
Introduction Converse Results Achievability Adversarial Case

Node repair for Adversarial Graphical Networks

Adway Patra & Alexander Barg

(University of Maryland, College Park)

International Symposium on Information Theory (ISIT), June 2023
Taipei City, Taiwan

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l

X2 l

X3 l

X4 l

X5 l

▶ An [n, k, d, l, β,M] Regenerating Code C ⊂ Fnl, codewords viewed as l × n matrices over
some finite field F. Each codeword symbol stored in a node.

▶ Correct erasures while trying to minimize total data "moved".
▶ Total required transmission bounded by the Cut-set bound1

M ⩽
k−1∑
i=0

min{l, (d − i)β}

▶ Different pairs of (l, β) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.

1Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l

X2 l

X3 l

X4 l

X5 l

▶ An [n, k, d, l, β,M] Regenerating Code C ⊂ Fnl, codewords viewed as l × n matrices over
some finite field F. Each codeword symbol stored in a node.

▶ Correct erasures while trying to minimize total data "moved".
▶ Total required transmission bounded by the Cut-set bound1

M ⩽
k−1∑
i=0

min{l, (d − i)β}

▶ Different pairs of (l, β) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.

1Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

▶ An [n, k, d, l, β,M] Regenerating Code C ⊂ Fnl, codewords viewed as l × n matrices over
some finite field F. Each codeword symbol stored in a node.

▶ Correct erasures while trying to minimize total data "moved".

▶ Total required transmission bounded by the Cut-set bound1

M ⩽
k−1∑
i=0

min{l, (d − i)β}

▶ Different pairs of (l, β) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.

1Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ An [n, k, d, l, β,M] Regenerating Code C ⊂ Fnl, codewords viewed as l × n matrices over
some finite field F. Each codeword symbol stored in a node.

▶ Correct erasures while trying to minimize total data "moved".
▶ Total required transmission bounded by the Cut-set bound1

M ⩽
k−1∑
i=0

min{l, (d − i)β}

▶ Different pairs of (l, β) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.

1Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ An [n, k, d, l, β,M] Regenerating Code C ⊂ Fnl, codewords viewed as l × n matrices over
some finite field F. Each codeword symbol stored in a node.

▶ Correct erasures while trying to minimize total data "moved".
▶ Total required transmission bounded by the Cut-set bound1

M ⩽
k−1∑
i=0

min{l, (d − i)β}

▶ Different pairs of (l, β) satisfying the above with equality give rise to different points on the
storage-bandwidth trade-off.

1Dimakis, Godfrey, Wu, Wainwright, Ramchandran, 2010

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ Two extreme points of the trade-off curve are

▶ The Minimum Storage Regenerating (MSR) point characterized by

l = (d − k + 1)β.

▶ The Minimum Bandwidth Regenerating (MBR) point characterized by

l = dβ.

▶ For interior points
dβ > l > (d − k + 1)β.

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ Two extreme points of the trade-off curve are

▶ The Minimum Storage Regenerating (MSR) point characterized by

l = (d − k + 1)β.

▶ The Minimum Bandwidth Regenerating (MBR) point characterized by

l = dβ.

▶ For interior points
dβ > l > (d − k + 1)β.

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ Two extreme points of the trade-off curve are
▶ The Minimum Storage Regenerating (MSR) point characterized by

l = (d − k + 1)β.

▶ The Minimum Bandwidth Regenerating (MBR) point characterized by

l = dβ.

▶ For interior points
dβ > l > (d − k + 1)β.

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ Two extreme points of the trade-off curve are
▶ The Minimum Storage Regenerating (MSR) point characterized by

l = (d − k + 1)β.

▶ The Minimum Bandwidth Regenerating (MBR) point characterized by

l = dβ.

▶ For interior points
dβ > l > (d − k + 1)β.

Introduction Converse Results Achievability Adversarial Case

Node repair in distributed storage

X1l X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

▶ Two extreme points of the trade-off curve are
▶ The Minimum Storage Regenerating (MSR) point characterized by

l = (d − k + 1)β.

▶ The Minimum Bandwidth Regenerating (MBR) point characterized by

l = dβ.

▶ For interior points
dβ > l > (d − k + 1)β.

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting

▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed
node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.

▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β
2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.
▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β

2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

Moving away from traditional setting
▶ General problem assumes d helper nodes are chosen from the direct neighbors of the failed

node, i.e., high connectivity.

X1

Erasure

l

X2 l

X3 l

X4 l

X5 l

β

β

β

β

X1

Erasure

l

X2

l

X3

l

X4 l

X5 l

β

3β
β

β

▶ Same data gets transmitted multiple times.

▶ Total required communication depends on the structure of the tree.
▶ For example, if the helpers are on a line, the failed node being at the end, then d(d+1)β

2 = Θ(d2)

transmission required.

Question : Is it possible to process the data to reduce communication?

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?

▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.

▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf
i to vf in

case of direct connectivity.
▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf

i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

The bounds: How much can we process?
▶ Node vi holds random variable Wi.
▶ For failed node vf , d helper nodes v1, · · · , vd . Helper node vi would have sent Sf

i to vf in
case of direct connectivity.

▶ Operating at an arbitrary point on the trade-off curve: H(Wf) = l, H(Sf
i) = β.

▶ H(Sf
i |Wi) = 0,H(Wf |Sf

1, · · · , Sf
d) = 0.

▶ Let vf , f ∈ [n] be the failed node. For a subset of the helper nodes E ⊂ D let Rf
E be a

function of Sf
E such that

H(Wf |Rf
E, Sf

D\E) = 0.

In our prior work [Patra and Barg, 2022]
For MSR codes, if |E| ⩾ d − k + 1,

H(Rf
E) ⩾ l

Generalised Version
For any Regenerating Code, if |E| ⩾ d − k + 1, then

H(Rf
E) ⩾ M −

k−1∑
i=1

min{l, (d − i + 1)β}.

Introduction Converse Results Achievability Adversarial Case

Proof of Lemma
▶ Given XD\E the information contained in Rf

E is sufficient to repair vf , i.e.,

H(Wf |Rf
E,WD\E) = 0.

▶ Take a set A ⊂ E with |A| = k − 1 − |D\E|. Now,

H(Rf
E,WD\E,WA) = H(Rf

E,WD\E,Wf ,WA) ⩾ M

by the recoverability property.
▶

H(Rf
E) + H(WD\E,WA) ⩾ H(Rf

E,WD\E,WA)

H(Rf
E) ⩾ M − H(WD\E,WA)

⩾ M −
k−1∑
i=1

min{l, (d − i + 1)β}

using H(Wi|WX) ⩽ min{l, (d − |X|)β} for any i /∈ X.
▶ For MSR case, l = (d − i + 1)β and M = kl, hence

H(Rf
E) ⩾ l

Introduction Converse Results Achievability Adversarial Case

Proof of Lemma
▶ Given XD\E the information contained in Rf

E is sufficient to repair vf , i.e.,

H(Wf |Rf
E,WD\E) = 0.

▶ Take a set A ⊂ E with |A| = k − 1 − |D\E|. Now,

H(Rf
E,WD\E,WA) = H(Rf

E,WD\E,Wf ,WA) ⩾ M

by the recoverability property.

▶

H(Rf
E) + H(WD\E,WA) ⩾ H(Rf

E,WD\E,WA)

H(Rf
E) ⩾ M − H(WD\E,WA)

⩾ M −
k−1∑
i=1

min{l, (d − i + 1)β}

using H(Wi|WX) ⩽ min{l, (d − |X|)β} for any i /∈ X.
▶ For MSR case, l = (d − i + 1)β and M = kl, hence

H(Rf
E) ⩾ l

Introduction Converse Results Achievability Adversarial Case

Proof of Lemma
▶ Given XD\E the information contained in Rf

E is sufficient to repair vf , i.e.,

H(Wf |Rf
E,WD\E) = 0.

▶ Take a set A ⊂ E with |A| = k − 1 − |D\E|. Now,

H(Rf
E,WD\E,WA) = H(Rf

E,WD\E,Wf ,WA) ⩾ M

by the recoverability property.
▶

H(Rf
E) + H(WD\E,WA) ⩾ H(Rf

E,WD\E,WA)

H(Rf
E) ⩾ M − H(WD\E,WA)

⩾ M −
k−1∑
i=1

min{l, (d − i + 1)β}

using H(Wi|WX) ⩽ min{l, (d − |X|)β} for any i /∈ X.

▶ For MSR case, l = (d − i + 1)β and M = kl, hence

H(Rf
E) ⩾ l

Introduction Converse Results Achievability Adversarial Case

Proof of Lemma
▶ Given XD\E the information contained in Rf

E is sufficient to repair vf , i.e.,

H(Wf |Rf
E,WD\E) = 0.

▶ Take a set A ⊂ E with |A| = k − 1 − |D\E|. Now,

H(Rf
E,WD\E,WA) = H(Rf

E,WD\E,Wf ,WA) ⩾ M

by the recoverability property.
▶

H(Rf
E) + H(WD\E,WA) ⩾ H(Rf

E,WD\E,WA)

H(Rf
E) ⩾ M − H(WD\E,WA)

⩾ M −
k−1∑
i=1

min{l, (d − i + 1)β}

using H(Wi|WX) ⩽ min{l, (d − |X|)β} for any i /∈ X.
▶ For MSR case, l = (d − i + 1)β and M = kl, hence

H(Rf
E) ⩾ l

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

3 1

1 1

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Using MSR Product Matrix codes2

Example
▶ Take an [n = 5, k = 3, d = 4, l = 2, β = 1,M = 6] MSR Product

Matrix code.

▶ M = [S1, S2]
T =


m11 m12

m12 m22

m21 m22

m22 m23

, Ψ5×4 =
[
Φ ΛΦ

]
, C = ΨM.

▶ Node i sends yi = ΨiMΦT
1 = (ΦiS1 + λiΦiS2)Φ

T
1 .

▶ Node 1 inverts matrix ΨD to get MΦt
i =

[
S1Φ

T
1

S2Φ
T
1

]
= Ψ−1

D yD and

calculates Φ1S1 + λ1Φ1S2.

▶ Observe CT
1 =

[
I2 λ1I2

]
MΦt

i = R1Ψ
−1
D yD = U1,DyD

▶ So v2 can transmit instead U1,D
4 y4 + U1,D

5 y5 + U1,D
2 y2,

→ Intermediate Processing (IP).

v1

v2 v3

v4 v5

2 1

1 1

2Rashmi, Shah, Vijay Kumar, 2011

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid



▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Achieving the bounds: Any F-linear code

In general, for any F-linear code:

▶ Say helper node i needs to send yi ∈ Fβ to v1 in the non-constrained setting.

▶ There exists l × dβ matrix U:
c1,1

c1,2
...

c1,l

 =
[
U1 U2 · · · Ud

]


yi1
yi2
...

yid


▶ Node vx that receives yis from at least d − k + 1 other nodes E can send

▶ ∑
j∈E Ujyij + Uxyix −→ l symbols instead of

▶ {yij : j ∈ E ∪ {x}} −→ |E ∪ {x}|β symbols.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know

▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay
Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].

▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].

▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.

▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting

Question : What if a part of the network is not trustworthy anymore?

What we know
▶ In the fully connected setting, some results are known [Rashmi, Shah, Ramchandran, Vijay

Kumar, 2012], [Ye and Barg, 2017], [Silberstein, Rawat, Vishwanath, 2015].
▶ More complicated in the graph setting:

▶ Different types of adversarial models possible: edge-controlling adversary, node-controlling
adversary or both.

▶ A small adversarial portion of the network can act as a bottleneck and thwart the entire repair task.
▶ Errors spread due to the linear nature of current IP protocols.

▶ Always possible to fall back to simple relaying (not do any Intermediate Processing) and use
the existing constructions for full connectivity.

Goal : Account for adversarial behavior without sacrificing the benefits of IP

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Solutions

▶ Edge-controlling adversary can be handled using local encoding and decoding at every node
of the graph −→ IP still possible with a multiplicative bandwidth overhead due to local
encoding at every node.

▶ What about node-controlling adversary?

▶ Consider a limited power adversary: Can only corrupt the data stored in a helper node, can
not influence the computations due to IP.

▶ Lower bounds and achievability?

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Solutions

▶ Edge-controlling adversary can be handled using local encoding and decoding at every node
of the graph −→ IP still possible with a multiplicative bandwidth overhead due to local
encoding at every node.

▶ What about node-controlling adversary?

▶ Consider a limited power adversary: Can only corrupt the data stored in a helper node, can
not influence the computations due to IP.

▶ Lower bounds and achievability?

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Solutions

▶ Edge-controlling adversary can be handled using local encoding and decoding at every node
of the graph −→ IP still possible with a multiplicative bandwidth overhead due to local
encoding at every node.

▶ What about node-controlling adversary?

▶ Consider a limited power adversary: Can only corrupt the data stored in a helper node, can
not influence the computations due to IP.

▶ Lower bounds and achievability?

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Solutions

▶ Edge-controlling adversary can be handled using local encoding and decoding at every node
of the graph −→ IP still possible with a multiplicative bandwidth overhead due to local
encoding at every node.

▶ What about node-controlling adversary?

▶ Consider a limited power adversary: Can only corrupt the data stored in a helper node, can
not influence the computations due to IP.

▶ Lower bounds and achievability?

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Solutions

▶ Edge-controlling adversary can be handled using local encoding and decoding at every node
of the graph −→ IP still possible with a multiplicative bandwidth overhead due to local
encoding at every node.

▶ What about node-controlling adversary?

▶ Consider a limited power adversary: Can only corrupt the data stored in a helper node, can
not influence the computations due to IP.

▶ Lower bounds and achievability?

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea

▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea

▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea

▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Lower Bounds

Lemma
Suppose the data is encoded using an [n, k, d, l, β,M] MSR code on a graph. Let vf be the failed
node and D be the helper node set. Suppose that at most t nodes are controlled by a
limited-power adversary and let E ⊆ D be a subset of helper nodes containing them. If
|E| ⩾ d − k + 1 + 2t then

c(E, vf ∪ D \ E) ⩾ l + 2tβ.

Proof Idea
▶ Use the network Singleton Bound.

▶ Form a directed acyclic graph from the given repair task.

▶ The failed node is the sink.

▶ The set E jointly is the source.

▶ The adversary can introduce at most tβ errors.

▶ The set E needs to convey the message Rf
E to the sink with H(Rf

E) ⩾ l by the previous
lemma.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Code Construction

▶ Goal: Correct errors while also doing IP.

▶ Idea: A receiving node does IP by doing linear combinations of symbols received and then
forwards it. In the limited power adversary model, the transformations are done faithfully.
Hence, an adversarial node may introduce at most β errors which may get linearly combined
along the way −→ Rank metric codes is the way to go.

▶ Take an [N,K,D] Gabidulin Code C1. Take an [n, k, d, l = N, β,M] systematic MSR code C2.
Encode each coordinate by C1 and then encode overall by C2.

▶ Each systematic node now stores an N-length Gabidulin code-word.

▶ Hence if D ⩾ 2tβ + 1, the failed node (or any faithful node along the way) receives a
Gabidulin code-word with at-most tβ rank errors, it will be able to correct them.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis

▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary

▶ More difficult to handle because an adversary of this type can change all symbols being
transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary
▶ More difficult to handle because an adversary of this type can change all symbols being

transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

Adversarial Setting: Continued

Performance Analysis
▶ The resulting code is not MSR anymore.

▶ Rate of the code becomes kK
nN instead of the previous k

n .

▶ For the same value of [n, k, d,M] let (leff , βeff) be the values that meets the storage
bandwidth trade-off with equality. Then

leff = l · R1, βeff = β · R1 where R1 =
K
N
.

▶ Any set E of size at least d − k + 1+ 2t transmits l symbols: l = leff + 2tβ = leff + 2tβeff · 1
R1
.

▶ The overhead in communication complexity is a constant multiple (1
R1
) of the optimal

overhead.

All Powerful Adversary
▶ More difficult to handle because an adversary of this type can change all symbols being

transmitted through it.

▶ If the total number of such nodes is limited, above construction still works with sufficiently
large rank-metric distance.

Introduction Converse Results Achievability Adversarial Case

	Introduction
	

	Converse Results
	Achievability
	Adversarial Case

