Converse Results

Achievability 00 Random Graphs

Regenerating Codes on Graphs

Adway Patra & Alexander Barg

(University of Maryland)

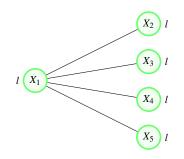
ISIT 2021

Converse	Results
000	

Achievability

Random Graphs

Node repair in distributed storage

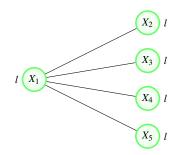


Converse	Results
000	

Achievability

Random Graphs

Node repair in distributed storage



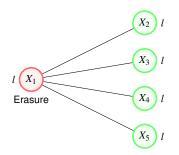
Each codeword symbol stored in a node.

Converse	Results
000	

Achievability

Random Graphs

Node repair in distributed storage



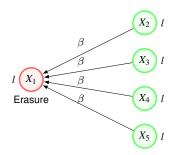
- Each codeword symbol stored in a node.
- Correct erasures while trying to minimize total data "moved".

Converse	Results
000	

Achievability

Random Graphs

Node repair in distributed storage



- Each codeword symbol stored in a node.
- Correct erasures while trying to minimize total data "moved".
- Total required transmission bounded by the Cut-set bound

$$B \leqslant \sum_{i=0}^{k-1} \min\{l, (d-i)\beta\}$$

Random Graphs

Moving away from traditional setting

▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.

Moving away from traditional setting

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.

Question 1 : Is it possible to process the data to reduce communication?

Moving away from traditional setting

- ▶ General problem assumes degree at least *d* for all nodes, i.e., high connectivity.
- What can be done for sparsely connected graphs?
 - Simple answer: Relaying of repair data.
 - Choose a suitable spanning tree, having the failed node at the root.
 - Each node forwards the helper data of its descendants, possibly supplementing with its own.
- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.

Question 1 : Is it possible to process the data to reduce communication?

Question 2 : If so, then to what extent?

Random Graphs

The bounds: How much can we process?

Node v_i holds random variable X_i .

The bounds: How much can we process?

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.

The bounds: How much can we process?

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

The bounds: How much can we process?

- Node v_i holds random variable X_i .
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

•
$$H(S_i^f|X_i) = 0, H(X_f|S_1^f, \cdots, S_d^f) = 0.$$

The bounds: How much can we process?

- Node v_i holds random variable X_i .
- ► For failed node v_f, d helper nodes v₁, · · · , v_d. Helper node v_i would have sent S^f_i to v_f in case of direct connectivity.
- Operating at the MSR point: $H(X_f) = l, H(S_i^f) = \beta = \frac{l}{d-k+1}$.

•
$$H(S_i^f|X_i) = 0, H(X_f|S_1^f, \cdots, S_d^f) = 0.$$

Lemma

Let $v_f, f \in [n]$ be the failed node. For a subset of the helper nodes $E \subset D$ let R_E^f be a function of S_E^f such that

$$H(X_f|R_E^f, S_{D\setminus E}^f) = 0.$$

1) If $|E| \ge d - k + 1$, then

 $H(R_E^f) \ge l.$

2) If $|E| \leq d - k$, then

$$H(R_E^f) \geqslant \frac{|E|l}{d-k+1}.$$

Converse Results

Achievability 00 Random Graphs

Lower bound on communication

Random Graphs

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and *d* helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Proposition

Let R_j^f be the random variable denoting the information flow from the *j*-th layer to the (j-1)-th layer. Then

$$H(R_j^f) \ge \min\left\{l, \frac{|\cup_{i=j}^t \Gamma_i(v_f)| \cdot l}{d-k+1}\right\}$$

Lower bound on communication

Definition

Repair graph: The subgraph spanned by the failed node and d helper nodes closest to it in terms of graph distance.

 $\Gamma_i(v_f)$: set of helper nodes at distance *i* from the failed node.

Proposition

Let R_j^f be the random variable denoting the information flow from the *j*-th layer to the (j-1)-th layer. Then

$$H(R_{j}^{f}) \ge \min\left\{l, \frac{|\cup_{i=j}^{t} \Gamma_{i}(v_{f})| \cdot l}{d-k+1}\right\}$$

Proof.

Take $E = \bigcup_{i=j}^{t} \Gamma_i(v_f)$.

Converse	Results
000	

Achievability

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}.$$

where $D^*(v)$: set of descendants of v including itself.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \geqslant \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}$$

where $D^*(v)$: set of descendants of v including itself.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \ge \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}$$

where $D^*(v)$: set of descendants of v including itself.

Proof.

For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d - k$.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \geqslant \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}$$

where $D^*(v)$: set of descendants of v including itself.

- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \geqslant \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}$$

where $D^*(v)$: set of descendants of v including itself.

- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.
- ▶ Needs to transmit at least $|D^*(v)| \cdot l/(d-k+1)$ symbols to its immediate parent in T_f .

Random Graphs

Lower bound on communication

If the repair graph is a tree, then

Proposition

Let $J_f = \{v \in V(T_f) \setminus \{v_f\} : |D^*(v)| \ge d - k + 2\}$. The total communication complexity β for the repair of node v_f on the repair tree T_f is bounded as

$$\beta \geqslant \sum_{v \in J_f} l + \sum_{v \in V(T_f) \setminus (\{v_f\} \cup J_f)} \frac{|D^*(v)|l}{d - k + 1}$$

where $D^*(v)$: set of descendants of v including itself.

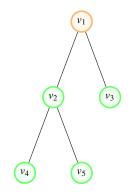
- For every non-root node $v \notin J_f$, we have $|D^*(v)| \leq d k$.
- Any outflow of information out of the subtree spanned by $D^*(v)$ passes through the node v.
- ▶ Needs to transmit at least $|D^*(v)| \cdot l/(d-k+1)$ symbols to its immediate parent in T_f .
- Every node $v \in J_f$ needs to transmit at least *l* symbols to its immediate parent.

Random Graphs

Achieving the bounds: Using MSR Product Matrix codes

Example

Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.



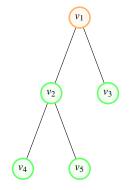
Random Graphs

Achieving the bounds: Using MSR Product Matrix codes

Example

Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$



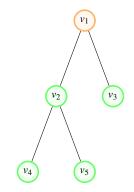
Achieving the bounds: Using MSR Product Matrix codes

Example

► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends $y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$.



Achieving the bounds: Using MSR Product Matrix codes

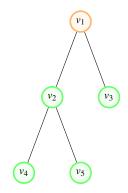
Example

► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends
$$y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$$
.

► Node 1 inverts matrix Ψ_D to get $M\Phi_i^t = \begin{bmatrix} S_1\Phi_1^T \\ S_2\Phi_1^T \end{bmatrix} = \Psi_D^{-1}y_D$ and calculates $\Phi_1S_1 + \lambda_1\Phi_1S_2$.



Achieving the bounds: Using MSR Product Matrix codes

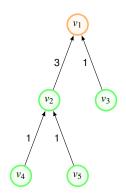
Example

► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends
$$y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$$
.

► Node 1 inverts matrix Ψ_D to get $M\Phi_i^t = \begin{bmatrix} S_1\Phi_1^T \\ S_2\Phi_1^T \end{bmatrix} = \Psi_D^{-1}y_D$ and calculates $\Phi_1S_1 + \lambda_1\Phi_1S_2$.



Random Graphs

Achieving the bounds: Using MSR Product Matrix codes

Example

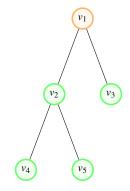
► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends
$$y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$$
.

► Node 1 inverts matrix Ψ_D to get $M\Phi_i^t = \begin{bmatrix} S_1\Phi_1^T \\ S_2\Phi_1^T \end{bmatrix} = \Psi_D^{-1}y_D$ and calculates $\Phi_1S_1 + \lambda_1\Phi_1S_2$.

• Observe
$$C_1^T = \begin{bmatrix} I_2 & \lambda_1 I_2 \end{bmatrix} M \Phi_i^t = \mathcal{R}_1 \Psi_D^{-1} y_D = U^{1,D} y_D$$



Random Graphs

Achieving the bounds: Using MSR Product Matrix codes

Example

► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

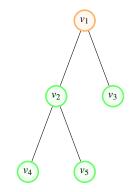
•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends
$$y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$$
.

► Node 1 inverts matrix Ψ_D to get $M\Phi_i^t = \begin{bmatrix} S_1\Phi_1^T \\ S_2\Phi_1^T \end{bmatrix} = \Psi_D^{-1}y_D$ and calculates $\Phi_1S_1 + \lambda_1\Phi_1S_2$.

• Observe
$$C_1^T = \begin{bmatrix} I_2 & \lambda_1 I_2 \end{bmatrix} M \Phi_i^t = \mathcal{R}_1 \Psi_D^{-1} y_D = U^{1,D} y_D$$

• So v_2 can transmit instead $U_4^{1,D}y_4 + U_5^{1,D}y_5 + U_2^{1,D}y_2$.



Random Graphs

Achieving the bounds: Using MSR Product Matrix codes

Example

► Take an [n = 5, k = 3, d = 4, l = 2, β = 1, B = 6] MSR Product Matrix code.

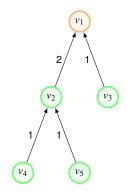
•
$$M = [S_1, S_2]^T = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \\ m_{21} & m_{22} \\ m_{22} & m_{23} \end{bmatrix}, \Psi_{5 \times 4} = [\Phi, \Lambda \Phi], C = \Psi M.$$

• Node *i* sends
$$y_i = \Psi_i M \Phi_1^T = (\Phi_i S_1 + \lambda_i \Phi_i S_2) \Phi_1^T$$
.

► Node 1 inverts matrix Ψ_D to get $M\Phi_i^t = \begin{bmatrix} S_1\Phi_1^T \\ S_2\Phi_1^T \end{bmatrix} = \Psi_D^{-1}y_D$ and calculates $\Phi_1S_1 + \lambda_1\Phi_1S_2$.

• Observe
$$C_1^T = \begin{bmatrix} I_2 & \lambda_1 I_2 \end{bmatrix} M \Phi_i^t = \mathcal{R}_1 \Psi_D^{-1} y_D = U^{1,D} y_D$$

• So v_2 can transmit instead $U_4^{1,D}y_4 + U_5^{1,D}y_5 + U_2^{1,D}y_2$.



Random Graphs

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any \mathbb{F} -linear MSR code:

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any $\mathbb F\text{-linear}$ MSR code:

Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any $\mathbb F\text{-linear}$ MSR code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $l \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any $\mathbb F\text{-linear}$ MSR code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $l \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

▶ Node v_x that receives y_i s from at least d - k + 1 other nodes E can send

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any \mathbb{F} -linear MSR code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $l \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

- ▶ Node v_x that receives y_i s from at least d k + 1 other nodes E can send
 - $\sum_{j \in E} \mathcal{U}_j y_{i_j} + \mathcal{U}_x y_{i_x}$ $(l = (d k + 1)\beta$ transmissions) in stead of

Achieving the bounds: Any \mathbb{F} -linear code

In general, for any \mathbb{F} -linear MSR code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $l \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

- ▶ Node v_x that receives y_i s from at least d k + 1 other nodes E can send
 - $\sum_{j \in E} \mathcal{U}_{j} y_{i_j} + \mathcal{U}_{x} y_{i_x}$ $(l = (d k + 1)\beta$ transmissions) in stead of
 - ► { y_{i_j} : $j \in E \cup \{x\}$ } ($|E \cup \{x\}|\beta \ge (d k + 2)\beta$ transmissions).

Introduction 00

Converse	Results
000	

Achievability 00 Random Graphs

Random Graphs

Application to random graphs

Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.

Random Graphs

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.

- Erdös-Rényi random graph G_{n,p}: n nodes, each edge present with probability p independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.
 - Node repair possible with high probability.

Application to random graphs

- Erdös-Rényi random graph $\mathcal{G}_{n,p}$: *n* nodes, each edge present with probability *p* independently of others.
- An [n, k, d] MSR code defined with C_i stored in node *i*.
- For asymptotically positive rates, $d = \Theta(n)$.
- Operate in $p \gg \frac{\log n}{n}$ region, i.e., connected region.
 - Node repair possible with high probability.
- > Threshold behavior: We say that *t*-layer repair of the failed node *v* is possible if

 $P(|N_t(v)| \ge d) \to 1 \text{ as } n \to \infty.$

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Proof by classical results:

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

Proof by classical results:

If the above conditions hold, then diam(G) = t with high probability [See Bollobas '81; Frieze and Karoński 2015].

Application to random graphs: Repair threshold

Proposition

Let $d = \delta n, 0 < \delta < 1$ be a constant and let t be a fixed integer. Then t is the threshold depth for repair if

$$(np)^{t-1} = o(n), \quad p^t n^{t-1} - 2\log n \to \infty.$$

- Proof by classical results:
 - If the above conditions hold, then diam(G) = t with high probability [See Bollobas '81; Frieze and Karoński 2015].
 - If $(np)^{t-1} = o(n)$ and $d = \Theta(n)$, then with high probability, d nodes are not reached in t 1 layers [Chung et. al. 2001].

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Theorem

Let *t* be the threshold for repair. For $d = \Theta(n)$ let $d - k = \chi(n)$ be a function of *n* such that $\chi(n)n^{s-1}p^s \to 0$ where $s \leq t-1$ is the largest integer for which this condition holds. Then $\mathbb{P}(\beta_{\mathrm{IP}} \leq (t-s)d + o(n)) \to 1$.

Application to random graphs: Repair bandwidth

How much savings do we get by using the "Intermediate Processing" technique compared to simple "Accumulate and Forward" relaying?

Proposition

The repair bandwidth β_{AF} satisfies $\mathbb{P}(\beta_{AF} \ge td - o(n)) \rightarrow 1$

Most nodes are at distance t. For the AF setting, required bandwidth scaled by t compared to the directly connected scenario.

Theorem

Let *t* be the threshold for repair. For $d = \Theta(n)$ let $d - k = \chi(n)$ be a function of *n* such that $\chi(n)n^{s-1}p^s \to 0$ where $s \leq t-1$ is the largest integer for which this condition holds. Then $\mathbb{P}(\beta_{\mathrm{IP}} \leq (t-s)d + o(n)) \to 1$.

• Using Intermediate Processing, the scaling of the bandwidth can be brought down from t to t - s.

Converse Results

Achievability 00 Random Graphs

Concluding remarks

In sparsely connected graphs, it is possible to do better than simple relaying.

Converse Results

Achievability 00 Random Graphs

Concluding remarks

- In sparsely connected graphs, it is possible to do better than simple relaying.
- The intermediate processing technique is applicable to all F-linear MSR codes and achieves the minimum possible communication in some cases.

Converse Results

Achievability 00 Random Graphs

Concluding remarks

- In sparsely connected graphs, it is possible to do better than simple relaying.
- The intermediate processing technique is applicable to all F-linear MSR codes and achieves the minimum possible communication in some cases.
- For random graphs $\mathcal{G}_{n,p}$, in certain regimes, intermediate processing can give significant reductions in communication overhead.