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Intro



Introduction

• A major challenge in today’s age of big data and machine
learning is to balance statistical efficiency with user privacy.

• Differential privacy (DP) has become a standard definition for
designing large-scale privacypreserving algorithms in both
industrial and academic settings.

• The basic idea is that any curious accessor of the database
should not be able to infer much about any particular user’s
entry by making queries.

Differential Privacy

Randomized mechanism K : X n → Y , is (ϵ, δ)-DP,

Pr(K(D) ∈ S) ≤ eϵPr(K(D′) ∈ S) + δ
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Introduction: Centralized vs Local

Differential Privacy

• Adds noise to the output
query.

Local Differential Privacy

• Adds noise to each sample in
the database.

Local Differential Privacy

Randomized mechanism K : X → Y is (ϵ, δ) LDP, iff

sup
x,x′∈X

sup
S∈σ(Y)

[Pr(K(x) ∈ S)− eϵPr(K(x′) ∈ S)] ≤ δ

1
1Images taken from [5]
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Introduction: Strong Data Processing Inequalities

• For two distributions on X , P and Q, and a convex function
f : (0,∞) → R+ satisfying f(1) = 0, the f-divergence of P and Q is
defined as

Df(P||Q) = EQ[f(
dP
dQ )]

where P << Q, i.e., P is absolutely continuous with respect to Q.
• • f(x) := x log x→ KL- divergence.

• f(x) := 1
2 |x− 1| → Total Variation Distance.

• f(x) := (x− 1)2 → χ2-divergence.
• fγ(x) := max{x− γ, 0} → Eγ- divergence.

Eγ(P||Q) =
1
2

∫
|dP− γdQ| − 1

2 |γ − 1|
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Introduction: Strong Data Processing Inequalities..continued

Multiplication of a componentwise non-negative vector by a
stochastic matrix results in a vector that is “more uniform”.

• For transition kernel K :→

Df(PK||QK) ≤ Df(P||Q)

• Inequality often strick: leads to strong data processing
inequalities.

• Strictness measured in terms of contraction coefficient

ηf(K) = sup
P,Q:0<Df(P||Q)<∞

Df(PK||QK)

Df(P||Q)

• For the popular divergences, ηTV(K), ηKL(K), ηχ2(K) and ηγ(K)

follow similar definitions.
2
2For more on SDPIs, refer [4]
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Equivalence between LDP and SDPI

K is (ϵ, δ)− LDP ⇐⇒ Eeϵ(PK||QK) ≤ δEeϵ(P||Q)

Additionally,

Df(PK||QK) ≤ ϕ(ϵ, δ)Df(P||Q)

ϕ(ϵ, δ) = 1− e−ϵ(1− δ)

Df(P⊗nK⊗n||Q⊗nK⊗n) ≤ ϕn(ϵ, δ)Df(P⊗n||Q⊗n)

ϕn(ϵ, δ) = 1− e−ϵn(1− δ)n

3
3Proofs in [2]
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Applications to Private Estimation

• A set of probability distributions P on some alphabet X
• We wish to estimate a functional θ : P → Θ

• Normal Setting: Have access to i.i.d. samples Xn1 . Find estimator
θ̂ : X n → Θ

• Performance measured in terms of loss function ρ : Θ×Θ → R+

• Minmax error:

Mn(P, ρ) = inf
θ̂

sup
P∈P

P[ρ(θ̂(Xn1 ), θ(P))]
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Applications to Private Estimation

• In private setting, samples Xn1 are privatized by mechanisms
{Ki}ni=1, each (ϵ, δ) private. The outputs Yn1 are revealed.

• {Ki}ni=1 can be interactive or non-interactive.
• Find estimator ψ : Yn → Θ

• Minmax error:

Mn(P), ρ, ϵ, δ) = inf
Ki∈Kϵ,δ∀i

inf
ψ

sup
P∈P

P[ρ(ψ(Yn1 ), θ(P))]
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Applications to Private Estimation: Le Cam’s Method

• Applicable when differntiating between two distributions P0 and
P1.

• Basically a binary hypothesis testing problem.
• Uses TV distance to bound the error:

Perr(V|Xn1 ) ≥
1
2 [1− DTV(P⊗n0 ||P⊗n1 )]

• Minmax error (Non-private Setting):

Mn(P, ρ) ≥
τ

2 [1− DTV(P⊗n0 ||P⊗n1 )] ≥ τ

2 [1−
1√
2
√
nDKL(P0||P1)]

• In the private setting, DTV(P⊗n0 ||P⊗n1 ) is replaced by the TV
distance of the two induced output distributions.

• Minmax error (Private Setting):

Mn(P, ρ, ϵ, δ) ≥
τ

2 [1−
1√
2
√
nϕ(ϵ, δ)DKL(P0||P1)]

4
4Results taken from [3],[2]
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Applications to Private Estimation: Fano’s Method

• When there is an indexed finite set of distributions.
• Bounds using mutual information between the index random
variable V and the samples.

• Minmax error (Non-private Setting):

Mn(P, ρ) ≥ τ

[
1− I(V; Xn1 ) + log 2

log |V|

]
• In private setting, replace I(V; Xn1 ) with I(V; Yn1 ). Use following
bound:

I(V; Yn1 ) ≤ ϕn(ϵ, δ)I(V; Xn1 )

5

5Results taken from [3],[2]
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Non-homogeneous Privacy : Motivation

• Local privacy definitions usually employ same (ϵ, δ) for all
samples, whether mechanism is interactive or non-interactive.

• What if we want different privacy levels for different samples.
• Some data entries might be more sensitive than others.
• Another scenario: Suppose each individual sends their data
through a network of relays and each relay performs and
independent privatization. Different path lengths will translate
to different privacy levels.

Non-homogeneous LDP

For Xn1 ∈ X n i.i.d. samples , positive integer t ≤ n, ϵ ∈ Rt
+, δ ∈

[0, 1]t, ρ ∈ [0, 1]t,
∑t

i=1 ρi = 1, a non-homogeneous LDP mech-
anism {Ki}ni=1 is called (ϵ, δ, ρ)-LDP if ρi fraction of the total
number of samples are (ϵi, δi) locally differentially private.

Remark: The idea of the definition is similar to the definition of
Heterogeneous Differential Privacy of [1]
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Non-homogeneous Privacy : A possible scheme

• Consider a finite tree T = (V, E).
• Every vertex, starting from the root, creates
m children.

• µ fraction of those children do not
reproduce further and the rest produce m
children of their own.

• Stop the tree at any level t, i.e., all nodes in
layer t stop reproducing further.

• Root produces i.i.d. samples.
• Each edge acts independently as a (ϵ, δ)

LDP channel.
• Each sample travels to one of the leaves.
• Result: Due to different path lengths,
samples are non-homogeneously
privatized. 13



Non-homogeneous Privacy : Analysis

For reasonably chosen m, µ, t and K ∈ Kϵ,δ , the above mech-
anism satisfies (ϵ, δ, ρ)-LDP with ϵi = ϵ, δi = δi, ∀ i ∈ [t] and
ρi ≈ µ

mt−i−1(1−µ)t−i−1(µ+m−mµ) ∀ i ∈ [t− 1], ρt ≈ m−mµ
µ+m−mµ .

li = (1− µ)i−1miµ and lt = (1− µ)t−1mt.

n =
t−1∑
i−1

(1− µ)i−1miµ+ (1− µ)t−1mt

≈ mt−1(1− µ)t−2(µ+m−mµ)

For the i-fold composition channel i

Eeϵ(PKi||QKi) ≤ δEeϵ(PKi−1||QKi−1)

≤ · · ·
≤ δiEeϵ(P||Q) 14



Non-homogeneous Privacy : Le Cam’s Method

Recall

Perr(V|Yn1 ) ≥
1
2 [1− DTV(Mn

0||Mn
1 )]

So we need bound on DTV(Mn
0||Mn

1 ).

Theorem 1

D2TV(Mn
0||Mn

1 ) ≤
1
2

t∑
i=1

ϕli(ϵ, δ)
iliDKL(P0||P1)

• Use Pinsker’s inequality to convert to KL-divergence.
• Use independence property to separate each layer.
• Use iteratively for each layer

Df(P⊗nK⊗n||Q⊗nK⊗n) ≤ ϕn(ϵ, δ)Df(P⊗n||Q⊗n)
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Non-homogeneous Privacy : Fano’s Method

Recall

We need upper bound on I(V; Yn1 )

Theorem 2

I(V; Yn1 ) ≤
t∑
i=1

ϕli(ϵ, δ)
iI(V; XLi)

• Use chain rule.
• Separate layers using the fact that conditioned on V, YLi is
independent of YLj .

• Use the mutual information contraction iteratively for each layer
as before.
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Conclusion and Future work

• In the tree-based model, due to geometrical growth, most
samples have high privacy.

• Since some samples carry more information, the performance
should be better. How better is the performance from
homogeneous case?

• Techniques used not limited to the particular tree-based
privatization model. What other models possible?

• What if the tree was random?

Simplest thing to imagine: P0 and P1 be Bernoulli and each
channel be (ϵ, δ) LDP Binary Symmetric Channels, aka, the
Randomized Response mechanism. How better is the perfor-
mance?
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