp and

calculates ®15; + AP S;.
V4 Vs

> Observe C;r = [12 >\112] M@; = fR]\I/ElyD = UI’DyD

> So v, can transmit instead Ui")y4 + Ué’DyS + Ué’Dyz.
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Achieving the bounds: Using MSR Product Matrix codes

Example

> Takean [n=5,k=3,d=4,1=2,8 =1,B = 6] MSR Product
Matrix code.

Vi
mi| mi2
> M=[5,5] = Z;T ZZ ,Wsys = [®,AD], C = UM. N
ma2 ma3
Vv V3

» Node i sends yi = \IfiMq)lT = (‘I)iS] + )\ﬁb,ﬁ‘g)@{.

)
: ) T _
> Node 1 inverts matrix ¥p to get MP! = [Sl d)lT] =T, 'yp and / \
2%
calculates ®15; + AP S;.
V4 Vs

» Observe C;r = [12 >\112] M‘P; = fR]\I/ElyD = UI’DyD

» So v, can transmit instead Ui")y4 + Ué’Dys + U;’Dyz.
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Achieving the bounds: Any F-linear code

In general, for any F-linear MSR code:
> Say helper node i needs to send y; € F to v; in the non-constrained setting.

» There exists [ x d3 matrix U:
1,1 Yiy
c12 Yiy

=W U - Uy

1, Vig
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In general, for any F-linear MSR code:
> Say helper node i needs to send y; € F to v; in the non-constrained setting.

» There exists [ x d3 matrix U:

1,1 Yiy
€12 Yiy
=W U - Uy
c1,l Yig

» Node v, that receives y;s from at least d — k + 1 other nodes E can send
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Achieving the bounds: Any F-linear code

In general, for any F-linear MSR code:
> Say helper node i needs to send y; € F to v; in the non-constrained setting.

» There exists [ x d3 matrix U:

1,1 Yiy

€12 Vi,
=U U - U

c1,l Yiy

» Node v, that receives y;s from at least d — k + 1 other nodes E can send

> Z/'EE ujy,»]. + Ui, (Il = (d — k+ 1) transmissions) in stead of
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Achieving the bounds: Any F-linear code

In general, for any F-linear MSR code:
> Say helper node i needs to send y; € F to v; in the non-constrained setting.

» There exists [ x d3 matrix U:

1,1 Yiy
€12 Yiy
=W U - Uy
c1,l Yig

» Node v, that receives y;s from at least d — k + 1 other nodes E can send
> Z/'EE ujy,»]. + Ui, (Il = (d — k+ 1) transmissions) in stead of

> {y; :j € EU{x}} ([EU{x}|B > (d — k + 2) transmissions).
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Application to random graphs

» Erdds-Rényi random graph G, ,: n nodes, each edge present with probability p
independently of others.

» An [n, k,d] MSR code defined with C; stored in node i.

» For asymptotically positive rates, d = O(n).
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Application to random graphs

» Erdds-Rényi random graph G, ,: n nodes, each edge present with probability p
independently of others.

» An [n, k,d] MSR code defined with C; stored in node i.
» For asymptotically positive rates, d = O(n).

105” region, i.e., connected region.

» Operate inp >

> Node repair possible with high probability.
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Introduction

Application to random graphs

» Erdds-Rényi random graph G, ,: n nodes, each edge present with probability p
independently of others.

» An [n, k,d] MSR code defined with C; stored in node i.

» For asymptotically positive rates, d = O(n).

logn
n

v

Operate inp > region, i.e., connected region.

> Node repair possible with high probability.

v

Threshold behavior: We say that ¢-layer repair of the failed node v is possible if

P(|N;(v)| 2 d) — lasn — co.
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Application to random graphs: Repair threshold

Proposition
Letd = 6n,0 < § < 1 be a constant and let t be a fixed integer. Then ¢ is the threshold depth for
repair if

(np)' ="' = o(n), p'n"~' —2logn — co.
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> Proof by classical results:
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Application to random graphs: Repair threshold

Proposition
Letd = 6n,0 < § < 1 be a constant and let t be a fixed integer. Then ¢ is the threshold depth for
repair if

(np)' ="' = o(n), p'n"~' —2logn — co.

> Proof by classical results:

> If the above conditions hold, then diam(G) = r with high probability [See Bollobas '81; Frieze and
Karonski 2015].
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Application to random graphs: Repair threshold

Proposition
Letd = 6n,0 < § < 1 be a constant and let t be a fixed integer. Then ¢ is the threshold depth for
repair if

(np)' ="' = o(n), p'n"~' —2logn — co.

> Proof by classical results:

> If the above conditions hold, then diam(G) = ¢ with high probability [See Bollobas '81; Frieze and
Karonski 2015].

> If (np)' ! = o(n) and d = O(n), then with high probability, d nodes are not reached in r — 1 layers
[Chung et. al. 2001].
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» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?
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Application to random graphs: Repair bandwidth

» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1
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Application to random graphs: Repair bandwidth

» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1

> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.
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Application to random graphs: Repair bandwidth

» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1

> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.

Theorem
Let ¢ be the threshold for repair. Ford = ©(n) letd — k = x(n) be a function of n such that
x(n)n*~1p* — 0 where s < t — 1 is the largest integer for which this condition holds. Then

P(Bwp < (t —s)d + o(n)) — 1.
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Application to random graphs: Repair bandwidth

» How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth Bar satisfies P(Sar > td — o(n)) — 1

> Most nodes are at distance ¢. For the AF setting, required bandwidth scaled by ¢ compared
to the directly connected scenario.

Theorem
Let ¢ be the threshold for repair. Ford = ©(n) letd — k = x(n) be a function of n such that
x(n)n*~1p* — 0 where s < t — 1 is the largest integer for which this condition holds. Then

P(Bwp < (t —s)d + o(n)) — 1.

> Using Intermediate Processing, the scaling of the bandwidth can be brought down from 7 to
t—s.
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Concluding remarks

> In sparsely connected graphs, it is possible to do better than simple relaying.



Introduction Achievability Random Graphs

oooe

Concluding remarks

> In sparsely connected graphs, it is possible to do better than simple relaying.

> The intermediate processing technique is applicable to all F-linear MSR codes and achieves
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Concluding remarks

> In sparsely connected graphs, it is possible to do better than simple relaying.

> The intermediate processing technique is applicable to all F-linear MSR codes and achieves
the minimum possible communication in some cases.

» For random graphs G, p, in certain regimes, intermediate processing can give significant
reductions in communication overhead.
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