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Introduction

- A major challenge in today’s age of big data and machine
learning is to balance statistical efficiency with user privacy.

- Differential privacy (DP) has become a standard definition for
designing large-scale privacypreserving algorithms in both
industrial and academic settings.

- The basic idea is that any curious accessor of the database
should not be able to infer much about any particular user’s
entry by making queries.

Randomized mechanism K : X" — Y, is (¢, 6)-DP,

Pr(k(D) € S) < ePr(K(D') € S) + 6



Introduction: Centralized vs Local

Differential Privacy Local Differential Privacy

ananan

- Adds noise to the output - Adds noise to each sample in
query. the database.

Randomized mechanism K : X — Y is (e,6) LDP, iff

sup sup [Pr(K(x) €S) —ePr(K(xX)eS)| <d
XX €X Sea(Y)

]
TImages taken from [5]




Introduction: Strong Data Processing Inequalities

- For two distributions on X, P and Q, and a convex function
f:(0,00) — R* satisfying f(1) = 0, the f-divergence of Pand Q is
defined as

0(P0) = Ealf( o))

where P << Q, i.e,, P is absolutely continuous with respect to Q.
- f(x) := xlogx — KL- divergence.
- f(x) := 3|x — 1| — Total Variation Distance.
- f(x) :== (x = 1)* — x*-divergence.
+ f(x) := max{x — v,0} — E,- divergence.

£(PIIQ) = 5 [ 18P~ vda = 5y =1




Introduction: Strong Data Processing Inequalities..continued

Multiplication of a componentwise non-negative vector by a
stochastic matrix results in a vector that is “more uniform”.

- For transition kernel K :—
DA(PK||QK) < Dg(P||Q)
- Inequality often strick: leads to strong data processing
inequalities.
- Strictness measured in terms of contraction coefficient
Ds(PK||QK)
ne(K) = sup o
d P.0:0<Dy(Pl|Q)<00  Df(PI|Q)
- For the popular divergences, nrv(K), n (K), 0,2 (K) and 7, (K)
follow similar definitions.

2
2For more on SDPIs, refer [4]
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Equivalence between LDP and SDPI

[ K is (e,0) —LDP <= E(PK||QK) < 0Ec<(P||Q) ]

Additionally,

DA(PK]|QK) < ¢(e, 0)DA(P||Q)
o(e,0) =1—e ¢(1—94)

DH(PE"KE|Q®"CE") < gn(e, §)DH(PZ"||Q2")
Pn(e,8) =1—e"(1-9)"

3
3Proofs in [2]
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Applications to Private Estimation

- A set of probability distributions P on some alphabet X
- We wish to estimate a functional 6 : P — ©

- Normal Setting: Have access to i.i.d. samples X{. Find estimator
0:x" -0

- Performance measured in terms of loss function p: © x © — R,
- Minmax error:

M (P, p) = inf gggp[p(é(x?)v 0(P))]



Applications to Private Estimation

- In private setting, samples X7 are privatized by mechanisms
{Ki}!_,, each (e, ¢) private. The outputs Y] are revealed.

- {K;}L, can be interactive or non-interactive.
- Find estimator ¢ : " — ©

+ Minmax error:

o . ,
Mn(P), p,€,6) = K,ellgf,(;Vi 'Qf sup plp((Y7), 0(P))]



Applications to Private Estimation: Le Cam’s Method

- Applicable when differntiating between two distributions Py and
P;.

- Basically a binary hypothesis testing problem.

- Uses TV distance to bound the error:

1
Per(VIX7) = 5[1 = Dr(PE"IP")]

- Minmax error (Non-private Setting):

Ma(P,p) = *[1 — Dry(P§"[[PP")] > *[1 12 VD (Pol|P1)]

+ In the private setting, Dr/(PS"||P$") is replaced by the TV
distance of the two induced output distributions.
- Minmax error (Private Setting)'

Mu(P,p,e,6) > \/n¢ (€,8)Dyr(Po][P1)]

A
“4Results taken from [3],[2]




Applications to Private Estimation: Fano’s Method

- When there is an indexed finite set of distributions.

- Bounds using mutual information between the index random
variable V and the samples.

- Minmax error (Non-private Setting):

IViX{) + log2

> _
Mn(P,p) =T 1 Iog |V|

- In private setting, replace I(V; X7) with I(V; Y7). Use following
bound:
I(Vi Y7) < ¢nle, 0)I(Vi XT)

5Results taken from [3],[2]
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Non-homogeneous Privacy




Non-homogeneous Privacy : Motivation

- Local privacy definitions usually employ same (e, d) for all
samples, whether mechanism is interactive or non-interactive.

- What if we want different privacy levels for different samples.

- Some data entries might be more sensitive than others.

- Another scenario: Suppose each individual sends their data
through a network of relays and each relay performs and
independent privatization. Different path lengths will translate
to different privacy levels.

For X € X" i.id. samples, positive integert < n,e € R,,0 €
[0,1]%,7 € [0,1]',3_, p; = 1, a non-homogeneous LDP mech-
anism {K;}_, is called (€,8,p)-LDP if p; fraction of the total
number of samples are (e, ;) locally differentially private.

Remark: The idea of the definition is similar to the definition of 5
Heterogeneous Differential Privacy of [1]



Non-homogeneous Privacy : A possible scheme

- Consider a finite tree T = (V, E).

- Every vertex, starting from the root, creates
m children.

- u fraction of those children do not
reproduce further and the rest produce m
children of their own. Thesenodes do

- Stop the tree at any level t, i.e,, all nodes in
layer t stop reproducing further.

- Root produces i.i.d. samples.

- Each edge acts independently as a (¢, 0)
LDP channel. ¢ Luteae %teteer

- Each sample travels to one of the leaves.

- Result: Due to different path lengths,
samples are non-homogeneously
privatized.



Non-homogeneous Privacy : Analysis

7~

For reasonably chosen m, u,t and K € K. s, the above mech-
anism satisfies (€,48,5)-LDP with ¢ = ¢, & = &', Vi € [t] and

Y IE [t— 1]7p[ ~ ,U«T;VT;;M

pi & L
P M (=) (ptm—mp)

=0—p)"'myand l; = (1— p)="'mt.

t—1
n=>> (1=~ 'mu+1—p)'m
i—1

~m (1 = )2 (e + m — my)
For the i-fold composition channel !

Ee<(PK'||QKT) < 6Eec(PKITY|QKT)

A

< 8'Ee-(P||Q) "




Non-homogeneous Privacy : Le Cam’s Method

Perr(VIV7) = *[1 — Dry(MgIM7)]

So we need bound on Dr/(Mg||M7).

D7, (Mg||M7) < Z¢165 iDki(Pol|P1)

i=1

- Use Pinsker’s inequality to convert to KL-divergence.
- Use independence property to separate each layer.
- Use iteratively for each layer

Df(P®nIC®n||Q®n]C®n) S ¢n(€,5)Df(P®n||Q®n)

15



Non-homogeneous Privacy : Fano’s Method

We need upper bound on I(V; Y7)

t

VYD) <> (e, 8) IV Xe,)

i=1

- Use chain rule.

- Separate layers using the fact that conditioned on V, Y, is
independent of Y.

- Use the mutual information contraction iteratively for each layer
as before.

16



Conclusion and Future work




Conclusion and Future work

- In the tree-based model, due to geometrical growth, most
samples have high privacy.

- Since some samples carry more information, the performance
should be better. How better is the performance from
homogeneous case?

- Techniques used not limited to the particular tree-based
privatization model. What other models possible?

- What if the tree was random?

Simplest thing to imagine: Py and P; be Bernoulli and each
channel be (¢,6) LDP Binary Symmetric Channels, aka, the
Randomized Response mechanism. How better is the perfor-
mance?
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Questions?
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