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Abstract
The problem of local differential privacy involves the design and analysis of privatization

kernels that satisfy certain probabilistic guarantees while maintaining a desired level of
estimation efficacy. Several works have successfully explored the relationship of a privatizing
kernel to the contraction of divergence of probability distributions passed through the kernel.
Very recently, an equivalence of an (ε, δ)-LDP channel to the contraction of the Eγ divergence
has been established. The purpose of this work is to study and understand this equivalence
and to explore the possibilities of applying them to newer problems of privacy. In this regard,
a new concept of non-homogeneous privacy has been proposed and certain bounds on the
estimator performance have been established.

1 Introduction

In this age of big data and machine learning, data has really become the new currency. In
every aspect of our everyday lives, every gadget that we interact with is most likely collecting
some form of data about us. Naturally, people have started asking questions about how much
do the gadget owners know about us, or more importantly, how comfortable are we with them
knowing. This leads us to the natural question of data privacy. There are several directions
through which this assurance of data privacy can be given to the user by an organization. One of
the cryptographic approaches, which has garnered much traction in recent times, is Differential
Privacy (DP). Loosely speaking, DP ensures that any query made by an accesor of the data,
collected from several individuals, does not reveal much information about the data of any single
individual. Although DP somewhat puts to rest the fundamental allegations against individual
information leakage via queries, being a centralized model, it still lacks the security against the
database holder itself. The notion of Local Differential Privacy (LDP), which is a stricter and
decentralized version of DP, provides us with such security guarantees. The basic idea of LDP is
to introduce noise at the time of data collection itself instead of at the time of answering queries
and hence to protect the privacy even against a malicious collector. The drawback is that LDP
typically requires more noise than regular DP and hence the probabilistic guarantees for the
correctness of the queries become looser.
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The noise introducing mechanism of LDP to each individual sample can be modeled as a
channel operating in a finite sample space where each sample is chosen i.i.d. from some underlying
distribution. The LDP guarantees then translate to certain uniformity requirements on the Markov
transition kernel of the channel. From the theory of Markov chains, we know that if U → X → Y
is a Markov chain, then the random variables satisfy the Data Processing inequality, namely
I(U ;Y ) ≤ I(U ;X) where I(·; ·) denotes the mutual information. From another perspective, for
two underlying sample distributions P and Q, the push forward through a stochastic kernel makes
the two output distributions more "uniform" and hence decreases their distance measured in
terms of some divergence. Such inequalities can often be strengthened to get the class of strong
data processing inequalities (SDPIs) and the strength of these inequalities are measured in terms
of the contraction coefficients.

These insights lead us to the question: is there a way to describe the operation of an LDP
channel on the data in the language of SDPIs? The answer to this question has been studied in a
flurry of papers and has recently been made concrete.

The structure of this article is as follows. In Section 2, we recall some fundamental required
results on privacy and SDPIs. In Section 3, we explore the relationship between LDP and SDPIs
which have been used to analyze the class of problems on private estimation, discussed in Section
4. In Section 5, we introduce the idea of Non-Homogeneous Local Differential Privacy. We present
a candidate scheme along with it’s performance analysis using the tools of Section 3 and 4. We
conclude with some future possibilities and directions in Section 6.

2 Preliminaries

2.1 DP and LDP
A database D is a collection of finite number of samples from an underlying sample space X . A
database D′ is called a neighboring database if dH(D,D′) = 1.

Definition 1. A randomized mechanism K : Xn → Y, operating on databases of size n, is called
(ε, δ)-DP,for ε ≥ 0, δ ∈ [0, 1], if for all neighboring databases D,D′, we have

Pr(K(D) ∈ S) ≤ eεPr(K(D′) ∈ S) + δ

for all S ∈ σ(Y).

As mentioned before, the DP mechanism K can be thought of doing the privatization while
answering the query so as to confuse an adversary as to the underlying database being D or D′.
This is a centralized model because the privatization mechanism is working on the whole database
instead of individual samples. The LDP definition is, in a way, the one-shot (n = 1) version of
this.

Definition 2. A randomized mechanism K : X → Y is called (ε, δ) LDP, for ε ≥ 0, δ ∈ [0, 1], if

sup
x,x′∈X

sup
S∈σ(Y)

[Pr(K(x) ∈ S)− eεPr(K(x′) ∈ S)] ≤ δ

This decentralization can be done at the user end itself at the time of data collection. For
n users each holding a random i.i.d. datapoint Xi, the privatization mechanism is said to be
non-interactive if each privatizing kernel Ki only depends on Xi. It is called interactive if Ki
depends in Xi as well as Y i−11 where Yi = K(Xi).



2.2 SDPIs and Contraction Coefficients
We begin with the following definitions.

Definition 3. For two distributions on X , P and Q, and a convex function f : (0,∞) → R+

satisfying f(1) = 0, the f -divergence of P and Q is defined as

Df (P ||Q) = EQ[f(
dP

dQ
)]

where P << Q, i.e., P is absolutely continuous with respect to Q.

The f -divergence incorporates all other popularly used divergence definitions. For example,
taking f(x) := x log x gives us the KL divergence

DKL(P ||Q) =

∫
log

dP

dQ
dP

, taking f(x) := 0.5|x− 1| gives the total variation distance

DTV (P ||Q) =
1

2

∫
|dP − dQ| = sup

S⊆σ(X )

|P (S)−Q(S)|

and f(x) := (x− 1)2 gives the χ2-divergence

Dχ2(P ||Q) =

∫
(
dP

dQ
)2dQ− 1

Another popular divergence which has recently come to limelight in [2] for analysis of LDP is for
fγ(x) := max{x− γ, 0}, known as the Eγ-divergence or the "Hockey-Stick" divergence and given
formally by

Eγ(P ||Q) =
1

2

∫
|dP − γdQ| − 1

2
|γ − 1|

For a transition probability kernel K : X → Y and a probability distribution P on X , let
PK(y) =

∫
K(y|x)P (dx). It is well known that all the above divergences satisfy data processing

type inequalities, namely
Df (PK||QK) ≤ Df (P ||Q)

In fact, in many cases, these inequalities can be further strengthened resulting in the set of strong
data processing inequalities

Df (PK||QK) ≤ ηf (K)Df (P ||Q)

where the contraction coefficient ηf (K) is defined as

ηf (K) = sup
P,Q:0<Df (P ||Q)<∞

Df (PK||QK)

Df (P ||Q)

For the popular divergences, the coefficients ηTV (K), ηKL(K), ηχ2(K) and ηγ(K) follow similar
definitions. The inter-relationships between these contraction coefficients have been well studied
in the literature. It is known that

ηTV (K) = sup
x,x′

DTV (K(·|x),K(·|x′)) (1)



which gives a very simple two point characterization of the supremum. Another very useful result
is

ηf (K) ≤ ηTV (K)

, i.e., all f -divergences contract at least as much as the TV distance [4]. Further, on finite
alphabets, for any twice differentiable f with f ′′(1) > 0

ηχ2(K) ≤ ηf (K)

[1]. With these definitions we are ready to make a connection with LDP.

3 Relationship to LDP

Let Kε,δ be the set of all (ε, δ)-LDP mechanisms with input X and output Y. One of the first
among the contraction results for kernels in Kε,δ were discussed in [6]. For any (ε, 0) LDP
mechanism K, the following holds

sup
x,x′∈X

DKL(K(·|x),K(·|x′)) ≤ ε(eε − 1)

which implies
DKL(KP ||KQ) ≤ ε(eε − 1)

by convexity. This was later strengthened by [5]

DKL(KP ||KQ) +DKL(KQ||KP ) ≤ min{4, e2ε}(eε − 1)2DTV (P ||Q)2

For the Eγ divergence, a two point characterization, similar to 1, was found in [3]

ηγ(K) = sup
x,x′

Dγ(K(·|x),K(·|x′))

This generalizes 1 because E1(P ||Q) = DTV (P ||Q). Using this the authors in [2] were able to
put forward the following equivalence between (ε, δ)-LDP and the Eγ contraction coefficient

Theorem 1. ([2], Theorem 1) A kernel K is (ε, δ)-LDP if and only if ηeε(K) ≤ δ or equivalently

K ∈ Kε,δ ⇐⇒ Eeε(PK||QK) ≤ δEeε(P ||Q) (2)

The authors further proved a much more generalized contraction applicable to any f -divergence.

Lemma 2. ([2], Lemma 1) For any K ∈ Kε,δ and φ(ε, δ) = 1− e−ε(1− δ), ηf (K) ≤ φ(ε, δ) or
equivalently

Df (PK||QK) ≤ φ(ε, δ)Df (P ||Q) (3)

It was also shown that if one considers the n-fold product distribution, i.e., n i.i.d. samples
are generated from the underlying distribution and then privatized through the same (ε, δ)-LDP
mechanism K independently then the following holds

Df (P⊗nK⊗n||Q⊗nK⊗n) ≤ φn(ε, δ)Df (P⊗n||Q⊗n) (4)

where φn(ε, δ) = 1− e−εn(1− δ)n.



4 Applications to Private Estimation

Let P(X ) denote a class of distributions on the sample space X , and let θ : P(X )→ Θ denote a
functional defined on P(X )( We shall use P whenever X is clear from context). The space Θ in
which the parameter θ(P ) takes values depends on the underlying statistical model. For example,
in the case of one-dimensional mean estimation problem, it is a subset of the real line, or for the
distribution estimation problem, it is a probability simplex over R|X |. Let ρ denote a semi-metric
on the space ρ : Θ×Θ→ R+. In the non-private setting, the statistician is given direct access to
i.i.d. observations {Xi}ni=1 drawn according to some distribution P ∈ P. The goal is to fine and
estimator of θ(P ). We define an estimator θ̂ as a measurable function θ̂ : Xn → Θ, whose quality
is assessed in terms of the risk

EP [ρ(θ̂(Xn
1 ), θ(P ))]

and the target is to minimize it over all P ∈ P, i.e., the minimax risk is

Mn(P, ρ) = inf
θ̂

sup
P∈P

EP [ρ(θ̂(Xn
1 ), θ(P ))]

In the private setting, the statistician is given privatized samples {Yi}ni=1 where Zi is the
privatized version of Xi through Ki. The composite mechanism {Ki}ni=1 can be interactive
or non-interactive but each Ki satisfies (ε, δ)-LDP constraint. The target now is to design an
estimator ψ : Yn → Θ and the minimax risk is

Mn(P, ρ, ε, δ) = inf
Ki∈Kε,δ∀i

inf
ψ

sup
P∈P

EP [ρ(ψ(Y n1 ), θ(P ))]

4.1 Locally Private Le Cam’s Method
Le Cam’s method is applicable when our set of possible underlying distributions is limited to
two: P0 and P1. Let V denote that random index of the distribution. Then we have the basic
inequality in the non-private setting,

Perr(V |Xn
1 ) ≥ 1

2
[1−DTV (P⊗n0 ||P

⊗n
1 )]

and
Mn(P, ρ) ≥ τ

2
[1−DTV (P⊗n0 ||P

⊗n
1 )] ≥ τ

2
[1− 1√

2

√
nDKL(P0||P1)]

where τ is such that ρ(θ(P0), θ(P1)) ≥ 2τ .
In the private setting, Xn

1 is replaced by Y n1 and P⊗ni gets replaced by the output probability
distribution of the composite channel Kn = {Ki}ni=1. It was shown in [2] that in this case the
following lower bound on the minmax error holds.

Mn(P, ρ, ε, δ) ≥ τ

2
[1− 1√

2

√
nφ(ε, δ)DKL(P0||P1)]

Hence, heuristically speaking, the cost of privatization is that it reduces the effective sample size
from n to n(1− e−ε(1− δ)).



4.2 Locally Private Fano’s Method
When the set of distributions is not limited to two but is still finite, we can get a lower bound on
the error by using Fano’s inequality. Like before, let V denote that random variable denoting the
index of the distribution which takes value in V := {1, 2, · · · , |V|}. We have from the standard
Fano’s inequality in the non-private setting

Mn(P, ρ) ≥ τ
[
1− I(V ;Xn

1 ) + log 2

log |V|

]
where τ is such that ρ(θ(P ), θ(P ′)) ≥ 2τ for every P, P ′ ∈ P. For the private setting I(V ;Xn

1 )
gets replaced by I(V ;Y n1 ). It was shown in [2] that the following upper bound holds when the
privatization mechanism is non-interactive and identical for all samples

I(V ;Y n1 ) ≤ φn(ε, δ)I(V ;Xn
1 )

which gives us a corresponding lower bound on Mn(P, ρ, ε, δ).

5 Non-Homogeneous Local Differential Privacy

As discussed in the previous section, the analysis of LDP assumes that all samples are privatized
(whether interactively or non-interactively) with the same privacy parameters (ε, δ). A curious
mind may ask, what if instead of privatizing all samples equally we do a non-homogeneous
privatization. Such a scenario may occur, for example, if the database holds data from users
who requir or demand different levels of privatization. Another possibility is as follows: suppose
the users are part of a network where their generated data travels to the central database via
relay nodes, each of which applies its own privatization mechanism. Thus resulting in differently
privatized samples at the database. This results in some samples having "low" privacy and some
having "high" privacy. The information contraction perspective tells us that low privacy implies
less contraction and hence more information is carried by these fraction of samples. One then asks
how much better can the estimator do. With this regard we introduce the following generalized
definition.

Definition 4. For n i.i.d. samples generated from some underlying distribution over sample
space X , positive integer t ≤ n, ε ∈ Rt+, δ ∈ [0, 1]t, ρ ∈ [0, 1]t,

∑t
i=1 ρi = 1, a non-homogeneous

LDP mechanism {Ki}ni=1 is called (ε, δ, ρ)-LDP if ρi fraction of the total number of samples are
(εi, δi) locally differentially private.

Treating the vector ρ as a probability vector, one can hence guarantee an expected or average
privacy level of the whole process. Below we introduce a model for such a mechanism.

Consider a finite tree T = (V,E). Starting at the root, every vertex generates m children
for m ∈ N and among these m children a randomly selected fraction µ ∈ (0, 1) of them do not
produce any further offspring (µ is chosen so as to make mµ an integer) and the other children
further produce m offspring of their own. We group the vertices by layers in a natural way namely
vertices at a distance i from the root are the layer i vertices. We stop this process at some layer
t, i.e., non of the vertices in layer t reproduce any further. Let the set of all leaves of all layers
of the tree generated this way be L and the leaves at layer i be Li with |Li| = li. The root will
generate n = |L| i.i.d. samples {Xj}nj=1 from some underlying distribution and each sample is
mapped to one of the leaves by a uniformly chosen permutation πn : [n]→ L. Let K : X → X be
an (ε, δ) LDP channel. We denote the i-fold composition of the channel K by Ki. A sample Xj is
privatized through Ki where i is the distance of πn(j) from the root. Another way to think of this



mechanism is that each sample generated at the root "travels" to its corresponding leaf vertex
via the unique path and each edge on that path acts independently as a privatizing channel K.

Claim 3. For reasonably chosen m,µ, t and K ∈ Kε,δ, the above mechanism satisfies (ε, δ, ρ)-LDP
with εi = ε, δi = δi, ∀ i ∈ [t] and ρi ≈ µ

mt−i−1(1−µ)t−i−1(µ+m−mµ) ∀ i ∈ [t− 1], ρt ≈ m−mµ
µ+m−mµ .

Proof. At any layer of the t-layer tree, among them children of any vertex, (1−µ)m children further
reproduce m children and µm children become leaves at that level. A careful but straightforward
calculation reveals that the number of leaves at layer i, i ∈ [t − 1] is li = (1 − µ)i−1miµ and
lt = (1− µ)t−1mt. Hence we have

n =

t−1∑
i−1

(1− µ)i−1miµ+ (1− µ)t−1mt

=
µ

(1− µ)

mt(1− µ)t − 1

m(1− µ)− 1
+ (1− µ)t−1mt

≈ mt−1(1− µ)t−2µ+ (1− µ)t−1mt

= mt−1(1− µ)t−2(µ+m−mµ)

And so

ρi =
li
n
≈ (1− µ)i−1miµ

mt−1(1− µ)t−2(µ+m−mµ)
=

µ

mt−i−1(1− µ)t−i−1(µ+m−mµ)
1 ≤ i ≤ t− 1

and
ρt =

lt
n

=
m−mµ

µ+m−mµ
For the εi and δi, we need to characterize the equivalent privacy guarantees of the i-fold composition
channel Ki. For this we resort to Theorem 1 and use it i times for two distributions P,Q on X to
get

Eeε(PKi||QKi) ≤ δEeε(PKi−1||QKi−1)

≤ · · ·
≤ δiEeε(P ||Q)

which implies by the equivalence theorem that Ki is an (ε, δi)-LDP channel. This completes the
proof of the claim.

Remark: An alternative way to generate such a tree for a given n and proportion vector ρ
would be as follows: Take a regular tree of degree m and sufficient depth t and select uniformly
randomly from the nodes of layer i a number of nρi of nodes for each i. The travel paths of each
sample might not be unique in this case anymore but the privacy guarantees and analysis will
still hold.

5.1 Non-homogeneous Locally Private La Cam’s Method
For the tree-based privatization mechanism described above, let Mn

i be the induced output
distribution of Y n1 when the inputs are generated from Pi, i ∈ {0, 1}. Notice that since the
input distribution of Xn

1 is the product distribution P⊗ni and the privatization mechanisms of
each sample are independent (although not identical), Mn

i is also a product distribution. But



the individual mechanisms are different namely l1 number of samples Xπ−1
n (L1)

go through the
channel K⊗l1 , l2 number of samples Xπ−1

n (L2)
go through the two fold composition of K⊗l2 , i.e.,

(K⊗l2)2 ≡ (K2)⊗l2 and so on. We have the following lemma.

Lemma 4.

D2
TV (Mn

0 ||Mn
1 ) ≤ 1

2

t∑
i=1

φli(ε, δ)
iliDKL(P0||P1)

Proof.

D2
TV (((K)⊗l1 × · · · × (Kt)⊗lt)P⊗n0 ||((K)⊗l1 × · · · × (Kt)⊗lt)P⊗n1 )

(1)

≤ 1

2
DKL(((K)⊗l1 × · · · × (Kt)⊗lt)P⊗n0 ||((K)⊗l1 × · · · × (Kt)⊗lt)P⊗n1 )

(2)
=

1

2

t∑
i=1

DKL((Ki)⊗liP⊗li0 ||(Ki)⊗liP⊗li1 )

(3)

≤ 1

2

t∑
i=1

ηKL(K⊗li)DKL((Ki−1)⊗liP⊗li0 ||(Ki−1)⊗liP⊗li1 )

(3)

≤ · · ·
(3)

≤ 1

2

t∑
i=1

ηKL(K⊗li)iDKL(P⊗li0 ||P⊗li1 )

(4)
=

1

2

t∑
i=1

φli(ε, δ)
iliDKL(P0||P1)

where (1) follows from Pinsker’s inequality, (2) and (4) follow from the chain rule of divergence
and (3) follows from the successive use of Equation 4.

With this we have the following theorem.

Theorem 5. For the privatization mechanism based upon the tree T (m,µ, t), the minmax
estimation error is lower bounded as follows

Mn(P, ρ, ε, δ,m, µ, t) ≥ τ

2

1− 1√
2

√√√√ t∑
i=1

φli(ε, δ)
iliDKL(P0||P1)


Proof. Follows directly from 4.

5.2 Non-homogeneous Locally Private Fano’s Method
Recall Section 4.2 where a lower bound on the estimation error was found by finding an upper
bound on I(V ;Y n1 ) and then applying Fano’s inequality. The following lemma gives a similar
upper bound on I(V ;Y n1 ) for the non-homogeneous privatization scheme.

Lemma 6.

I(V ;Y n1 ) ≤
t∑
i=1

φli(ε, δ)
iI(V ;Xπ−1

n (Li))



Proof. We denote YLi to be the set of privatized samples at layer i. Then we have,

I(V ;Y n1 ) = I(V ;YL1
, YL2

, · · · , YLt)
(1)

≤ I(V ;YL1) + I(V ;YL2 |YL1) + · · ·+ I(V ; ;YLt |YL1 , YL2 · · · , YLt−1)

= I(V ;YL1) +H(YL2 |YL1)−H(YL2 |V, YL1) + · · ·+ I(V ; ;YLt |YL1 , YL2 · · · , YLt−1)

(2)
= I(V ;YL1

) +H(YL2
|YL1

)−H(YL2
|V ) + · · ·+ I(V ; ;YLt |YL1

, YL2
· · · , YLt−1

)

(3)

≤ I(V ;YL1
) +H(YL2

)−H(YL2
|V ) + · · ·+ I(V ; ;YLt |YL1

, YL2
· · · , YLt−1

)

= I(V ;YL1
) + I(V ;YL2

) +H(YL3
|YL2

, YL1
)−H(YL3

|V, YL2
, YL1

) + · · · ,+I(V ;YLt |YL1
, YL2

· · · , YLt−1
)

(2),(3)

≤ · · ·
(2),(3)

≤
t∑
i=1

I(V ;YLi)

(4)

≤
t∑
i=1

φli(ε, δ)
iI(V ;Xπ−1

n (Li))

where (1) follows from chain rule, (2) follows because YLi ↔ V ↔ YLj forms a Markov chain
for i 6= j, (3) follows because conditioning reduces entropy and (4) follows due to successive
application of Equation 4.

Theorem 7. For the privatization mechanism based upon the tree T (m,µ, t), the minmax
estimation error is lower bounded as follows

Mn(P, ρ, ε, δ,m, µ, t) ≥ τ

[
1−

∑t
i=1 φli(ε, δ)

iI(V ;Xπ−1
n (Li)) + log 2

log |V|

]
Proof. Follows directly from 6.

6 Conclusion and Future Directions

In this work, an attempt has been made to understand this newly established strong connections
between LDP and the well studied field of contraction of divergences. It is clear that these
connections provide an alternative, perhaps easy to understand perspective to the field of privacy
and vastly simplify and streamline the analysis of certain problems. Additionally, the topic of
non-homogeneous local differential privacy invite several interesting questions of its own. Perhaps
the first pertinent question would be to see how tight these bounds are that have been established
in Section 5. Namely, what kind of schemes can be designed to achieve these bounds while
satisfying the desired privacy guarantees. For example, if we assume binary alphabets and binary
symmetric channels to be the privatization mechanism in the tree based scheme, what error rates
can one achieve.

It is obvious that the techniques used to prove the bounds are not limited to the tree based
scheme and can be applied to any such non-homogeneous privatization mechanism as long as it is
well defined and there are certain independence properties. This opens up possibilities for several
imaginative schemes. One of which, perhaps having reasonable theoretical and also practical
interest, is to have a random tree instead of a deterministic one and study the "most probable"
behavior with probabilistic guarantees.
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