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Introduction Converse Results Achievability Random Graphs

Node repair in distributed storage

X1l

X2 l

X3 l

X4 l

X5 l

I Each codeword symbol stored in a node.

I Correct erasures while trying to minimize total data "moved".

I Total required transmission bounded by the Cut-set bound

B 6
k−1∑
i=0

min{l, (d − i)β}
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Moving away from traditional setting

I General problem assumes degree at least d for all nodes, i.e., high connectivity.

I What can be done for sparsely connected graphs?

I Simple answer: Relaying of repair data.

I Choose a suitable spanning tree, having the failed node at the root.

I Each node forwards the helper data of its descendants, possibly supplementing with its own.

I Same data gets transmitted multiple times.

I Total required communication depends on the structure of the tree.

Question 1 : Is it possible to process the data to reduce communication?

Question 2 : If so, then to what extent?
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The bounds: How much can we process?

I Node vi holds random variable Xi.

I For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf
i to vf in

case of direct connectivity.

I Operating at the MSR point: H(Xf ) = l, H(Sf
i ) = β = l

d−k+1 .

I H(Sf
i |Xi) = 0,H(Xf |Sf

1, · · · , S
f
d) = 0.

Lemma
Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf

E be a function of
Sf

E such that
H(Xf |Rf

E, S
f
D\E) = 0.

1) If |E| > d − k + 1, then
H(Rf

E) > l.

2) If |E| 6 d − k, then

H(Rf
E) >

|E|l
d − k + 1

.
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Lower bound on communication

Definition
Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.
Γi(vf ): set of helper nodes at distance i from the failed node.

Proposition
Let Rf

j be the random variable denoting the information flow from the j-th layer to the (j− 1)-th
layer. Then

H(Rf
j ) > min

{
l,
| ∪t

i=j Γi(vf )| · l
d − k + 1

}

Proof.
Take E = ∪t

i=jΓi(vf ).



Introduction Converse Results Achievability Random Graphs

Lower bound on communication

Definition
Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.
Γi(vf ): set of helper nodes at distance i from the failed node.

Proposition
Let Rf

j be the random variable denoting the information flow from the j-th layer to the (j− 1)-th
layer. Then

H(Rf
j ) > min

{
l,
| ∪t

i=j Γi(vf )| · l
d − k + 1

}

Proof.
Take E = ∪t

i=jΓi(vf ).



Introduction Converse Results Achievability Random Graphs

Lower bound on communication

Definition
Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.
Γi(vf ): set of helper nodes at distance i from the failed node.

Proposition
Let Rf

j be the random variable denoting the information flow from the j-th layer to the (j− 1)-th
layer. Then

H(Rf
j ) > min

{
l,
| ∪t

i=j Γi(vf )| · l
d − k + 1

}

Proof.
Take E = ∪t

i=jΓi(vf ).



Introduction Converse Results Achievability Random Graphs

Lower bound on communication

Definition
Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms
of graph distance.
Γi(vf ): set of helper nodes at distance i from the failed node.

Proposition
Let Rf

j be the random variable denoting the information flow from the j-th layer to the (j− 1)-th
layer. Then

H(Rf
j ) > min

{
l,
| ∪t

i=j Γi(vf )| · l
d − k + 1

}

Proof.
Take E = ∪t

i=jΓi(vf ).



Introduction Converse Results Achievability Random Graphs

Lower bound on communication
If the repair graph is a tree, then

Proposition
Let Jf = {v ∈ V(Tf )\{vf } : |D∗(v)| > d − k + 2}. The total communication complexity β for the
repair of node vf on the repair tree Tf is bounded as

β >
∑
v∈Jf

l +
∑

v∈V(Tf )\({vf }∪Jf )

|D∗(v)|l
d − k + 1

.

where D∗(v) : set of descendants of v including itself.

Proof.

I For every non-root node v /∈ Jf , we have |D∗(v)| 6 d − k.

I Any outflow of information out of the subtree spanned by D∗(v) passes through the node v.

I Needs to transmit at least |D∗(v)| · l/(d − k + 1) symbols to its immediate parent in Tf .

I Every node v ∈ Jf needs to transmit at least l symbols to its immediate parent.
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Achieving the bounds: Using MSR Product Matrix codes

Example
I Take an [n = 5, k = 3, d = 4, l = 2, β = 1,B = 6] MSR Product

Matrix code.

I M = [S1, S2]T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ,ΛΦ

]
, C = ΨM.

I Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)ΦT

1 .

I Node 1 inverts matrix ΨD to get MΦt
i =

[
S1ΦT

1
S2ΦT

1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

I Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ−1
D yD = U1,DyD

I So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2.

v1

v2 v3

v4 v5
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Achieving the bounds: Any F-linear code

In general, for any F-linear MSR code:

I Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

I There exists l× dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


I Node vx that receives yis from at least d − k + 1 other nodes E can send

I ∑
j∈E Ujyij + Uxyix (l = (d − k + 1)β transmissions) in stead of

I {yij : j ∈ E ∪ {x}} (|E ∪ {x}|β > (d − k + 2)β transmissions).
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Application to random graphs

I Erdös-Rényi random graph Gn,p: n nodes, each edge present with probability p
independently of others.

I An [n, k, d] MSR code defined with Ci stored in node i.

I For asymptotically positive rates, d = Θ(n).

I Operate in p� log n
n region, i.e., connected region.

I Node repair possible with high probability.

I Threshold behavior: We say that t-layer repair of the failed node v is possible if

P(|Nt(v)| > d)→ 1 as n→∞.
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Application to random graphs: Repair threshold

Proposition
Let d = δn, 0 < δ < 1 be a constant and let t be a fixed integer. Then t is the threshold depth for
repair if

(np)t−1 = o(n), ptnt−1 − 2 log n→∞.

I Proof by classical results:

I If the above conditions hold, then diam(G) = t with high probability [See Bollobas ’81; Frieze and
Karoński 2015].

I If (np)t−1 = o(n) and d = Θ(n), then with high probability, d nodes are not reached in t − 1 layers
[Chung et. al. 2001].
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Application to random graphs: Repair bandwidth

I How much savings do we get by using the "Intermediate Processing" technique compared to
simple "Accumulate and Forward" relaying?

Proposition
The repair bandwidth βAF satisfies P(βAF > td − o(n))→ 1

I Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared
to the directly connected scenario.

Theorem
Let t be the threshold for repair. For d = Θ(n) let d − k = χ(n) be a function of n such that
χ(n)ns−1ps → 0 where s 6 t − 1 is the largest integer for which this condition holds. Then
P(βIP 6 (t − s)d + o(n))→ 1.

I Using Intermediate Processing, the scaling of the bandwidth can be brought down from t to
t − s.
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Concluding remarks

I In sparsely connected graphs, it is possible to do better than simple relaying.

I The intermediate processing technique is applicable to all F-linear MSR codes and achieves
the minimum possible communication in some cases.

I For random graphs Gn,p, in certain regimes, intermediate processing can give significant
reductions in communication overhead.
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