
Generalizations of the Blahut-Arimoto Algorithm ∗

Sagnik Bhattacharya, Priyanka Kaswan, Adway Patra
Department of Electrical and Computer Engineering, UMD

{sagnikb, pkaswan, apatra}@umd.edu

December 2020

Abstract

We study the Blahut-Arimoto algorithm, an alternating minimization algorithm useful
for various convex optimization problems, and its applications in classical and quantum
information theory. We present a convergence proof of the classical Blahut-Arimoto algorithm
due to Csiszar and Tusnady, and then implement generalizations of the classical algorithm to
finite state channels [Kav01, VKAL08] and quantum channels [RISB20]. The implementations
of the quantum Blahut-Arimoto algorithms in MATLAB and Python have been made open-
source and uploaded to Github.

1 Introduction

The Kullback-Liebler divergence D(p || q) between two pmf’s p and q over the alphabet X is
given by

D(p ‖ q) :=
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

If there is a symbol x ∈ X such that q(x) = 0 but p(x) > 0, then D(p ‖ q) =∞. We also follow
the convention that 0 log(0/0) = 0, and the log is taken with base 2.

Several fundamental questions in information theory, like the computation of channel capacities
and rate-distortion functions can be phrased in the following form - given two convex compact
subsets P and Q of the probability simplex, find

dmin := inf
p∈P,q∈Q

D(p ‖ q)

Since D(p ‖ q) is convex in the pair (p, q) and the sets P and Q are convex, this is a convex
optimization problem. However these problems do not have an analytic solution except in the
simplest of cases and we need algorithms to efficiently find an approximate numerical solution.
The Blahut-Arimoto algorithm [Bla72, Ari72] is one such algorithm. Using the convexity, it is easy
to show that for each q ∈ Q, there exists p∗(q) ∈ P such that p∗(q) = minp∈P D(p ‖ q). Likewise,
for each p ∈ P , there exists q∗(p) ∈ Q such that q∗(p) = minq∈QD(p ‖ q). The algorithm itself is
the following simple iterative alternative minimization procedure

pn = p∗(qn−1)

qn = q∗(pn)
n = 1, 2, . . . (1)

∗Report for ENEE662 (Convex Optimization), Fall 2020

1

The classical BAA has been widely used to optimize a discrete memoryless source (DMS) at the
input of a discrete memoryless channel (DMC). The problem, as shown in a series of landmark
papers by Shannon [Sha48], entails finding the optimal input distribution of a DMS over a finite
alphabet that maximizes the mutual information between the input and output of a DMC that is
characterized by a prespecified transition probability matrix. However the classical algorithm
cannot handle more general channel models like channels with memory and quantum channels,
and so we need more general versions of the basic algorithm.

Structure of the report
In this report we first (section 2) present a proof of convergence for the Blahut-Arimoto algorithm,
due to [CT84]. We then look at two important generalizations of the basic Blahut-Arimoto
algorithm. In section 3 we see how it can be modified to handle finite-state channels, which are
the simplest models for channels with memory, due to [Kav01, VKAL08]. In section 4 we see a
generalization that can handle various quantities of interest in quantum information theory, due
to [RISB20].

Implementations
We implement a simple version of the finite state channel algorithm due to [VKAL08] in MAT-
LAB, and all the algorithms in [RISB20]. The implementations of the quantum Blahut-Arimoto
algorithms are in both MATLAB and Python and have been uploaded to Github reposi-
tories at https://github.com/priyankakaswan18/Quantum-Blahut-Arimoto-Algorithm and
https://github.com/sagnikb/quantum-blahut-arimoto

2 The convergence proof

In this section we shall show that the algorithm in (1) converges to dmin, and this is the content
of theorem 5. To do this, we need to define an auxiliary function δ(p, p′) as follows

δ(p, p′) =
∑
x∈X

[
p(x) log

(
p(x)

p′(x)

)
− (p(x)− p′(x)) log(e)

]
and the proof works for any distance function f(s, t) associated auxiliary function δf (s, s′)
that satisfies the following propositions. Here we prove that these propositions hold for the
KL divergence, but the same proof works for other algorithms of a similar nature, like the
expectation-maximization algorithm used in statistical modelling to find MAP and ML estimates.

We begin by noting some basic properties of the KL divergence D(p ‖ q) - it is non-negative,
convex in the pair (p, q), and is zero if and only if p = q. It is not, however, symmetric and is
therefore not a true metric. Now we see some properties of the function δ that are used later on.

Proposition 1. The function δ(p, p′) is non-negative and δ(p, p′) = 0 iff p = p′.

Proof. We have the inequality ln(t) ≤ t− 1⇒ log(t) ≤ log(e)(t− 1), with equality iff t = 1. Now
let t = p′(x)/p(x); we obtain

log

(
p′(x)

p(x)

)
≤ log(e)

(
p′(x)

p(x)
− 1

)
; (2)

multiplying through by p(x) and summing over x ∈ X we obtain the result.

2

https://github.com/priyankakaswan18/Quantum-Blahut-Arimoto-Algorithm
https://github.com/sagnikb/quantum-blahut-arimoto

Proposition 2 (Three Points Property). For p ∈ P and q ∈ Q, we have that

D(p∗(q) ‖ q) + δ(p, p∗(q)) ≤ D(p ‖ q)

Proof. We need to show that∑
x∈X

[
p∗(q)(x) log

p∗(q)(x)

q(x)
+ p(x) log

p(x)

p∗(q)(x)
− (p(x) + p∗(q)(x)) log e

]
≤
∑
x∈X

p(x) log
p(x)

q(x)

(3)

⇔
∑
x∈X

[
p(x) log

p∗(q)(x)

q(x)
− p∗(q)(x) log

p∗(q)(x)

q(x)
− (p(x)− p∗(q)(x)) log e

]
≥ 0 (4)

Fix p ∈ P and q ∈ Q. For any 0 ≤ α ≤ 1 let pα = (1− α)p∗(q) + αp. The convexity of P implies
that pα ∈ P. Using the properties of information projections (projections under the geometry
induced by the KL divergence) we have, for some 0 < α̃ < α,

0 ≤ 1

α
[D(pα ‖ q)−D(p∗(q) ‖ q)] =

d

dα
D(pα ‖ p)

∣∣∣∣
α=α̃

Also, pα
∣∣
α=0

= p∗(q). Taking α ↓ 0, we get

0 ≤ lim
α̃↓0

(
d

dα
D(pα ‖ p)

∣∣∣∣
α=α̃

)
(5)

= lim
α̃↓0

∑
x∈X

[
(p(x)− p∗(q)(x)) log

pα̃(x)

q(x)
+ (p(x)− p∗(q)(x)) log e

]
(6)

⇒ 0 ≤
∑
x∈X

[
p(x) log

p∗(q)(x)

q(x)
− p∗(q)(x) log

p∗(q)(x)

q(x)
+ (p(x)− p∗(q)(x)) log e

]
(7)

which is what we wanted to show.

Proposition 3 (Four points property). For p ∈ P with minq∈QD(p ‖ q) <∞ and for all p ∈ P,
q ∈ Q, we have

D(p′ ‖ q′) + δ (p′, p) ≥ D(p′ ‖ q∗(p))

Proof. We need to show that∑
x∈X

[
p′(x) log

q∗(p)(x)

q′(x)
+ p′(x) log

p′(x)

p(x)
− (p′(x)− p(x)) log e

]
≥ 0 (8)

⇔
∑
x∈X

[
p′(x) log

p′(x)q∗(p)(x)

q′(x)p(x)
− (p′(x)− p(x)) log e

]
≥ 0 (9)

which we get after writing out D and δ using the definitions. A standard inequality in information
theory states that

ln (1/t) ≤ 1/t− 1⇒ log t ≥ (1− 1/t) log e.

Using this we get that∑
x∈X

[
p′(x) log

p′(x)q∗(p)(x)

q′(x)p(x)
− (p′(x)− p(x)) log e

]
(10)

3

≥
∑
x∈X

[
p′(x)

(
1− q′(x)p(x)

p′(x)q∗(p)(x)

)
log e− (p′(x)− p(x)) log e

]
(11)

≥
∑
x∈X

[(
p′(x)− q′(x)p(x)

q∗(p)(x)

)]
log e−

∑
x∈X

[(p′(x)− p(x))] log e (12)

=
∑
x∈X

p(x)
q∗(p)(x)− q′(x)

q∗(p)(x)
log e (13)

and we need to show that this is ≥ 0. Now, for an arbitrary q′ ∈ Q and for 0 ≤ α ≤ 1, let
qα = (1− α)q∗(p) + αq′. The convexity of Q implies that qα ∈ Q. Again using the properties of
information projections we have, for some 0 < α̃ < α,

0 ≤ 1

α
[D(p ‖ qα)−D(p ‖ q∗(p))] =

d

dα
D(p ‖ qα)

∣∣∣∣
α=α̃

We know that qα
∣∣
α=0

= q∗(p). Taking α ↓ 0 we get that

0 ≤ lim
α̃↓0

d

dα
D(p ‖ qα)

∣∣∣∣
α=α̃

= lim
α̃↓0

∑
x∈X

p(x)
q∗(p)(x)− q′(x)

(1− α̃)q∗(p)(x) + α̃q′(x)
log e (14)

⇒ 0 ≤
∑
x∈X

p(x)

[
q∗(p)(x)− q′(x)

q∗(p)(x)

]
log e (15)

which shows that the quantity in (13) is non-negative, completing the proof.

Proposition 4. For q ∈ Q with minp∈P D(p ‖ q) = D(p∗(q) ‖ q) <∞, we have δ (p∗(q), p1) <∞,
where p1 = p∗(q0).

Proof. First, D(p∗(q) ‖ q) < ∞ implies that supp(p∗(q)) ⊆ supp(q). Next, in proposition 2,
picking q = q0 and p = p∗(q) gives

D(p∗(q0) ‖ q0) + δ(p∗(q), p∗(q0)) ≤ D(p∗(q) ‖ q0)

This means that D(p∗(q) ‖ q0) being finite will imply the requirement of the proposition, and
this happens if supp(p∗(q)) ⊆ supp(q0). So if we have supp(q) ⊆ supp(q0), then we will have
supp(p∗(q) ⊆ supp(q) ⊆ supp(q0). This condition is always met when supp(q0) = supp(Q).

Theorem 5 (Main convergence result). The iterative procedure (1), with initial point q0 satisfying
supp(q0) = supp(Q) produces a sequence {pn, qn} such that

lim
n
D(pn ‖ qn) = inf

p∈P,q∈Q
D(p ‖ q) = dmin (16)

Proof. By proposition 2 we have D(pn+1 ‖ qn) + δ(p, pn+1) ≤ D(p ‖ qn) and by proposition 3 we
have D(p ‖ qn) ≤ D(p ‖ q) + δ(p, pn) for any p ∈ P and q ∈ Q. Adding the two together, we get
that D(qn+1 ‖ pn) + δ(q, qn+1) ≤ D(p ‖ q) + δ(p, pn) or

δ(p, pn+1) ≤ D(p ‖ q)−D(pn+1 ‖ qn) + δ(p, pn) (17)

for all p ∈ P and q ∈ Q. Now, from the iteration in (1) we get that

D(pn ‖ qn) ≥ D(pn+1 ‖ qn) ≥ D(pn+1 ‖ qn+1) ≥ D(pn+2 ‖ qn+1)

4

Assume that the limit in (16) does not exist. Then there exists q ∈ Q and ε > 0 such that

D(pn+1 ‖ qn) > D(p∗(q) ‖ q) + ε n = 1, 2, . . .

Applying (17) with this choice of p∗(q) and q we get that

δ(p∗(q), pn+1) ≤ D(p∗(q) ‖ q)−D(pn+1 ‖ qn) + δ(p∗(q), pn) (18)
⇒ δ(p∗(q), pn+1) ≤ δ(p∗(q), pn)− ε n = 1, 2, . . . (19)

which contradicts proposition 4 and the non-negativity of δ established in proposition 1, because
by proposition 4 the starting value of δ is finite and decreases by ε after every iteration, and
eventually becomes negative.

3 Blahut-Arimoto Algorithms for channel capacity

In this section, we begin by describing an equivalent form of the classical Blahut-Arimoto algorithm
that generalizes well to finite state channels, and show how it is used to calculate the capacity of
a discrete memoryless channel (DMC). We eventually show how this algorithm generalizes to
finite state channels which have memory.

3.1 Classical BAA
We consider a DMC with input alphabet X , output alphabet Y and transition probability matrix

W (y|x) = PY |X(y|x) ∀x ∈ X , y ∈ Y (20)

An input probability distribution Q(x) over X induces an ouput distribution R(y) over Y given
by R(y) = (QW)(y) =

∑
xQ(x)W (y|x). The mutual information between the channel input and

output random variables X and Y is given by

I(Q;W) = I(X;Y) = H(X)−H(X|Y) =
∑
x

∑
y

Q(x)W (y |x) log
V (x | y)

Q(x)
(21)

where V (x|y) = Q(x)W (y|x)
R(y) is the aposteriori probability of X = x given Y = y is observed. The

capacity C of the DMC is found by maximizing this mutual information expression over all
possible input pmfs, i.e.,

C = max
Q∈Q

I(Q;W) (22)

where Q = {Q : X → R |Q(x) ≥ 0 for all x ∈ X ,
∑
xQ(x) = 1} is the set of valid probability

distributions. The problem is simplified by the fact that I(Q,W) is a concave function of Q
and hence has a unique maximum, although there might be multiple input pmfs that reach this
maxima.

Proposition 6. For a fixed transition probability matrix W , I(Q;W) is a concave function of Q.

The classical BAA can be formulated as an iterative algorithm with some initial starting
point Q<0>. Assuming the algorithm has run upto an iteration r, with the quantity I(Q<r>,W)
calculated, in the next iteration a new pmf Q<r+1> needs to be found such that I(Q<r+1>,W) ≥
I(Q<r>,W). This is acccomplished by introducing a surrogate function Ψ(Q<r>, Q,W) which
has the following properties

5

1. At Q = Q<r>, we have Ψ(Q<r>, Q<r>,W) = I(Q<r>,W).

2. For all Q ∈ Q, Ψ(Q<r>, Q,W) ≤ I(Q;W).

3. The maximization of Ψ(Q<r>, Q,W) is easy such that we can easily find

Q<r+1> = arg max
Q∈Q

Ψ(Q<r>, Q,W) (23)

To find such a surrogate function, we introduce the following quantity.

Definition 1. For a fixed DMC W (y|x), given that the input pmf is Q(x), define

TQ̃(x) =
∑
y

W (y|x) log
Q̃(x)W (y|x)∑
x Q̃(x)W (y|x)

=
∑
y

W (y|x) log Ṽ (x|y) (24)

With this definition, we write

I(Q;W) =
∑
x

Q(x)

[
log

(
1

Q(x)

)
+ T (x)

]
(25)

and let the surrogate function be

Ψ(Q̃,Q,W) =
∑
x

Q(x)

[
log

(
1

Q(x)

)
+ TQ̃(x)

]
(26)

It can be easily checked that the surrogate function satisfies all the three properties listed above.
We now give the classical Blahut-Arimoto algorthm for DMCs.

Algorithm 1 Blahut-Arimoto algorithm for DMC
1: Inputs:

• Input alphabet X , Output alphabet Y
• Initial guess Q<0> ∈ Q
• Channel Transition matrix W (·|·)
• Number of iteration steps n

2: for r ∈ {1, 2, . . . , n} do
3: For each x ∈ X , calculate TQ̃(x) =

∑
yW (y|x) log Q̃(x)W (y|x)∑

x Q̃(x)W (y|x) with Q̃ = Q<r−1>

4: Calculate Q<r> = arg maxQ∈QΨ(Q̃,Q,W)
5: end for
6: Outputs: Maximizing input distribution Q<n>(x), channel capacity I(Q<n>,W) =

Ψ(Q<n>, Q<n>,W) =0

Theorem 7. For each r ∈ {1, 2, · · · , n} the sequence of input probability distributions Q<r>
produced by the classical BAA fulfills

I(Q<r>,W) ≥ I(Q<r−1>,W) (27)

Furthermore, Q<r> converges to a capacity achieving input distribution as r →∞.

Proof. The proof is the classical result from [Ari72],[Bla72].

6

3.2 BAA for Finite State Machine Channels
Although DMCs provide a basic understanding of the fundamental problem of noisy information
transmission, most real life scenarios are much more complicated because they do not abide by
the strong independence assumption of a DMC. In this regard, finite state machine channels
(FSMC) provide the much needed generalization by introducing memory into the model. However,
the problem of calculating the capacity of FSMCs is found to be much more challenging and
closed form expressions are, more often than not, elusive. In [VKAL08], the classical BAA was
extended to the case of FSMCs to calculate the capacities in a numerical way.

Definition 2. A time-invariant (discrete-time) Finite State Machine Source (FSMS) has a state
sequence · · · , S−1, S0, S1, · · · and an output sequence · · · , X−1, X0, X1, · · · where Sl ∈ S and
Xl ∈ X for all l ∈ Z. The sets S and X are assumed finite. For any N > 0, the joint probability
decomposes as

PSN
−N+1,X

N
−N+1|S−N

(sN−N+1,x
N
−N+1|s−N) =

N∏
l=−N+1

PSl,Xl|Sl−1
(sl, xl|sl−1) (28)

where PSl,Xl|Sl−1
(·, ·|·) is independent of l.

Example 1. A Bernoulli(p) source with p ∈ (0, 1) can be expressed as an FSMS source with
S = {0, 1} and Xl = Sl for all l ∈ Z with transition probabilities Pr(Sl = 1|Sl−1 = sl−1) = p =
1− Pr(Sl = 0|Sl−1 = sl−1) for all sl−1 ∈ S.

Example 2. A (d, k) Run-Length-Limited (RLL) sequence (with d ≤ k) is defined as a binary
sequence where the length of any subsequnce of 0’s between any two consecutive 1’s is between
d and k. A source which outputs only RLL (1,∞) sequences can be expressed as an FSMS by
S = {0, 1} and Xl = Sl with transition probabilities P (Sl = 0|Sl−1 = 1) = 1.

Definition 3. A time-invariant (discrete-time) FSMC has an input process · · · , X−1, X0, X1, · · · ,
an output process · · · , Y−1, Y0, Y1, · · · , and a state process · · · , S′−1, S′0, S′1, · · · , where Xl ∈ X , Yl ∈
Y, S′l ∈ S ′ for all l ∈ Z. The sets X ,Y,S ′ are assumed finite and for any N > 0 the joint pmf
decomposes as

PSN
−N+1,Y

N
−N+1|XN

−N+1S−N
(sN−N+1,y

N
−N+1|xN−N+1, s−N) =

N∏
l=−N+1

PSl,Yl|Xl,Sl−1
(sl, yl|xl, sl−1)

(29)
where PSl,Yl|Xl,Sl−1

(·, ·|·, ·) is independent of l.

Example 3. The famous Gilbert-Elliot channel can be described by a two state Markov process
with S ′ = {′b′,′ g′} and X = Y = {0, 1} with

PSl,Yl|Xl,Sl−1
(sl, yl|xl, sl−1) = PSl|Sl−1

(sl|sl−1)PYl|Xl,Sl−1
(yl|xl, sl−1) (30)

The states vary according to a Markov transition matrix
[
1− pg pg
pb 1− pb

]
independent of the

input and in each state the channel acts as a BSC(ε) where ε depends on the state sl−1.

We intoduce some additional notation for the remainder of the section. Denote by bl =
(sl−1, sl), b′l = (s′l−1, s

′
l) to be the l-th branch in the trellis diagram of the source and the

channel states respectively and b′′l = (bl, b
′
l). We shall assume that for any l, bl specifies xl.

Additionally, we assume that the channel is indecomposable, i.e., roughly speaking the influence

7

of the initial state fades out with time for every possible channel input sequence. Additionally,
we denote by Q(sl, sl−1) ≡ Q(bl) = Pr(Sl = sl, Sl−1 = sl−1) and PSl,Yl|Xl,Sl−1

(sl, yl|xl, sl−1) =
W (sl, yl|xl, sl−1) (Notice how Q is defined differently than the previous case). With slight abuse
of notation we define the following joint probabilities

µi =
∑
j

Qij (31)

Q(b) =

∏
lQsl,sl−1∏
l µsl

(32)

W (y|b) =
∑
s′
W (y, s′|b (33)

R(y) = (QW)(y) =
∑
b

Q(b)W (y|b) (34)

V (b|y) =
Q(b)W (y|b)

(QW)(y)
(35)

Finally define the manifold Q = {Q :
∑
i,j Qij = 1, Qij ≥ 0,

∑
iQij =

∑
iQji ∀ j}.

Definition 4. The Q-constrained capacity of an FSMC is given by

C(Q,W) = max
Q∈Q

I(Q;W) (36)

Our goal will be to find the numerical value of the above expression using the generalized
Blahut-Arimoto algorithm. Using the same ideas as the classical case the target is to find a
surrogate function that approximates the behavior of the mutual information and satisfies the
three properties stated before and then do iterative maximization. It was shown in [VKAL08]
that the surrogate function takes the form similar to the classical BAA case, i.e.,

Ψ(Q̃,Q,W) =
∑
i,j

Qij

[
log

(
µi
Qij

)
+ T̃ij

]
(37)

where T̃ij = Tij(Q̃,W) is given by the following relationships:

Tij = T̂ij − T i (38)

T̂ij = lim
N→∞

1

2N

N∑
l=−N+1

T̂Nij (l) (39)

T i = lim
N→∞

1

2N

N∑
l=−N+1

T
N

i (40)

T̂Nij (l) =
∑

b:bl=(i,j)

Q(b|bl)
∑
b′′

∑
y
W (b′′,y|b) log

V (b′′l |y)

V (b′′l |b
′′,y)

(41)

T̂Nij (l) =
∑

b:sl=i

Q(b|sl)
∑
b′′

∑
y
W (b′′,y|b) log

V (s′′l |y)

V (s′′l |b
′′,y)

(42)

Remark: Although, the calculations of the above parameters seem cumbersome, a computationally
efficient way to calulate these parameters has been given in [VKAL08]. The idea uses large values
of N to approximate the parameters by using law of large numbers. A similar idea was used in
[Kav01] to calculate the capacity of a BSC under RLL source.

8

Algorithm 2 Blahut-Arimoto algorithm for FSMC
1: Inputs:

• Input alphabet X , Output alphabet Y
• Initial guess Q<0> ∈ Q
• Channel Transition matrix W
• Number of iteration steps n

2: for r ∈ {1, 2, . . . , n} do
3: For each pair (i, j), i, j ∈ S, calculate T<r−1>ij = Tij(Q

<r−1>,W) using the above equations.

4: Calculate Q<r> = arg maxQ∈QΨ(Q̃,Q,W)
5: end for
6: Outputs: Maximizing input distribution Q<n>, channel capacity I(Q<n>,W) =

Ψ(Q<n>, Q<n>,W) =0

Figure 1: Capacity of Binary Symmetric
Channel using classical BAA

Figure 2: Capacity of Gilbert-Elliot Channel
using generalized BAA

3.3 Simulations
We simulate both the classical BAA for DMC and the generalized BAA for FSMC using MATLAB.
The classical BAA was simulated for the binary symmetric channel (BSC(p)). For the FSMC, we
simulated the Gibert-Elliot channel with the Markov chain state transition probability matrix
given by [

0.7 0.3
0.3 0.7

]
(43)

and fixed the "good" state transition probability at εg = 0.001 and vary the "bad" state transition
probability. Additionally, we simulate the RLL (1,∞) binary source at the input of a binary
symmetric channel. For this simulation, we use the much simpler algorithm of [Kav01] specialized
for FSMS over DMC.

4 Quantum Blahut-Arimoto Algorithms

In [RISB20], the authors present algorithms to compute four quantities - the mutual information
of quantum channels, the thermodynamic capacity of quantum channels, the coherent information
of less noisy quantum channels, and the Holevo quantity of classical-quantum channels. The
algorithms proposed are based on the quantum relative entropy which generalizes the KL

9

Figure 3: Capacity of Binary Symmetric Channel using classical BAA with RLL (1,∞) source

divergence and is defined as

D(ρ‖σ) =

{
Tr[ρ(log ρ− log σ)] if σ � ρ
∞ otherwise (44)

where ρ and σ are positive semi-definite matrices and the notation σ � ρ denotes that the kernel
of σ is a subset of the kernel of ρ and the (matrix) logarithm is taken on the support of the
argument. The relative entropy satisfies certain inequalities under the action of channels, which
are crucial for convergence proofs. One such important inequality is the data processing inequality,
which generalizes the data processing inequality from classical information theory and which
states that for all ρ, σ we have D(E(ρ)‖E(σ)) ≤ D(ρ‖σ).

4.1 Preliminaries and notation
A qubit, also called as quantum bit, is the quantum-mechanical counterpart of the classical bit.
Classical bits can store information by taking an value of with zero or one. Qubits are used for
storing information in quantum computing. A qubit is a two-level quantum system with two
basis qubit states written as |0〉 and |1〉, which correspond to following vectors.

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
(45)

A qubit can be in state |0〉, |1〉 or (unlike a classical bit) in a linear combination of these basis
states. We call |k〉 a ‘ket’, which is a column vector. The adjoint of this vector would be the row

10

vector 〈k|, which is called ‘bra’. The scalar 〈j|k〉 represents the inner product between vectors |j〉
and |k〉, while the matrix |j〉〈k| represents the outer product between the two vectors.

• We consider finite dimensional complex Hilbert spaces only, denote them by capital letters
A,B, etc. and denote their respective dimensions as |A|, |B| etc.

• The set of density operators on a system A is the set of all positive semi-definite matrices
ρA with trace 1, and this set is denoted by D(A). Each density matrix is associated with a
quantum state and vice-versa.

• A quantum channel from system A to system B, denoted by EA→B : D(A) → D(B) is
a linear completely positive trace-preserving (CPTP) map. Associated with every such
channel is a set of Kraus operators {Ki}, with the property that

∑
iK
†
iKi = I, and the

action of the channel on some ρA ∈ D(A) can be written as
∑
iBiρB

†
i ∈ D(B).

• Associated with every channel EA→B is a complementary channel EcA→E . For ease of
exposition, E and Ec are used instead of EA→B and EcA→E .

• The Von Neumann entropy generalizes the Shannon entropy and is defined as

S(ρ) = −Tr[ρ log ρ].

• Discrete probability distributions can be expressed as vectors λ = [λ1, . . . , λm] with
∑
i λi =

1 or (as for inputs to the cq channel) as diagonal matrices with entries λ1, . . . , λm.

4.1.1 Complementary Channel

We show how to obtain Kraus operators for the complementary channel from the Kraus operators
{Ak : 1 ≤ k ≤ n} of the channel1. We fix an n dimensional basis for the ‘environment’ E, and
define an operator

D =

n∑
k=1

Ak ⊗ |k〉 (46)

which is a linear operator mapping A to B ⊗ E, where ⊗ represents tensor product between the
matrices. The action of the complementary channel on density matrices can then be represented
as (called the Steinspring representation)

Ec(ρ) = TrB
(
DρD†

)
(47)

We can simplify this expression by observing that

DρD† =

n∑
j=1

n∑
k=1

AjρA
†
k ⊗ |j〉〈k| (48)

so that

Ec(ρ) =

n∑
j=1

n∑
k=1

Tr
(
AjρA

†
k

)
|j〉〈k| (49)

1Method given in https://quantumcomputing.stackexchange.com/a/5797

11

https://quantumcomputing.stackexchange.com/a/5797

We can use this to obtain the Choi matrix corresponding to Ec, which is defined by

Choi(Ec) =

n∑
j=1

n∑
k=1

Ec(|j〉〈k|)⊗ |j〉〈k| (50)

Let the eigendecomposition of Choi(Ec) be given by
{

(λi, vi) : 1 ≤ i ≤ n2
}
. The Kraus operators

for the complementary channel can be recovered from the eigendecomposition by turning the vi’s
into n× n matrices Mi and multiplying with the square root of the respective eigenvalue

√
λi.

4.1.2 Adjoint channel

The adjoint of a quantum channel EA→B , defined by E†B→A satisfies

tr(XE(ρ)) = tr
(
E†(X)ρ

)
(51)

and, for given Kraus operators {Ai} of the quantum channel, the adjoint channel’s action can be
written as

E†(X) =
∑
i

A†iXAi (52)

4.1.3 Adjoint channel of complementary channel

The action of the adjoint channel of the complementary channel can be found by first finding the
Kraus operators of the complementary channel using the method described in section 4.1.1 and
then applying the definition given in section 4.1.2.

4.1.4 Examples of Channels

Amplitude damping channel The amplitude damping channel for 0 ≤ p ≤ 1, denoted by EADp
acts on qubit systems and has Kraus operators given by

A0 =

(
1 0
0
√

1− p

)
, A1 =

(
0
√
p

0 0

)
(53)

These satisfy A†0A0 +A†1A1 = 1 and are therefore valid Kraus operators. The channel action on a
general qubit density matrix would be:

ρ =

(
r q
q∗ 1− r

)
→ ρ′ =

(
p+ r(1− p) q

√
1− p

q∗
√

1− p (1− p)(1− r)

)
(54)

If p = 0 the channel gives the input density matrix as the output without any change, ρ′ = ρ.
Conversely, if p = 1 then

ρ→ ρ′ =

(
1 0
0 0

)
(55)

The channel action tries to push the system towards |0〉, by supressing coherences (the off-diagonal
terms), q → q

√
1− p and by changing the populations (the diagoinal terms), r → p+ r(1− p).

Hence it is called amplitude damping channel. The effect is stronger for larger value of p. This is
a purely quantum channel with no classical counterpart.

12

cq channel A classical quantum channel can be represented by a set of input-output pairs
{(x, τx)}x∈{1,2,...,N} , with x ∈ {1, 2, . . . , N} as a (classical) input and the quantum states τx ∈
D(B) as outputs. For an input distribution vector λ, the output corresponds to

E (ρλ) =
∑
x

λxE(|x〉〈x|) =
∑
x

λxτx (56)

where λi denotes the i -th component of the probability vector λ and ρλ =
∑
k λk|k〉〈k|. This is

a generalization of classical discrete memoryless channels, because the channel behaves classically
when the τx are all diagonal matrices.

4.2 Quantum Blahut-Arimoto Algorithm
For a quantum measure given as a convex optimization problem over input states, we write
a two-variable extension function J and then iteratively perform alternate maximization over
both variables to numerically compute the original quantity of interest. Algorithm 3 shows the
updating structure of Blahut-Arimoto algorithm, given the following conditions on J,F1 and F2

are satisfied: For γ > 0 and density operators σ � ρ

Jγ(ρ, σ) = −γD(ρ‖σ) + Tr[ρF(σ)] ∈ R (57)

where F is a Hermitian matrix which acts as an outer operator to density operators in a way
that Tr[ρF(σ)] is continuous in σ for σ � ρ. The update rules are

F1(ρ) = arg max
σ with σ�ρ

Jγ(ρ, σ), F2(σ) = arg max
ρ with σ�ρ

Jγ(ρ, σ) (58)

When quantum Blahut-Arimoto algorithms satisfy the property

Tr[ρ{F(σ)−F(ρ)}] ≤ γD(ρ‖σ) (59)

for all density operators σ � ρ, optimizers in (58) have the expressions

F1(ρ) = ρ (60)

F2(σ) =
1

Z(σ)
exp

(
log σ +

1

γ
F(σ)

)
(61)

with normalizing factor Z(σ) = Tr
[
exp

(
log σ + 1

γF(σ)
)]

.

4.2.1 Convergence

Given a strictly positive definite initial state ρ(1) > 0 on Hilbert space A and

0 ≤ Tr[ρ{F(σ)−F(ρ)}] ≤ γD(ρ‖σ) (62)

for density operators σ � ρ, we have that C(n) of Algorithm 3 is monotonically increasing and
converges for n→∞ to

C? = max
ρ,σ

mithσ�ρ Jγ(ρ, σ) (63)

with the following bound on approximation error

|C? − C(n)| ≤
γD

(
ρ?‖ρ(1)

)
n

(64)

where ρ? is the optimizer (possibly not unique) that achieves the capacity C?. If ρ(1) is picked to
be the maximally mixed state, the error is limited as |C? − C(n)| ≤ γ log |A|

n .

13

Algorithm 3 Blahut-Arimoto algorithm: Iterative double optimization over density operators
1: Inputs:

• Initial guess ρ(1)A ∈ D(A) with full support, i.e., ρ(1)A > 0
• Function Jγ : D(A)×D(B) 7→ R with a coefficient γ > 0
• Update relations F1 : D(A) 7→ D(B) and F2 : D(B) 7→ D(A)
• Number of iteration steps n

2: for t ∈ {1, 2, . . . , n} do
3: σ

(t)
B = F1

(
ρ
(t)
A

)
4: ρ

(t+1)
A = F2

(
σ
(t)
B

)
5: end for
6: Outputs: ρ

(n+1)
A , C(n) = Jγ

(
ρ
(n+1)
A , σ

(n)
B

)
, where C(n) should approximate C? =

maxρA,σB
Jγ (ρA, σB) for n→ ∞ =0

4.3 Coherent Information of Less Noisy Channels
For a quantum channel EA→B with complementary channel (Ec)A→E , the coherent information,
Icoh(E) is the maximum of the coherent information Icoh(ρ, E) = S(E(ρ))− S (Ec(ρ)) over input
states ρ.

Icoh(E) = max
ρ

S(E(ρ))− S (Ec(ρ))︸ ︷︷ ︸
=Icoh(ρ,E)

. (65)

We limit ourselves to only consider less noisy channels. A channel E is called less noisy when
the private capacity of its complementary channel Ec is zero. This implies that for all density
operators ρ and σ, we have

D(E(ρ)‖E(σ)) ≥ D (Ec(ρ)‖Ec(σ)) (66)

4.3.1 Blahut-Arimoto algorithm

The coherent information can be estimated using a Blahut-Arimoto algorithm. We define the
following two variable extension of Icoh (ρ, E) for σ � ρ.

Jγ(ρ, σ, E) = Icoh(ρ, E) +D(E(ρ)‖E(σ))−D (Ec(ρ)‖Ec(σ))− γD(ρ‖σ) (67)

After some simplication, Jγ can be brought into the following form

Jγ(ρ, σ, E) = −γ Tr[ρ log ρ] + Tr[ρ{γ log σ + F(σ)}] (68)

where F(σ) = E†c log Ec(σ) − E† log E(σ), and γ = 1 corresponds to the standard algorithm.
Further,

Tr[ρ{F(σ)−F(ρ)}] = D(E(ρ)‖E(σ))−D (Ec(ρ)‖Ec(σ))
=⇒ 0 ≤ Tr[ρ{F(σ)−F(ρ)}] ≤ γD(ρ‖σ)

(69)

which satisfies (59). Hence, a double optimization form of the coherent information Icoh (E)
becomes

max
ρ,σ with σ�ρ

Jγ(ρ, σ, E) = Icoh (E) (70)

Performing the two maximizations in maxρ,σ Jγ(ρ, σ, E) iteratively, leads to Algorithm 2 (see
(60) and (61) for the update rules).

14

Algorithm 4 Blahut-Arimoto type algorithm for the coherent information
1: Inputs: Quantum channel EA→B, its complementary channel Ec and the respective adjoint

channels E†B→A and E†c (all given as lookup tables whose (i, j) -th entry is given by the action
of the channel on |i〉〈j|), acceleration coefficient γ and additive error ε > 0

2: Choose ρ(1) = 1A
|A|

3: for t ∈ {1, 2, . . . , n = dγ log |A|/εe} do
4: ρ(t+1) = 1

Z(t+1) exp
(

log ρ(t) + 1
γF
(
ρ(t)
))
, where

F(σ) = E†c log Ec(σ)− E† log E(σ) and
Z(t+1) = Tr

[
exp

(
log ρ(t) + 1

γF
(
ρ(t)
)))]

normalizes the state.
5: end for
6: Outputs: ρ(n+1), Icoh(n) = Jγ

(
ρ(n+1), ρ(n), E

)
with |Icoh(E)− Icoh(n)| ≤ ε =0

4.3.2 Simulations

0 5 10 15 20 25 30

0.3264

0.3266

0.3268

0.327

0.3272

0.3274

0.3276

0.3278

0.328

Figure 4: Convergence of the Blahut-Arimoto algorithm to the coherent information of the
amplitude damping channel EAD0.3 .

We consider the amplitude damping channel EADp with decay probability p = 0.3. We choose
an additive error threshold of ε = 10−6. Figure 4 shows the improvement obtained in the coherent
information estimate with each iteration. The figure shows the lower bound on the coherent
information in each iteration step t until we terminate when |C? − C(t)| ≤ 10−6, by which we
achieve an estimate with additive error smaller than ε. The standard Blahut-Arimoto algorithm
takes γ = 1.

15

Similar to coherent information, it is shown in [RISB20] that we may also estimate other
entropic optimization problems in quantum information by bringing them into the standard form
(68) of Blahut-Arimoto algorithms. For all the cases discussed in the following subsections, the
form of F(σ) satisfies (4.2.1) and this allows us to prove the convergence.

4.4 Mutual Information of Quantum Channels
The entanglement-assisted classical capacity represents the maximum rate at which one can
reliably send a classical message through a quantum channel while using shared entanglement.
For a channel EA→B , it is given by the mutual information I(E) defined as

I(E) = max
ρ

S(ρ) + S(E(ρ))− S (Ec(ρ)) (71)

In this case the function F (σ) is given by

F(σ) = E†c log Ec(σ)− log(σ)− E† log E(σ) (72)

4.4.1 Simulations

0 5 10 15 20 25 30

1.32508

1.3251

1.32512

1.32514

1.32516

1.32518

1.3252

1.32522

1.32524

Figure 5: Convergence of the Blahut-Arimoto algorithm to the mutual information of the
amplitude damping channel EAD0.3 .

We consider the amplitude damping channel EADp with decay probability p = 0.3. We choose
an additive error threshold of ε = 10−6. Figure 5 shows the improvement obtained in the mutual
information estimate with each iteration. The figure shows the lower bound on the mutual

16

information in each iteration step t until we terminate when |C? − C(t)| ≤ 10−6, by which we
achieve an estimate with additive error smaller than ε. The standard Blahut-Arimoto algorithm
takes γ = 1.

4.5 Thermodynamic Capacity of Quantum Channels
The thermodynamic capacity quantifies the informationtheoretic power of quantum channels in
the presence of physical restrictions imposed by thermodynamics. For a quantum channel EA→B ,
it can be written as

T (E) = max
ρ

S(ρ)− S(E(ρ)) (73)

In this case the function F (σ) is given by

F(σ) = E†(log E(σ))− log σ (74)

4.5.1 Simulations

0 5 10 15 20 25 30

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Figure 6: Convergence of the Blahut-Arimoto algorithm to the thermodynamic capacity of the
amplitude damping channel EAD0.3 .

We consider the amplitude damping channel EADp with decay probability p = 0.3. We choose
an additive error threshold of ε = 10−6. Figure 6 shows the improvement obtained in the
thermodynamic capacity estimate with each iteration. The figure shows the lower bound on the
thermodynamic capacity in each iteration step t until we terminate when |C? − C(t)| ≤ 10−6, by

17

which we achieve an estimate with additive error smaller than ε. The standard Blahut-Arimoto
algorithm takes γ = 1.

4.6 Holevo Quantity of Classical Quantum Channels
The Holevo quantity that quantifies the classical channel capacity of a cq channel is defined as

χ(E) = max
λ

∑
i

λi Tr [τE,i {log τE,i − log E (ρλ)}] (75)

with τE,i = E(|i〉〈i|). In this case the function F (σ) is given by

F(σ) =
∑
i

|i〉〈i|Tr[E(|i〉〈i|)(log E(|i〉〈i|)− log E(σ))] (76)

4.6.1 Simulations

0 5 10 15 20 25 30

0.51575

0.515755

0.51576

0.515765

0.51577

0.515775

0.51578

0.515785

0.51579

Figure 7: Convergence of the Blahut-Arimoto algorithm to the holevo quantity of the random
classical quantum channel with input alphabet of size 2 and output dimension 2.

We consider a random classical quantum channel with input alphabet of size 2 and output
dimension 2. The ensemble of output density operators were chosen randomly, conditioned on
the fact that they satisfy the properties of density operators. The particular density operators for
the simulation are

τ0 =

(
0.1022 + 0.0000i 0.0164− 0.2362i
0.0164 + 0.2362i 0.8978 + 0.0000i

)
(77)

18

τ1 =

(
0.8261 + 0.0000i 0.1732− 0.2255i
0.1732 + 0.2255i 0.1739 + 0.0000i

)
(78)

We choose an additive error threshold of ε = 10−6. Figure 7 shows the improvement obtained
in the Holevo quantity estimate with each iteration. The figure shows the lower bound on the
Holevo quantity in each iteration step t until we terminate when |C? − C(t)| ≤ 10−6, by which we
achieve an estimate with additive error smaller than ε. The standard Blahut-Arimoto algorithm
takes γ = 1.

Figure 8: Comparison between the Holevo quantity when the matrices are cq channel are chosen
to be same as the BSC(p) and using the quantum Blahut-Arimoto algorithm to obtain the Holevo
quantity, with the known 1− h(p) for the BSC(p).

The binary symmetric channel BSC(p) is obtained in the cq channel formalism by choosing
the input states to be {1, 2} and the output density matrices to be

ρ1 =

(
p 0
0 1− p

)
ρ2 =

(
1− p 0

0 p

)
(79)

We simulated the Holevo quantity for 0 ≤ p ≤ 1 and compared it with the capacity of the BSC(p),
which has capacity 1− h(p) where h(p) is the binary entropy function h(p) = −p log(p)− (1−
p) log(p). The results are shown in fig. 8.

19

MATLAB Codes for capacity calculations using Blahut-Arimoto
Algorithm

This section contains all MATLAB files used for simulations in Section 3.3.

breaklines
1 function [] = baa_dmc_cap_sim ()
2
3 %% Calculates BSC capacity using classical BAA
4 eps =0:0.05:0.5;
5
6 channel_cap = zeros(1,length(eps));
7 entr_fun = zeros(1,length(eps));
8 for i=1: length(eps)
9

10 tran_mat = [1-eps(1,i) eps(1,i);eps(1,i) 1-eps(1,i)];
11 [cap , in_pmf] = calculate_cap_dmc(tran_mat);
12 channel_cap (1,i) = cap;
13 entr_fun(1,i) = 1-log2_entropy(eps(1,i),1/eps(1,i))- log2_entropy (1-eps(1,i),1/(1-eps(1,i)));
14
15 end
16
17 plot(eps ,channel_cap ,’sr’,eps ,entr_fun ,’b’,’LineWidth ’ ,1.5);
18 legend(’Using BAA’,’1-h(p)’);
19 xlabel(’Error Probability p’);
20 ylabel(’Capacity ’);

breaklines
1 function [T_N_by] = calculate_T_params_fsmc(Q,p_g ,p_b ,eps_g ,eps_b)
2
3 %% The function calculates the T parameters for the given GE channel parameters
4
5 N=20000;
6 N_bar = 2*N+1; %% Length of sequence
7 y_states = {’0’,’1’};
8 j_states = {’0g’,’1g’,’0b’,’1b’};
9

10 %%calculating V(s’’_l|y_hat)
11 mu = sum(Q);
12 P=zeros (2,2);
13 for i=1:2
14 for j=1:2
15 P(i,j) = Q(i,j)/mu(1,i); %% Source state transition matrix
16 end
17 end
18 T=[(1-p_b)*P(1,1) (1-p_b)*P(1,2) p_b*P(1,1) p_b*P(1,2); ...
19 (1-p_b)*P(2,1) (1-p_b)*P(2,2) p_b*P(2,1) p_b*P(2 ,2); ...
20 p_g*P(1,1) p_g*P(1,2) (1-p_g)*P(1,1) (1-p_g)*P(1 ,2); ...
21 p_g*P(2,1) p_g*P(2,2) (1-p_g)*P(2,1) (1-p_g)*P(2 ,2)];
22 E = [1-eps_g eps_g; eps_g 1-eps_g; 1-eps_b eps_b; eps_b 1-eps_b];
23
24 [out_seq , int_j_states] = hmmgenerate(N_bar ,T,E,’Symbols ’ ,...
25 y_states ,’Statenames ’,j_states);
26 %disp(out_seq);
27 %disp(int_j_states);
28 int_s_states = cell (1,2*N);
29 int_c_states = cell (1,2*N);
30 b = cell (1,2*N);
31 b_p = cell (1,2*N);
32 b_pp = cell (1,2*N);
33 for i=1: N_bar
34 temp = int_j_states{i};
35 int_s_states (1,i) = cellstr(temp (1));
36 int_c_states (1,i) = cellstr(temp (2));
37 end
38
39 for i=1:2*N
40 temp1 = int_s_states{i};
41 temp2 = int_s_states{i+1};
42 b(1,i) = cellstr(strcat(temp1 ,temp2));
43 temp1 = int_c_states{i};
44 temp2 = int_c_states{i+1};
45 b_p(1,i) = cellstr(strcat(temp1 ,temp2));
46 temp1 = int_j_states{i};
47 temp2 = int_j_states{i+1};
48 b_pp(1,i) = cellstr(strcat(temp1 ,temp2));
49 end
50
51 V_s_pp_y = hmmdecode(out_seq ,T,E,’Symbols ’,{’0’,’1’});
52
53 %%calculating V(s’’_l|b_hat ,y_hat)
54 %% T remains same , output is now (b,y)
55 E1 = [P(1 ,1)*(1 - eps_g) 0 P(2 ,1)*(1 - eps_g)*mu(1,2)/mu(1,1) 0 ...
56 P(1,1)* eps_g 0 P(2 ,1)* eps_g*mu(1,2)/mu(1,1) 0; ...
57 0 eps_g*P(1,2)*mu(1,1)/mu(1,2) 0 P(2,2)* eps_g ...
58 0 (1-eps_g)*P(1,2)*mu(1,1)/mu(1,2) 0 P(2,2)*(1- eps_g); ...
59 P(1,1)*(1 - eps_b) 0 (1-eps_b)*P(2,1)*mu(1,2)/mu(1,1) 0 ...
60 P(1,1)* eps_b 0 eps_b*P(2,1)*mu(1,2)/mu(1,1) 0; ...

20

61 0 eps_b*P(1,2)*mu(1,1)/mu(1,2) 0 P(2,2)* eps_b ...
62 0 (1-eps_b)*P(1,2)*mu(1,1)/mu(1,2) 0 P(2,2)*(1- eps_b)];
63
64 out_seq_by = cell (1,2*N);
65 for i=1:2*N
66 out_seq_by (1,i) = cellstr(strcat(b(i),out_seq(i+1)));
67 end
68 by_states = {’000’,’010’,’100’,’110’,’001’,’011’,’101’,’111’};
69 V_s_pp_by = hmmdecode(out_seq_by ,T,E1,’Symbols ’,by_states);
70
71 %%Calculating V(b’’_l|y_hat)
72 %% Both transition and emission matrices will change
73 b_pp_states = cell (1 ,16);
74 for i=1:4
75 for j=1:4
76 b_pp_states (1,4*(i-1)+j) = cellstr(strcat(j_states(i),j_states(j)));
77 end
78 end
79 temp = blkdiag(T(1,:),T(2,:),T(3,:),T(4 ,:));
80 T_new = repmat(temp ,4,1);
81 E_new = repmat(E,4,1);
82
83 V_b_pp_y = hmmdecode(out_seq (1,2: N_bar),T_new ,E_new ,’Symbols ’,y_states);
84 %disp(V_b_pp_y);
85
86 %%Calculating V(b’’_l|b_hat ,y_hat)
87 %% T remains same
88 temp1 = [1-eps_g 0 0 0 eps_g 0 0 0];
89 temp2 = [1-eps_b 0 0 0 eps_b 0 0 0];
90 temp3 = [temp1;circshift(temp1 ,5); temp2; circshift(temp2 ,5);];
91 temp4 = [temp3; circshift(temp3 ,2 ,2)];
92 E_nn = repmat(temp4 ,2 ,1);
93
94 V_b_pp_by = hmmdecode(out_seq_by ,T_new ,E_nn ,’Symbols ’,by_states);
95
96 %%Calculating T_N_by matrices
97
98 T_N_by_2 = zeros (1 ,2); %% the second term in the equation
99 mu = sum(Q);

100
101 T_N_by_2 (1,1) = sum((log2_entropy(V_s_pp_y (1,:), V_s_pp_y (1 ,:))...
102 +log2_entropy(V_s_pp_y (3,:), V_s_pp_y (3 ,:))));
103 T_N_by_2 (1,1) = T_N_by_2 (1,1) - sum((log2_entropy(V_s_pp_by (1,:), V_s_pp_by (1 ,:))...
104 +log2_entropy(V_s_pp_by (3,:), V_s_pp_by (3 ,:))));
105 T_N_by_2 (1,2) = sum((log2_entropy(V_s_pp_y (2,:), V_s_pp_y (2 ,:))...
106 +log2_entropy(V_s_pp_y (4,:), V_s_pp_y (4 ,:))));
107 T_N_by_2 (1,2) = T_N_by_2 (1,2) - sum((log2_entropy(V_s_pp_by (2,:), V_s_pp_by (2 ,:))...
108 +log2_entropy(V_s_pp_by (4,:), V_s_pp_by (4 ,:))));
109 T_N_by_2 = T_N_by_2 ./mu;
110 T_N_by_2 = T_N_by_2 /(2*N);
111
112 T_N_by_1 = zeros (2 ,2); %% the first term in the equation
113
114 T_N_by_1 (1,1) = sum(log2_entropy(V_b_pp_y (1,:), V_b_pp_y (1 ,:))...
115 +log2_entropy(V_b_pp_y (3,:), V_b_pp_y (3 ,:))...
116 +log2_entropy(V_b_pp_y (9,:), V_b_pp_y (9 ,:))...
117 +log2_entropy(V_b_pp_y (11,:), V_b_pp_y (11 ,:)));
118 T_N_by_1 (1,1) = T_N_by_1 (1,1) - sum(log2_entropy(V_b_pp_by (1,:), V_b_pp_by (1 ,:))...
119 +log2_entropy(V_b_pp_by (3,:), V_b_pp_by (3 ,:))...
120 +log2_entropy(V_b_pp_by (9,:), V_b_pp_by (9 ,:))...
121 +log2_entropy(V_b_pp_by (11,:), V_b_pp_by (11 ,:)));
122
123 T_N_by_1 (1,2) = sum(log2_entropy(V_b_pp_y (2,:), V_b_pp_y (2 ,:))...
124 +log2_entropy(V_b_pp_y (4,:), V_b_pp_y (4 ,:))...
125 +log2_entropy(V_b_pp_y (10,:), V_b_pp_y (10 ,:))...
126 +log2_entropy(V_b_pp_y (12,:), V_b_pp_y (12 ,:)));
127 T_N_by_1 (1,2) = T_N_by_1 (1,2) - sum(log2_entropy(V_b_pp_by (2,:), V_b_pp_by (2 ,:))...
128 +log2_entropy(V_b_pp_by (4,:), V_b_pp_by (4 ,:))...
129 +log2_entropy(V_b_pp_by (10,:), V_b_pp_by (10 ,:))...
130 +log2_entropy(V_b_pp_by (12,:), V_b_pp_by (12 ,:)));
131
132 T_N_by_1 (2,1) = sum(log2_entropy(V_b_pp_y (5,:), V_b_pp_y (5 ,:))...
133 +log2_entropy(V_b_pp_y (7,:), V_b_pp_y (7 ,:))...
134 +log2_entropy(V_b_pp_y (13,:), V_b_pp_y (13 ,:))...
135 +log2_entropy(V_b_pp_y (15,:), V_b_pp_y (15 ,:)));
136 T_N_by_1 (2,1) = T_N_by_1 (2,1) - sum(log2_entropy(V_b_pp_by (5,:), V_b_pp_by (5 ,:))...
137 +log2_entropy(V_b_pp_by (7,:), V_b_pp_by (7 ,:))...
138 +log2_entropy(V_b_pp_by (13,:), V_b_pp_by (13 ,:))...
139 +log2_entropy(V_b_pp_by (15,:), V_b_pp_by (15 ,:)));
140
141 T_N_by_1 (2,2) = sum(log2_entropy(V_b_pp_y (6,:), V_b_pp_y (6 ,:))...
142 +log2_entropy(V_b_pp_y (8,:), V_b_pp_y (8 ,:))...
143 +log2_entropy(V_b_pp_y (14,:), V_b_pp_y (14 ,:))...
144 +log2_entropy(V_b_pp_y (16,:), V_b_pp_y (16 ,:)));
145 T_N_by_1 (2,2) = T_N_by_1 (2,2) - sum(log2_entropy(V_b_pp_by (6,:), V_b_pp_by (6 ,:))...
146 +log2_entropy(V_b_pp_by (8,:), V_b_pp_by (8 ,:))...
147 +log2_entropy(V_b_pp_by (14,:), V_b_pp_by (14 ,:))...
148 +log2_entropy(V_b_pp_by (16,:), V_b_pp_by (16 ,:)));
149
150 T_N_by_1=T_N_by_1 ./Q;
151 T_N_by_1 = T_N_by_1 /(2*N);
152
153 %%Final T_N_by matrix
154 T_N_by = zeros (2,2);
155
156 for i=1:2
157 for j=1:2

21

158 T_N_by(i,j) = T_N_by_1(i,j)-T_N_by_2(1,i);
159 end
160 end
161
162 end

breaklines
1 function [] = ge_capacity_bern_source ()
2
3 %% Source is Bernoulli
4 %% Channel is Gilbert -Elliot Channel
5 r = rand (1 ,3);
6 q=[r(1,1) r(1 ,2);r(1,2) r(1 ,3)]/(sum(r)+r(1 ,2)); %% Initialization
7
8 p_g =0.3; p_b =0.3;
9 eps_g =0.001; eps_b =0:0.1:0.5; %% GE channel parameters

10 delta =0.001; %%stopping criteria threshold
11
12 cap_results = zeros(1,length(eps_b));
13
14 for iter = 1: length(eps_b)
15 q_r=q;
16 cap = 0;
17 prev_cap = 1;
18 disp(eps_b(1,iter));
19 while(abs(cap -prev_cap)>delta || cap <0)
20
21 T=calculate_T_params_fsmc(q_r ,p_g ,p_b ,eps_g ,eps_b(1,iter));
22
23 A = 2.^(T);
24
25 [M,L] = eig(A);
26 [m,index] = max(diag(L));
27 eig_vec = M(:,index);
28 P=zeros (2,2);
29 for i=1:2
30 for j=1:2
31 P(i,j) = (eig_vec(j,1)/ eig_vec(i ,1))*(A(i,j)/m);
32 end
33 end
34 mu = [P(2 ,1)/(P(2,1)+P(1 ,2)) P(1 ,2)/(P(2 ,1)+P(1 ,2))];
35
36 for i=1:2
37 for j=1:2
38 q_r(i,j) = P(i,j)*mu(1,i);
39 end
40 end
41 prev_cap = cap;
42 cap = 0;
43 for i=1:2
44 for j=1:2
45 cap = cap + q_r(i,j)*(log2 (1/P(i,j))+T(i,j));
46 end
47 end
48 disp("The capacity at this stage is : "+cap);
49 cap_results (1,iter)=cap;
50 end
51 end
52
53 plot(eps_b ,cap_results ,’b’,’LineWidth ’ ,1.4);
54 legend(’Capacity of GE channel using Bernoulli source ’);
55 xlabel(’Bad State error prob’);
56 ylabel(’Capacity ’);
57 end

breaklines
1 function [T_hat] = calculate_T_params_dmc(Q,eps)
2
3 N=100000;
4 s_states = {’0’,’1’};
5 y_states = {’0’,’1’};
6
7 mu = sum(Q);
8 T=zeros (2,2);
9 for i=1:2

10 for j=1:2
11 T(i,j) = Q(i,j)/mu(1,i); %% Source state transition matrix
12 end
13 end
14
15 Emis = 0.5*[(1 - eps)+(1-eps) ...
16 (eps)+(eps); ...
17 (eps)+(eps) ...
18 (1-eps)+(1-eps)];
19
20 [out_seq , int_s_states] = hmmgenerate(N+1,T,Emis ,’Symbols ’ ,...
21 y_states ,’Statenames ’,s_states);
22
23 b = cell(1,N);
24 for i=1:N
25 temp1 = int_s_states{i};
26 temp2 = int_s_states{i+1};

22

27 b(1,i) = cellstr(strcat(temp1 ,temp2));
28 end
29
30 V_s_y = hmmdecode(out_seq (2:end),T,Emis ,’Symbols ’,{’0’,’1’});
31
32 T_branch = [T(1,:) 0 0; 0 0 T(2,:);T(1,:) 0 0; 0 0 T(2 ,:)];
33
34 Emis_branch = [Emis;Emis];
35
36 V_b_y = hmmdecode(out_seq (2:end),T_branch ,Emis_branch ,...
37 ’Symbols ’,{’0’,’1’});
38
39 T_hat = zeros (2 ,2);
40
41 T_hat (1,1) = (sum(log2_entropy(V_b_y(1,:), V_b_y (1 ,:)))/Q(1,1) ...
42 - sum(log2_entropy(V_s_y(1,:),V_s_y (1 ,:)))/mu(1 ,1))/N;
43 T_hat (1,2) = (sum(log2_entropy(V_b_y(2,:), V_b_y (2 ,:)))/Q(1,2) ...
44 - sum(log2_entropy(V_s_y(1,:),V_s_y (1 ,:)))/mu(1 ,1))/N;
45 T_hat (2,1) = (sum(log2_entropy(V_b_y(3,:), V_b_y (3 ,:)))/Q(2,1) ...
46 - sum(log2_entropy(V_s_y(2,:),V_s_y (2 ,:)))/mu(1 ,2))/N;
47 T_hat (2,2) = (sum(log2_entropy(V_b_y(4,:), V_b_y (4 ,:)))/Q(2,2) ...
48 - sum(log2_entropy(V_s_y(2,:),V_s_y (2 ,:)))/mu(1 ,2))/N;
49
50
51 end

breaklines
1 function [] = bsc_capacity_rll_source ()
2
3 %% Source can not output more than one consecutive 0
4 %% Channel is BSC
5 r = rand (1 ,2);
6 q=[0 r(1,1);r(1,1) r(1 ,2)]/(sum(r)+r(1 ,1)); %% Initialization
7
8
9 eps =0:0.05:0.5;

10 delta =0.001; %%stopping criteria threshold
11
12 q_r=q;
13
14 cap_results = zeros(1,length(eps));
15 entr_fun = zeros(1,length(eps));
16 for iter = 1: length(eps)
17 disp(eps(1,iter));
18 cap = 0;
19 prev_cap = 1;
20 while(abs(cap -prev_cap)>delta || cap <0)
21
22 T=calculate_T_params_dmc(q_r ,eps(1,iter));
23 T(isnan(T))=0;
24 A = 2.^(T);
25 A(1 ,1)=0;
26 [M,L] = eig(A);
27 [m,index] = max(diag(L));
28 eig_vec = M(:,index);
29 P=zeros (2,2);
30 for i=1:2
31 for j=1:2
32 P(i,j) = (eig_vec(j,1)/ eig_vec(i ,1))*(A(i,j)/m);
33 end
34 end
35 mu = [P(2 ,1)/(P(2,1)+P(1 ,2)) P(1 ,2)/(P(2 ,1)+P(1 ,2))];
36
37 for i=1:2
38 for j=1:2
39 q_r(i,j) = P(i,j)*mu(1,i);
40 end
41 end
42 prev_cap = cap;
43 cap = sum(sum(log2_entropy(q_r ,1./P)+q_r.*T));
44
45 disp("The capacity at this stage is : "+cap);
46 cap_results (1,iter)=cap;
47 end
48
49 entr_fun(1,iter) = 1-log2_entropy(eps(1,iter),1/eps(1,iter))- log2_entropy (1-eps(1,iter),1/(1-eps(1,iter)));
50 end
51
52 plot(eps ,cap_results ,’b’,’LineWidth ’ ,1.4);
53 hold on;
54 plot(eps ,entr_fun ,’g’,’LineWidth ’ ,1.4);
55 legend(’Capacity of BSC using RLL source ’,’Capacity of BSC in general ’);
56 xlabel(’Error prob’);
57 ylabel(’Capacity ’);
58 end

23

Matlab Codes for Quantum Blahut-Arimoto Algorithm

This section contains all MATLAB files used for coding Quantum Blahut-Arimoto Algorithm.
The following functions have not been included in this report. The code is available on Github at
https://github.com/priyankakaswan18/Quantum-Blahut-Arimoto-Algorithm

• RandomDensityMatrix.m : Generates a random density matrix. (This function has been
used form QETLAB: http://www.qetlab.com/RandomDensityMatrix)

• RandomUnitary.m : Generates a random unitary or orthogonal matrix. (This function has
been used form QETLAB: http://www.qetlab.com/RandomUnitary)

• optargs.m : Handles optional input arguments for functions. (This function has been used
form QETLAB: http://www.qetlab.com/Opt_args)

• tensor.m : computes the tensor product. (This function is being used from Toby Cubitt’s
webpage: http://www.dr-qubit.org/matlab.html)

breaklines
1 % ket Transforms a vector into column vector.
2 function w=ket(v)
3 [~,x]=size(v);
4 if x>1
5 w=v.’;
6 else
7 w=v;
8 end

breaklines
1 % bra Transforms a vector into a normalized row vector.
2 function w=bra(v)
3 [y,x]=size(v);
4 if x>1
5 w=conj(v);
6 else
7 w=v’;
8 end %if
9 % normalization

10 w=w/sqrt(w*w’);

breaklines
1 % ketbra Dirac ’s bra -ket
2 % ketbra(phi1 ,phi2) denotes the outer product of phi1 and phi2.
3 function k=ketbra(v1 ,v2)
4 k=ket(v1)*bra(v2);
5
6 if trace(k)~=0
7 k=k/trace(k);
8 end

breaklines
1 % braket Dirac ’s bra -ket
2 % braket(phi1 ,phi2) denotes the scalar(inner) product of phi1 and phi2.
3 function b=braket(phi1 ,phi2)
4 b=bra(phi1)*ket(phi2);

breaklines
1 function output = E(rho)
2
3 % this function gives action of a quantum channel with Kraus operators A0
4 % and A1 on a density matrix rho
5
6 global A0 A1
7 output=A0*rho*A0 ’+A1*rho*A1 ’;

24

https://github.com/priyankakaswan18/Quantum-Blahut-Arimoto-Algorithm
http://www.qetlab.com/RandomDensityMatrix
http://www.qetlab.com/RandomUnitary
http://www.qetlab.com/Opt_args
http://www.dr-qubit.org/matlab.html

breaklines
1 function output = Ec(rho)
2
3 % this function gives action of the complementary channel of a quantum channel with Kraus operators A0
4 % and A1 on a density matrix rho
5
6 global A0 A1 zero one
7
8 output= trace(A0*rho*A0 ’)* ketbra(zero ,zero)+ trace(A0*rho*A1 ’)* ketbra(zero ,one) + trace(A1*rho*A0 ’)* ketbra(one ,zero)+ trace(A1*rho*A1 ’)* ketbra(one ,one);

breaklines
1 function output = Eadjoint(rho)
2
3 % this function gives action of the adjoint channel of a quantum channel with Kraus operators A0
4 % and A1 on a density matrix rho
5
6 global A0 A1
7
8 output = A0 ’*rho*A0+A1 ’*rho*A1;

breaklines
1 function output = Ecadjoint(rho)
2
3 % this function gives action of the adjoint channel of the complementary channel
4 % of a quantum channel with Kraus operators A0 and A1 on a density matrix rho.
5
6 global zero one
7
8 % apply the Choi map to the complementary channel to obtain the corresponding Choi matrix
9 choi=tensor(Ec(ketbra(zero ,zero)) , ketbra(zero ,zero))...

10 +tensor(Ec(ketbra(zero ,one)) , ketbra(zero ,one))...
11 +tensor(Ec(ketbra(one ,zero)) , ketbra(one ,zero))...
12 +tensor(Ec(ketbra(one ,one)) , ketbra(one ,one));
13
14
15 % compute the spectral decomposition of choi matrix
16 [V,D] = eig(choi);
17
18 % initializing Kraus operators of adjoint channel of complementary channel
19 % of the quantum channel
20
21 B={};
22 B{1}= zeros (2,2);
23 B{2}= zeros (2,2);
24 B{3}= zeros (2,2);
25 B{4}= zeros (2,2);
26
27 % Kraus operators will be the eigenvectors rearranged into a matrix
28 % and the weight of each Kraus operator will be the corresponding eigenvalue.
29
30 for i=1:4
31 v1=V(:,i); % ith eigenvector
32 d=D(i,i); % ith eigenvalue
33 if d>10^(-6) % only updating a Kraus operator in case of corresponding non -zero eigenvalue
34 % creation of elements of ith matrix (i.e., ith Kraus operator)
35 % from ith eigenvector and ith eigenvalue
36 B{i}(1 ,1)=v1(1)* sqrt(d);
37 B{i}(1 ,2)=v1(2)* sqrt(d);
38 B{i}(2 ,1)=v1(3)* sqrt(d);
39 B{i}(2 ,2)=v1(4)* sqrt(d);
40
41 end
42
43 end
44
45 % resultant action on density operator
46 output=B{4}’*rho*B{4}+B{1}’*rho*B{1}+B{2}’*rho*B{2}+B{3}’*rho*B{3};

breaklines
1 function output = ERand(rho)
2
3 % this function gives action of a random classical quantum channel.
4 % Output density operators randomly in mainfile.m
5
6
7 global tau1 tau2
8
9

10 output=rho(1,1)* tau1+rho (2 ,2)* tau2;

breaklines
1 function output = F(sigma ,quantity)
2
3 % F is a Hermitian matrix valued super -operator on density operators used in algorithm ,
4 % which is different for different quantities of interest
5 % quantity - the quantity of interest to be estimated , eg- Coherent information , Holevo quantity , etc

25

6
7 global zero one
8
9 if strcmp(quantity ,’Thermodynamic_capacity ’)

10 output=Eadjoint(logm(E(sigma))./ log(2))- logm(sigma)./ log (2);
11 end
12
13 if strcmp(quantity ,’Holevo_quantity ’)
14 output=ketbra(zero ,zero)* trace(ERand(ketbra(zero ,zero))*(logm(ERand(eye (2)*10^(-6) + ketbra(zero ,zero)))./ log(2)-logm(ERand(sigma))./ log (2)))...
15 +ketbra(one ,one)* trace(ERand(ketbra(one ,one))*(logm(ERand(eye (2)*10^(-6) +ketbra(one ,one)))./ log(2)-logm(ERand(sigma))./ log(2)));
16 end
17
18 if strcmp(quantity ,’Quantum_mutual_information ’)
19 output=Ecadjoint(logm(Ec(sigma))./ log (2)) -Eadjoint(logm(E(sigma))./ log (2)) -logm(sigma)./ log (2);
20 end
21
22 if strcmp(quantity ,’Coherent_information ’)
23 output=Ecadjoint(logm(Ec(sigma))./ log (2)) -Eadjoint(logm(E(sigma))./ log (2));
24 end

breaklines
1 function output = J(rho ,sigma ,gamma ,quantity)
2
3 % Writing the two variable extension J for estimation using Blahut -Arimoto algorithm.
4 % rho ,sigma - density operators
5 % gamma - accerleration parameter for algorithm
6 % quantity - the quantity of interest to be estimated , eg- Coherent information , Holevo quantity , etc
7
8 output= -gamma * trace(rho*(logm(rho)./log (2)))...
9 +trace(rho* (gamma*logm(sigma)./log(2) + F(sigma ,quantity)));

breaklines
1 clear;
2 clc;
3
4 gamma =1; % acceleration parameter (=1 for standard algorithm)
5 epsilon =10^(-6); % additive error threshold
6 modA =2; % dimension of hilbert space A
7
8
9 %% Orthonormal basis states for qubit

10
11 global A0 A1 zero one p
12 zero=ket ([1 0]);
13 one=ket ([0 1]);
14
15 %% Kraus operators for Amplitude Damping Channel with decay probability p
16
17 p=0.3;
18 A0=ketbra(zero ,zero)+sqrt(1-p)* ketbra(one ,one);
19 A1=sqrt(p)* ketbra(zero ,one);
20
21 %% Creating output density operators for random classical quantum channel
22
23 global tau1 tau2
24
25 tau1=RandomDensityMatrix (2);
26 tau2=RandomDensityMatrix (2);
27
28 disp(tau1);
29 disp(tau2);
30
31 %% Default settings for plots
32
33 width = 5; % Width in inches
34 height = 3; % Height in inches
35 alw = 0.75; % AxesLineWidth
36 fsz = 11; % Fontsize
37 lw = 1.5; % LineWidth
38 msz = 8; % MarkerSize
39 label_font =12;
40
41 %% Thermodynamic_capacity
42
43
44 % no_of_iterations=ceil(gamma*log(modA)/ epsilon);
45
46 no_of_iterations =30; % number of iterations
47 quantity=zeros(1, no_of_iterations); % the quantity of interest , eg- Thermodynamic_capacity
48 rhot=eye (2)/ modA; % intial density operator is chosen to be the maximally mixed state
49
50 for t=1: no_of_iterations % iterations of Blahut -Arimoto
51 Z1=trace(expm(log(2) .* (logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Thermodynamic_capacity ’))));
52 rhotp1 =(1/Z1)*expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Thermodynamic_capacity ’)));
53 quantity(t)=J(rhotp1 ,rhotp1 ,gamma ,’Thermodynamic_capacity ’);
54 rhot=rhotp1;
55 end
56
57 figure
58 pos = get(gcf , ’Position ’);
59 set(gcf , ’Position ’, [pos(1) pos(2) width *100, height *100]); %<- Set size
60 set(gca , ’FontSize ’, fsz , ’LineWidth ’, alw); %<- Set properties

26

61 plot(quantity ,’-s’,’LineWidth ’,lw,’MarkerSize ’,msz); %<- Specify plot properites
62 ylabel(’Thermodynamic capacity estimate (bits), $T(t)$’,’Interpreter ’,’latex’,’FontSize ’,label_font)
63 xlabel(’Number of iterations , t’,’Interpreter ’,’latex ’,’FontSize ’,label_font)
64
65
66 %% Holevo_quantity
67
68
69 no_of_iterations =30; % number of iterations
70 quantity=zeros(1, no_of_iterations); % the quantity of interest , eg - Holevo_quantity
71 rhot=eye (2)/ modA; % intial density operator is chosen to be the maximally mixed state
72
73 for t=1: no_of_iterations % iterations of Blahut -Arimoto
74 Z1=trace(expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Holevo_quantity ’))));
75 rhotp1 =(1/Z1)*expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Holevo_quantity ’)));
76 quantity(t)=J(rhotp1 ,rhotp1 ,gamma ,’Holevo_quantity ’);
77 rhot=rhotp1;
78 end
79
80 figure
81 pos = get(gcf , ’Position ’);
82 set(gcf , ’Position ’, [pos(1) pos(2) width *100, height *100]); %<- Set size
83 set(gca , ’FontSize ’, fsz , ’LineWidth ’, alw); %<- Set properties
84 plot(quantity ,’-s’,’LineWidth ’,lw,’MarkerSize ’,msz); %<- Specify plot properites
85 ylabel(’Holevo quantity estimate (bits), $\chi(t)$’,’Interpreter ’,’latex’,’FontSize ’,label_font)
86 xlabel(’Number of iterations , t’,’Interpreter ’,’latex ’,’FontSize ’,label_font)
87
88 %% Quantum_mutual_information
89
90
91 no_of_iterations =30; % number of iterations
92 quantity=zeros(1, no_of_iterations); % the quantity of interest , eg- Quantum_mutual_information
93 rhot=eye (2)/ modA; % intial density operator is chosen to be the maximally mixed state
94
95 for t=1: no_of_iterations % iterations of Blahut -Arimoto
96 Z1=trace(expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Quantum_mutual_information ’))));
97 rhotp1 =(1/Z1)*expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Quantum_mutual_information ’)));
98 quantity(t)=J(rhotp1 ,rhotp1 ,gamma ,’Quantum_mutual_information ’);
99 rhot=rhotp1;

100 end
101
102 figure
103 pos = get(gcf , ’Position ’);
104 set(gcf , ’Position ’, [pos(1) pos(2) width *100, height *100]); %<- Set size
105 set(gca , ’FontSize ’, fsz , ’LineWidth ’, alw); %<- Set properties
106 plot(quantity ,’-s’,’LineWidth ’,lw,’MarkerSize ’,msz); %<- Specify plot properites
107 ylabel(’Mutual information estimate (bits), $I(t)$’,’Interpreter ’,’latex’,’FontSize ’,label_font)
108 xlabel(’Number of iterations , t’,’Interpreter ’,’latex ’,’FontSize ’,label_font)
109
110 %% Coherent_information
111
112
113 no_of_iterations =30; % number of iterations
114 quantity=zeros(1, no_of_iterations); % the quantity of interest , eg- Coherent_information
115 rhot=eye (2)/ modA; % intial density operator is chosen to be the maximally mixed state
116
117 for t=1: no_of_iterations % iterations of Blahut -Arimoto
118 Z1=trace(expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Coherent_information ’))));
119 rhotp1 =(1/Z1)*expm(log(2) .*(logm(rhot)./ log (2)+(1/ gamma)*F(rhot ,’Coherent_information ’)));
120 quantity(t)=J(rhotp1 ,rhotp1 ,gamma ,’Coherent_information ’);
121 rhot=rhotp1;
122 end
123
124 figure
125 pos = get(gcf , ’Position ’);
126 set(gcf , ’Position ’, [pos(1) pos(2) width *100, height *100]); %<- Set size
127 set(gca , ’FontSize ’, fsz , ’LineWidth ’, alw); %<- Set properties
128 plot(quantity ,’-s’,’LineWidth ’,lw,’MarkerSize ’,msz); %<- Specify plot properites
129 ylabel(’Coherent information estimate (bits), $I_{coh}(t)$’,’Interpreter ’,’latex’,’FontSize ’,label_font)
130 xlabel(’Number of iterations , t’,’Interpreter ’,’latex ’,’FontSize ’,label_font)

27

Python Codes for Quantum Blahut-Arimoto Algorithms

This section contains the Python file with implementations for all the Blahut-Arimoto algorithms in
[RISB20]. This is also available on Github at https://github.com/sagnikb/quantum-blahut-
arimoto, which also has documentation on how to use the code.

breaklines
1 import numpy as np
2 import scipy.linalg as linalg
3 import random
4 import matplotlib.pyplot as plt
5
6 def D(rho , sigma):
7 ’’’
8 Returns the quantum relative entropy between two density matrices rho and sigma.
9 Does not check for ker(sigma) subseteq ker(rho) (in which case this value is inf)

10 ’’’
11 return(np.trace(rho @ (linalg.logm(rho) - linalg.logm(sigma)))/(np.log (2)))
12
13 def randpsd(n):
14 ’’’
15 Returns a random real psd matrix of dimension n x n, by first creating a random
16 square matrix M of dimension n and then returning M @ M^T, which is always psd
17 after making the trace 1
18 ’’’
19 M = np.zeros((n,n))
20 for i in range(n):
21 for j in range(n):
22 M[i,j] = random.random ()
23 M = M @ (M.T)
24 return (1/(np.trace(M))) * M
25
26 def create_cq_channel(dim , n):
27 ’’’
28 Creates a random cq-channel with input alphabet size n and output dimension dim
29 Uses randpsd
30 ’’’
31 channel = []
32 for i in range(n):
33 channel.append(randpsd(dim))
34 return channel
35
36 def create_basis(dim):
37 ’’’
38 Creates the standard basis for C^dim
39 ’’’
40 basis = []
41 for i in range(dim):
42 basis_vector = np.zeros ((1, dim))
43 basis_vector [0, i] = 1
44 basis.append(basis_vector)
45 return basis
46
47 def create_amplitude_damping_channel(p):
48 ’’’
49 Returns Kraus operators for 2x2 amplitude damping channel with parameter p
50 ’’’
51 kraus_operators = []
52 M = np.zeros ((2 ,2)); M[0,0] = 1; M[1,1] = np.sqrt(1-p)
53 kraus_operators.append(M)
54 M = np.zeros ((2 ,2)); M[0,1] = np.sqrt(p)
55 kraus_operators.append(M)
56 return(kraus_operators)
57
58 def adjoint_channel(kraus_operators):
59 ’’’
60 Given a set of Kraus operators for a channel , returns the Kraus operators for
61 the adjoint channel
62 ’’’
63 adjoint_kraus_operators = []
64 for matrix in kraus_operators:
65 adjoint_kraus_operators.append(matrix.conj ().T)
66 return adjoint_kraus_operators
67
68 def complementary_channel(kraus_operators):
69 ’’’
70 Given a set of Kraus operators for a channel , returns the Kraus operators for
71 the complementary channel. First computes the Choi matrix for the Kraus operators ,
72 then computes eigenvalues and eigenvectors for the Choi matrix and then ’folds them’
73 to create Kraus operators for the complementary channel
74 (https :// quantumcomputing.stackexchange.com/a/5797)
75 ’’’
76 n = len(kraus_operators)
77 zbasis = create_basis(n)
78 choi = np.zeros ((np.square(n), np.square(n)))
79 for j in range(n):
80 for k in range(n):
81 for l in range(n):
82 for m in range(n):
83 choi = choi + np.trace(kraus_operators[m].conj ().T @ kraus_operators[l] @ np.outer(zbasis[j], zbasis[k])) * \
84 np.kron(np.outer(zbasis[l], zbasis[m]), np.outer(zbasis[j], zbasis[k]))
85 w, v = linalg.eigh(choi) #Choi matrix is symmetric , and eigh is more accurate
86 v = v.T # the columns of V are the eigenvectors

28

https://github.com/sagnikb/quantum-blahut-arimoto
https://github.com/sagnikb/quantum-blahut-arimoto

87 channel = []
88 for i in range(len(w)):
89 channel.append(np.sqrt(w[i])*np.resize(v[i], (n,n))) # folding to get the Kraus operators
90 return channel
91
92 def act_channel(kraus_operators , density_matrix):
93 ’’’
94 Given a channel as a list of Kraus operators and an input density matrix ,
95 computes the output density matrix.
96 ’’’
97 l = len(kraus_operators)
98 output_matrix = np.zeros(np.shape(density_matrix))
99 for i in range(l):

100 output_matrix = output_matrix + kraus_operators[i] @ density_matrix @ (kraus_operators[i].conj ().T)
101 return output_matrix
102
103 def J(quantity , rho , sigma , gamma , basis , channel , adjoint_channel , complementary_channel , adj_complementary_channel):
104 ’’’
105 Computes the function J from https :// arxiv.org/abs /1905.01286 for the given quantity (which can be ’h’,
106 ’tc’, ’coh’ or ’qmi ’) taking as input the channel and the associated adj , complementary and adjoint
107 complementary channels
108 ’’’
109 return -1*gamma*np.trace(rho @ (linalg.logm(rho)/np.log (2))) + np.trace(rho @ (gamma * (linalg.logm(sigma)/np.log (2)) +
110 F(quantity , sigma , basis , channel , adjoint_channel , complementary_channel , adj_complementary_channel)))
111
112 def F(quantity , sigma , basis , channel , adjoint_channel , complementary_channel , adj_complementary_channel):
113 ’’’
114 Computes the function J from https :// arxiv.org/abs /1905.01286 for the given quantity (which can be ’h’,
115 ’tc’, ’coh’ or ’qmi ’) taking as input the channel and the associated adj , complementary and adjoint
116 complementary channels
117 ’’’
118 if quantity == ’h’:
119 s = np.shape(basis [0])
120 output_matrix = np.zeros((s[1], s[1]))
121 Esigma = np.zeros((np.shape(channel [0])[0] , np.shape(channel [0])[0]))
122 for i in range(len(channel)):
123 Esigma = Esigma + sigma[i,i] * channel[i]
124 for i in range(len(channel)):
125 output_matrix = output_matrix + np.outer(basis[i], basis[i]) * np.trace(channel[i] @ (linalg.logm(channel[i])/np.log(2) -
126 linalg.logm(Esigma)/np.log (2)))
127 return output_matrix
128 elif quantity == ’tc’:
129 return -1*linalg.logm(sigma)/np.log (2) + act_channel(adjoint_channel , linalg.logm(act_channel(channel , sigma))/np.log (2))
130 elif quantity == ’coh’:
131 return act_channel(adj_complementary_channel , linalg.logm(act_channel(complementary_channel , sigma))/np.log (2)) - \
132 act_channel(adjoint_channel , linalg.logm(act_channel(channel , sigma))/np.log (2))
133 elif quantity == ’qmi’:
134 return -1*linalg.logm(sigma)/np.log (2) + \
135 act_channel(adj_complementary_channel , linalg.logm(act_channel(complementary_channel , sigma))/np.log (2)) - \
136 act_channel(adjoint_channel , linalg.logm(act_channel(channel , sigma))/np.log (2))
137 else:
138 print(’quantity not found ’)
139 return 1
140
141 def capacity(quantity , channel , gamma , dim , basis , eps , ** kwargs):
142 ’’’
143 Runs the Blahut -Arimoto algorithm to compute the capacity given by ’quantity ’ (which can be ’h’, ’tc’,
144 ’coh’ or ’qmi’ taking the channel , gamma , dim , basis and tolerance (eps) as inputs)
145 With the optional keyword arguments ’plot’ (Boolean), it outputs a plot showing how the calculated value
146 changes with the number of iterations.
147 With the optional keyword arguments ’latexplot ’ (Boolean), the plot uses latex in the labels
148 ’’’
149 if quantity != ’h’: #holevo quantity doesn’t need the other channels
150 Adjoint_channel = adjoint_channel(channel)
151 Complementary_channel = complementary_channel(channel)
152 Adj_Complementary_channel = adjoint_channel(complementary_channel(channel))
153 else:
154 Adjoint_channel = channel; Complementary_channel = channel; Adj_Complementary_channel = channel
155 #to store the calculated values
156 itern = []
157 value = []
158 #initialization
159 rhoa = np.diag ((1/ dim)*np.ones((1,dim))[0])
160 #Blahut -Arimoto algorithm iteration
161 for t in range(int(gamma*np.log2(dim)/eps)):
162 itern.append(t)
163 sigmab = rhoa
164 rhoa = linalg.expm(np.log (2)*(linalg.logm(sigmab)/np.log(2) + \
165 (1/ gamma)*F(quantity , sigmab , basis , channel , Adjoint_channel , Complementary_channel , Adj_Complementary_channel)))
166 rhoa = rhoa/np.trace(rhoa)
167 value.append(J(quantity , rhoa , rhoa , gamma , basis , channel , Adjoint_channel , Complementary_channel , Adj_Complementary_channel))
168 #Plotting
169 if kwargs[’plot’] == True:
170 if kwargs[’latexplot ’] == True:
171 plt.rc(’text’, usetex=True)
172 plt.rc(’font’, family=’serif’)
173 fig , ax = plt.subplots ()
174 plt.plot(itern , value , marker = ’.’, markersize=’7’, label = r’Capacity value vs iteration ’)
175 plt.xlabel(r’Number of iterations ’, fontsize = ’14’)
176 plt.ylabel(r’Value of capacity ’, fontsize = ’14’)
177 plt.xticks(fontsize = ’8’)
178 plt.yticks(fontsize = ’8’)
179 plt.grid(True)
180 plt.show()
181 return J(quantity , rhoa , rhoa , gamma , basis , channel , Adjoint_channel , Complementary_channel , Adj_Complementary_channel)

29

References

[Ari72] S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless
channels. IEEE Transactions on Information Theory, 18(1):14–20, 1972. 1, 6

[Bla72] R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE
Transactions on Information Theory, 18(4):460–473, 1972. 1, 6

[CT84] I Csiszár and G Tusnády. Information geometry and alternating minimization problems.
Statistics & Decision, Supplement Issue No, 1, 1984. 2

[Kav01] A. Kavcic. On the capacity of markov sources over noisy channels. In GLOBECOM’01.
IEEE Global Telecommunications Conference (Cat. No.01CH37270), volume 5, pages
2997–3001 vol.5, 2001. 1, 2, 8, 9

[RISB20] N. Ramakrishnan, R. Iten, V. Scholz, and M. Berta. Quantum blahut-arimoto
algorithms. In ISIT, pages 1909–1914, 2020. 1, 2, 9, 16, 28

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. 2

[VKAL08] P. O. Vontobel, A. Kavcic, D. M. Arnold, and H. Loeliger. A generalization of the
blahut–arimoto algorithm to finite-state channels. IEEE Transactions on Information
Theory, 54(5):1887–1918, 2008. 1, 2, 7, 8

30

	Introduction
	The convergence proof
	Blahut-Arimoto Algorithms for channel capacity
	Classical BAA
	BAA for Finite State Machine Channels
	Simulations

	 Quantum Blahut-Arimoto Algorithms
	Preliminaries and notation
	Complementary Channel
	Adjoint channel
	Adjoint channel of complementary channel
	Examples of Channels

	Quantum Blahut-Arimoto Algorithm
	Convergence

	Coherent Information of Less Noisy Channels
	Blahut-Arimoto algorithm
	Simulations

	Mutual Information of Quantum Channels
	Simulations

	Thermodynamic Capacity of Quantum Channels
	Simulations

	Holevo Quantity of Classical Quantum Channels
	Simulations

