More results on Regenerating Codes on Graphs

International Symposium on Information Theory (ISIT) 2024, Athens

Adway Patra, Alexander Barg University of Maryland, College Park

Non-Uniform Contribution Model

Graph Repair 000000

Node repair in distributed storage

Non-Uniform Contribution Model

Graph Repair 000000

Node repair in distributed storage

An [n, k, d, l, β, M] Regenerating Code C ⊂ F^{nl}, codewords viewed as l × n matrices over some finite field F. Each codeword symbol stored in a node.

Graph Repair 000000

Node repair in distributed storage

- An [n, k, d, l, β, M] Regenerating Code C ⊂ F^{nl}, codewords viewed as l × n matrices over some finite field F. Each codeword symbol stored in a node.
- · Correct erasures while trying to minimize total data "moved".

Graph Repair 000000

Node repair in distributed storage

- An [n, k, d, l, β, M] Regenerating Code C ⊂ F^{nl}, codewords viewed as l × n matrices over some finite field F. Each codeword symbol stored in a node.
- · Correct erasures while trying to minimize total data "moved".
- · Total required transmission bounded by the Cut-set bound¹

$$M \leqslant \sum_{i=0}^{k-1} \min\{I, (d-i)\beta\}$$

¹Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Graph Repair 000000

Node repair in distributed storage

- An [n, k, d, l, β, M] Regenerating Code C ⊂ F^{nl}, codewords viewed as l × n matrices over some finite field F. Each codeword symbol stored in a node.
- · Correct erasures while trying to minimize total data "moved".
- · Total required transmission bounded by the Cut-set bound¹

$$M \leqslant \sum_{i=0}^{k-1} \min\{I, (d-i)\beta\}$$

• Different pairs of (I, β) satisfying the above with equality give rise to different points on the storage-bandwidth trade-off; important ones are the MSR and MBR points.

¹Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Graph Repair 000000

Moving away from traditional setting

Moving away from traditional setting

• General problem assumes *d* helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.

• Same data gets transmitted multiple times.

- Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.

- · Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.
 - For example, if the helpers are on a line, the failed node being at the end, then $\frac{d(d+1)\beta}{2} = \Theta(d^2)$ transmission required.

• General problem assumes *d* helper nodes are chosen from the direct neighbors of the failed node, i.e., high connectivity.

- · Same data gets transmitted multiple times.
- Total required communication depends on the structure of the tree.
 - For example, if the helpers are on a line, the failed node being at the end, then $\frac{d(d+1)\beta}{2} = \Theta(d^2)$ transmission required.

Question : Is it possible to process the data to reduce communication?

Graph Repair 000000

• Node v_i holds random variable W_i.

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I, H(S_i^f) = \beta$.

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I, H(S_i^f) = \beta$.
- $H(S_{i}^{f}|W_{i}) = 0, H(W_{f}|S_{1}^{f}, \cdots, S_{d}^{f}) = 0.$

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I$, $H(S_i^f) = \beta$.
- $H(S_i^f | W_i) = 0, H(W_f | S_1^f, \cdots, S_d^f) = 0.$
- Let v_f, f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let R^f_E be a function of S^f_E such that

$$H(W_f|R_E^f,S_{D\setminus E}^f)=0.$$

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I$, $H(S_i^f) = \beta$.
- $H(S_i^f | W_i) = 0, H(W_f | S_1^f, \cdots, S_d^f) = 0.$
- Let v_f, f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let R^f_E be a function of S^f_E such that

$$H(W_f|R_E^f,S_{D\setminus E}^f)=0.$$

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I$, $H(S_i^f) = \beta$.
- $H(S_i^f|W_i) = 0, H(W_f|S_1^f, \cdots, S_d^f) = 0.$
- Let v_f, f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let R^f_E be a function of S^f_E such that

$$H(W_f|R_E^f,S_{D\setminus E}^f)=0.$$

Generalised Version [Patra and Barg, 2022]

For any Regenerating Code, if $|E| \ge d - k + 1$, then

$$H(R_E^t) \ge M - \sum_{i=1}^{k-1} \min\{I, (d-i+1)\beta\}.$$

- Node v_i holds random variable W_i.
- For failed node v_f , d helper nodes v_1, \dots, v_d . Helper node v_i would have sent S_i^f to v_f in case of direct connectivity.
- Operating at an arbitrary point on the trade-off curve: $H(W_f) = I, H(S_i^f) = \beta$.
- $H(S_i^f|W_i) = 0, H(W_f|S_1^f, \cdots, S_d^f) = 0.$
- Let v_f, f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let R^f_E be a function of S^f_E such that

$$H(W_f|R_E^f,S_{D\setminus E}^f)=0.$$

Generalised Version [Patra and Barg, 2022]

For any Regenerating Code, if $|E| \ge d - k + 1$, then

$$H(R_E^t) \ge M - \sum_{i=1}^{k-1} \min\{l, (d-i+1)\beta\}.$$

Corollary

For MSR Codes $H(R_E^f) \ge I$.

In general, for any $\mathbb F\text{-linear}$ code:

In general, for any $\mathbb F\text{-linear}$ code:

• Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.

In general, for any \mathbb{F} -linear code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $I \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

In general, for any \mathbb{F} -linear code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $I \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

• Node v_x that receives y_i s from at least d - k + 1 other nodes E can send

Achieving the bound: Any \mathbb{F} -linear code

In general, for any \mathbb{F} -linear code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $I \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

- Node v_x that receives y_i s from at least d k + 1 other nodes E can send
 - $\sum_{j \in E} \mathcal{U}_j y_{i_j} + \mathcal{U}_x y_{i_x} \longrightarrow I$ symbols instead of

Achieving the bound: Any \mathbb{F} -linear code

In general, for any \mathbb{F} -linear code:

- Say helper node *i* needs to send $y_i \in \mathbb{F}^{\beta}$ to v_1 in the non-constrained setting.
- There exists $I \times d\beta$ matrix \mathcal{U} :

$$\begin{bmatrix} c_{1,1} \\ c_{1,2} \\ \vdots \\ c_{1,l} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_{i_d} \end{bmatrix}$$

- Node v_x that receives y_i s from at least d k + 1 other nodes E can send
 - $\sum_{j \in E} \mathcal{U}_j y_{i_j} + \mathcal{U}_x y_{i_x} \longrightarrow I$ symbols instead of
 - $\{y_{i_j}: j \in E \cup \{x\}\} \longrightarrow |E \cup \{x\}|\beta$ symbols.

Are further savings possible in the above Graph Repair Setting?

Definitions

Definition

Let $\mathcal{B} = \{\beta_i\}_{i=1}^d$ be a set of *d* positive integers. An $[n, k, d, l, \mathcal{B}, M]$ GRC encodes a file \mathcal{F} of size *M* symbols over *F* by storing *l* symbols in each of the *n* nodes such that

- 1. (RECONSTRUCTION) by accessing any *k* out of *n* nodes, the original file can be recovered;
- 2. (REPAIR) the contents of any node $f \in [n]$ can be recovered by contacting a set $D \subseteq [n] \setminus \{f\}, |D| = d$ of nodes and downloading β_i symbols from node $\tau^{-1}(i)$ for any bijective mapping $\tau : D \to [d]$.

Definitions

Definition

Let $\mathcal{B} = {\{\beta_i\}_{i=1}^d}$ be a set of *d* positive integers. An $[n, k, d, I, \mathcal{B}, M]$ GRC encodes a file \mathcal{F} of size *M* symbols over *F* by storing *I* symbols in each of the *n* nodes such that

- 1. (RECONSTRUCTION) by accessing any *k* out of *n* nodes, the original file can be recovered;
- 2. (REPAIR) the contents of any node $f \in [n]$ can be recovered by contacting a set $D \subseteq [n] \setminus \{f\}, |D| = d$ of nodes and downloading β_i symbols from node $\tau^{-1}(i)$ for any bijective mapping $\tau : D \to [d]$.

Example

Previous example: $D = \{h_1, h_2, h_3, h_4\}, \mathcal{B} = \{\beta_1 \ge \beta_2 \ge \beta_3 \ge \beta_4\}, \tau \in S_4.$

Definitions

Definition

Let $\mathcal{B} = \{\beta_i\}_{i=1}^d$ be a set of *d* positive integers. An $[n, k, d, l, \mathcal{B}, M]$ GRC encodes a file \mathcal{F} of size *M* symbols over *F* by storing *l* symbols in each of the *n* nodes such that

- 1. (RECONSTRUCTION) by accessing any *k* out of *n* nodes, the original file can be recovered;
- 2. (REPAIR) the contents of any node $f \in [n]$ can be recovered by contacting a set $D \subseteq [n] \setminus \{f\}, |D| = d$ of nodes and downloading β_i symbols from node $\tau^{-1}(i)$ for any bijective mapping $\tau : D \to [d]$.

Example

Previous example: $D = \{h_1, h_2, h_3, h_4\}, \mathcal{B} = \{\beta_1 \ge \beta_2 \ge \beta_3 \ge \beta_4\}, \tau \in S_4.$

$$au := Id$$

 $1
ightarrow 1$
 $2
ightarrow 2$
 $3
ightarrow 3$
 $4
ightarrow 4$
Definitions

Definition

Let $\mathcal{B} = {\{\beta_i\}_{i=1}^d}$ be a set of *d* positive integers. An $[n, k, d, l, \mathcal{B}, M]$ GRC encodes a file \mathcal{F} of size *M* symbols over *F* by storing *l* symbols in each of the *n* nodes such that

- 1. (RECONSTRUCTION) by accessing any *k* out of *n* nodes, the original file can be recovered;
- 2. (REPAIR) the contents of any node $f \in [n]$ can be recovered by contacting a set $D \subseteq [n] \setminus \{f\}, |D| = d$ of nodes and downloading β_i symbols from node $\tau^{-1}(i)$ for any bijective mapping $\tau : D \to [d]$.

Example

Previous example: $D = \{h_1, h_2, h_3, h_4\}, \mathcal{B} = \{\beta_1 \ge \beta_2 \ge \beta_3 \ge \beta_4\}, \tau \in S_4.$

$$au:=(123)$$
 $1 o 2$
 $2 o 3$
 $3 o 1$
 $4 o 4$

Theorem

For an $[n, k, d, I, \mathcal{B}, M]$ GRC,

$$M \leq \sum_{l=0}^{k-1} \min\{l, \Delta_{d-l}(\mathcal{B})\}$$
(1)

where $\Delta_r(\mathcal{B}) = \min_{R \subseteq [d], |R|=r} \sum_{i \in R} \beta_i$.

Theorem

For an $[n, k, d, I, \mathcal{B}, M]$ GRC,

$$M \leq \sum_{i=0}^{k-1} \min\{I, \Delta_{d-i}(\mathcal{B})\}$$
(1)

where $\Delta_r(\mathcal{B}) = \min_{R \subseteq [d], |R|=r} \sum_{i \in R} \beta_i$.

MSR Point

The *Minimum Storage* (MSR) point of the bound (1), is defined by $I = \Delta_{d-k+1}(\mathcal{B})$.

Theorem

For an [n, k, d, I, B, M] GRC,

$$M \leq \sum_{i=0}^{k-1} \min\{l, \Delta_{d-i}(\mathcal{B})\}$$
(1)

where $\Delta_r(\mathcal{B}) = \min_{R \subseteq [d], |R|=r} \sum_{i \in R} \beta_i$.

MSR Point

The *Minimum Storage* (MSR) point of the bound (1), is defined by $I = \Delta_{d-k+1}(\mathcal{B})$.

Lemma

Let $f \in [n]$ be the failed node. For a (nonempty) subset of helper nodes $E \subset D$, let R_E^f be a function of S_E^f such that $H(W_f | R_E^f, S_{D \setminus E}^f) = 0$. Then if $|E| \ge d - k + 1$,

$$H(R_E^{t}) \geq M - \sum_{i=0}^{k-2} \min\{I, \Delta_{d-i}(\mathcal{B})\}.$$

Theorem

For an $[n, k, d, I, \mathcal{B}, M]$ GRC,

$$M \leq \sum_{i=0}^{k-1} \min\{l, \Delta_{d-i}(\mathcal{B})\}$$
(1)

where $\Delta_r(\mathcal{B}) = \min_{R \subseteq [d], |R|=r} \sum_{i \in R} \beta_i$.

MSR Point

The *Minimum Storage* (MSR) point of the bound (1), is defined by $I = \Delta_{d-k+1}(\mathcal{B})$.

Lemma

Let $f \in [n]$ be the failed node. For a (nonempty) subset of helper nodes $E \subset D$, let R_E^f be a function of S_E^f such that $H(W_f | R_E^f, S_{D \setminus E}^f) = 0$. Then if $|E| \ge d - k + 1$,

$$H(R_E^f) \ge M - \sum_{i=0}^{k-2} \min\{I, \Delta_{d-i}(\mathcal{B})\}.$$

Corollary

For MSR codes, we have

$$H(R_E^f) \ge I = \Delta_{d-k+1}(\mathcal{B}).$$
⁽²⁾

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- 2. For each $j \in S$ take an MSR code C_j with parameters

$$\begin{split} & [n, k, d_j = d - j + 1, \\ & l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}), \\ & (\beta_j - \beta_{j-1}), M_j = k l_j]. \end{split}$$

3. $[n, k, d, I, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- 2. For each $j \in S$ take an MSR code C_j with parameters

$$\begin{split} & [n, k, d_j = d - j + 1, \\ & l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}), \\ & (\beta_j - \beta_{j-1}), M_j = k l_j]. \end{split}$$

3. $[n, k, d, l, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

Figure 1: Stacking MSR codes

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- 2. For each $j \in S$ take an MSR code C_j with parameters

$$\begin{split} & [n, k, d_j = d - j + 1, \\ & l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}), \\ & (\beta_j - \beta_{j-1}), M_j = k l_j]. \end{split}$$

3. $[n, k, d, I, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

Remarks

Figure 1: Stacking MSR codes

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- For each j ∈ S take an MSR code C_j with parameters

$$[n, k, d_j = d - j + 1,$$

$$l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}),$$

$$(\beta_j - \beta_{j-1}), M_j = kl_j].$$

3. $[n, k, d, l, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

$\begin{array}{c|c} Participates \\ in regain \\ and C_2 \\ \hline C_2 \\ \hline C_1 \\ \hline C_2 \\ \hline C_2 \\ \hline C_1 \\ \hline C_2 \\$

Remarks

• Node $\tau^{-1}(j)$ participates in the recovery of node *f* only in the component codes $\{C_p : p \leq j\}, \sum_{p=1}^{j} (\beta_p - \beta_{p-1}) = \beta_j$ symbols.

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- For each j ∈ S take an MSR code C_j with parameters

$$[n, k, d_j = d - j + 1,$$

$$l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}),$$

$$(\beta_j - \beta_{j-1}), M_j = kl_j].$$

3. $[n, k, d, l, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

Remarks

- Node $\tau^{-1}(j)$ participates in the recovery of node *f* only in the component codes $\{C_p : p \leq j\}, \sum_{p=1}^{j} (\beta_p \beta_{p-1}) = \beta_j$ symbols.
- · Meets the Generalized Cut-set bound with equality at the MSR point.

Construction

- 1. Take $\mathcal{B} = \{\beta_j\}_{j=1}^d$ non-decreasing, $\mu_j = \mathbb{1}_{(\beta_j > \beta_{j-1})}, S := \{j : \mu_j = 1\}.$
- For each j ∈ S take an MSR code C_j with parameters

$$[n, k, d_j = d - j + 1,$$

$$l_j = (d - j - k + 2)(\beta_j - \beta_{j-1}),$$

$$(\beta_j - \beta_{j-1}), M_j = kl_j].$$

3. $[n, k, d, l, \mathbb{B}, M]$ GRC code is formed by stacking the codes $\{\mathbb{C}_j\}_{j \in S}$, where $l = \sum_{j \in S} l_j$ and $M = \sum_{j \in S} M_j$.

Remarks

- Node $\tau^{-1}(j)$ participates in the recovery of node *f* only in the component codes $\{C_p : p \leq j\}, \sum_{p=1}^{j} (\beta_p \beta_{p-1}) = \beta_j$ symbols.
- · Meets the Generalized Cut-set bound with equality at the MSR point.
- · Meets the IP repair bound with equality at the MSR point.

Graph Repair

Non-Uniform Contribution Model

Graph Repair O●OOOO

Non-Uniform Contribution Model

Graph Repair O●OOOO

Non-Uniform Download from layers

- Helper nodes in layer i generate β_i symbols each for repair, $\beta_i \leqslant \beta_{i-1}.$

Non-Uniform Contribution Model

Graph Repair O●OOOO

Non-Uniform Download from layers

- Helper nodes in layer i generate β_i symbols each for repair, $\beta_i \leqslant \beta_{i-1}.$

Non-Uniform Contribution Model

Graph Repair O●OOOO

- Helper nodes in layer i generate β_i symbols each for repair, $\beta_i \leqslant \beta_{i-1}.$
- Let J := Set of nodes with at least (d − k + 1) children in the tree, and for i ∉ J let 𝒫(i) denote the nearest parent of node i in J,

Non-Uniform Contribution Model

Graph Repair O●OOOO

- Helper nodes in layer i generate β_i symbols each for repair, $\beta_i \leqslant \beta_{i-1}.$
- Let J := Set of nodes with at least (d − k + 1) children in the tree, and for i ∉ J let 𝒫(i) denote the nearest parent of node i in J,

$$\Lambda_{\mathsf{NU}}^{\mathcal{T}} = \sum_{i \in J \setminus \{f\}} I + \sum_{i=1}^{t} \sum_{j \in D_i \setminus J_i} \rho(j, \mathcal{P}(j)) \beta_i.$$

Non-Uniform Contribution Model

Graph Repair 00000

- Helper nodes in layer *i* generate β_i symbols each for repair, $\beta_i \leq \beta_{i-1}$.
- Let J := Set of nodes with at least (d k + 1) children in the tree, and for $i \notin J$ let $\mathcal{P}(i)$ denote the nearest parent of

Non-Uniform Contribution Model

Graph Repair O●OOOO

· Lowering the contributions of some nodes at the expense of others may reduce total complexity.

- · Lowering the contributions of some nodes at the expense of others may reduce total complexity.
- In the limit some nodes will stop contributing \rightarrow reducing the repair degree.

- · Lowering the contributions of some nodes at the expense of others may reduce total complexity.
- In the limit some nodes will stop contributing \rightarrow reducing the repair degree.
- Code families exist that support multiple values of repair degree simultaneously: Universal *d* codes [Ye and Barg, 2017].

- · Lowering the contributions of some nodes at the expense of others may reduce total complexity.
- In the limit some nodes will stop contributing \rightarrow reducing the repair degree.
- Code families exist that support multiple values of repair degree simultaneously: Universal d codes [Ye and Barg, 2017].
- Finding the optimal $d \rightarrow$ Solve the following optimization problem [Li, Mow, Deng and Wu, 2022]:

$$\begin{split} \min \sum_{i \in D \setminus J} b_i \beta_i \\ \text{subject to} \sum_{i \in A} \beta_i \geqslant l, \ \forall A \subseteq [n-1], |A| = n - k \\ 0 \leqslant \beta_i \leqslant l, \ i \in [n-1], \end{split}$$

where the costs b_i can be calculated from the structure of the graph.

- · Lowering the contributions of some nodes at the expense of others may reduce total complexity.
- In the limit some nodes will stop contributing \rightarrow reducing the repair degree.
- Code families exist that support multiple values of repair degree simultaneously: Universal d codes [Ye and Barg, 2017].
- Finding the optimal $d \rightarrow$ Solve the following optimization problem [Li, Mow, Deng and Wu, 2022]:

$$\begin{split} \min \sum_{i \in D \setminus J} b_i \beta_i \\ \text{subject to} \sum_{i \in A} \beta_i \geqslant l, \ \forall A \subseteq [n-1], |A| = n - k \\ 0 \leqslant \beta_i \leqslant l, \ i \in [n-1], \end{split}$$

where the costs b_i can be calculated from the structure of the graph.

• Theorem: There exists an optimal solution with uniform downloads for some repair degree d.

Example

Example

• Consider a *r* regular graph with *t* repair layers: $d_i = r(r-1)^{i-1}$, $1 \le i \le (t-1)$, $d_t = d - \sum_{i=1}^{t-1} d_i$.

Example

- Consider a *r* regular graph with *t* repair layers: $d_i = r(r-1)^{i-1}$, $1 \le i \le (t-1)$, $d_t = d \sum_{i=1}^{t-1} d_i$.
- Suppose further that $d_t + d_{t-1} \ge (d k + 1)$, and no IP.

Example

- Consider a *r* regular graph with *t* repair layers: $d_i = r(r-1)^{i-1}$, $1 \le i \le (t-1)$, $d_t = d \sum_{i=1}^{t-1} d_i$.
- Suppose further that $d_t + d_{t-1} \ge (d k + 1)$, and no IP.
- Nodes in layer *i* contribute β_i symbols each, $\beta_i \leq \beta_{i-1}$.

Example

- Consider a r regular graph with t repair layers: $d_i = r(r-1)^{i-1}$, $1 \le i \le (t-1)$, $d_t = d \sum_{i=1}^{t-1} d_i$.
- Suppose further that $d_t + d_{t-1} \ge (d k + 1)$, and no IP.
- Nodes in layer *i* contribute β_i symbols each, $\beta_i \leq \beta_{i-1}$.
- The savings with the non-uniform contributions scheme: (Recall $\delta_i = \beta \beta_i$)

$$\begin{split} \Lambda_{\mathsf{U}}^{\mathcal{T}} - \Lambda_{\mathsf{N}\mathsf{U}}^{\mathcal{T}} &= \sum_{i=1}^{t} i d_i \delta_i \\ &= \frac{d_t \delta_t}{d - k + 1 - d_t} \Big(\sum_{i=1}^{t-1} (t - i) d_i - t(k - 1) \Big) \end{split}$$

with

$$d_t\delta_t+(d-k+1-d_t)\delta_{t-1}=0.$$

Example

- Consider a r regular graph with t repair layers: $d_i = r(r-1)^{i-1}$, $1 \le i \le (t-1)$, $d_t = d \sum_{i=1}^{t-1} d_i$.
- Suppose further that $d_t + d_{t-1} \ge (d k + 1)$, and no IP.
- Nodes in layer *i* contribute β_i symbols each, $\beta_i \leq \beta_{i-1}$.
- The savings with the non-uniform contributions scheme: (Recall $\delta_i = \beta \beta_i$)

$$\Lambda_{\mathsf{U}}^{\mathfrak{T}} - \Lambda_{\mathsf{N}\mathsf{U}}^{\mathfrak{T}} = \sum_{i=1}^{t} i d_i \delta_i$$
$$= \frac{d_t \delta_t}{d - k + 1 - d_t} \Big(\sum_{i=1}^{t-1} (t - i) d_i - t(k - 1) \Big)$$

with

$$d_t\delta_t+(d-k+1-d_t)\delta_{t-1}=0.$$

· Extreme case:

$$\delta_t = \beta \implies \beta_t = 0$$

$$\implies \delta_{t-1} = -\frac{d_t \beta}{d - k + 1 - d_t}$$

$$\implies \beta_{t-1} = \beta + \frac{d_t \beta}{d - k + 1 - d_t} = \frac{l}{d' - k + 1}, \quad d' = d - d_t$$

Conclusions

• If the repair degree is fixed by design and the graph is sufficiently regular, **non-uniform download schemes based on the stacking construction** may reduce the communication complexity of repair.
Conclusions

- If the repair degree is fixed by design and the graph is sufficiently regular, non-uniform download schemes based on the stacking construction may reduce the communication complexity of repair.
- If we are free to adjust the repair degree in different instances, use **universal**-*d* code families with uniform download.

Graph Repair

000000

Conclusions

- If the repair degree is fixed by design and the graph is sufficiently regular, non-uniform download schemes based on the stacking construction may reduce the communication complexity of repair.
- If we are free to adjust the repair degree in different instances, use **universal**-*d* code families with uniform download.
- · In both cases, Intermediate Processing of information further reduces the communication complexity.

Graph Repair

000000

Questions?