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Ray Splitting and Quantum Chaos
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Recent advances in the theory of the quasiclassical approximation for systems that are chaotic in
the classical limit are extended to the case of ray splitting, in particular, to the splitting of an incident
ray into a reflected and refracted component at a sharp interface. An instructive example is presented
and novel results are found. These include evidence for ray split and periodic orbits in the spectral
correlations and a new type of “scarred” eigenstate based on combining nonisolated periodic orbits
whose quasiclassical contributions have a nontrivial phase from total internal reflection.

PACS numbers: 05.45.+b, 03.65.Sq

Chaosis a well-defined concept usually appliedde- fer operator [6,7] which we generalized to ray splitting.
terministic nonlinear dynamical systemviich haveexpo- We also use our ray-splitting model to numerically check
nential sensitivity to initial conditions.“Quantum chaos” predictions of the trace formula for peaks in the Fourier
is the field of study of quantum (or wave) systems whosdransform of the density of states. The transfer operator
classical limitis chaotic. The “classical limit”is/a — 0,  formalism allows several levels of the quasiclassical ap-
where A is the wavelength, and is the shortest relevant proximation which were checked numerically and found to
classical length. Thguasiclassical approximatiofQCA)  be satisfactory [5]. Using the transfer operator approach
is the most important tool of quantum chaos, as it treats theve also found simple theories (one of which is discussed
casel) < A/a < 1. below) for some novel types starswhose existence de-

Much interest exists in extending the QCA as widelypends on refraction and reflection.
as possible. There are important cases for which the The model example we study issplit circle billiard
classical limit does not exist or is physically irrelevant. (Fig. 1), a system which could be realized experimentally.
If there is a characteristic lengith for which A/d =1, It is described by the two-dimensional equatigi® +
wave effects may persist. Simplification is achieved ifk; — u(x)Vo]¥(x,y) = 0, with ¥ = 0 on the boundary
d/A — 0 while for all other lengthsA/a < 1. The of the unit circledC,x*> + y?> = r> = 1, andu(-) is the
optical phenomena okfractionat well defined interfaces unit step function. In the left semicircle < 0, the
and diffraction [1] at edges or corners are no doubt thepotential energy vanishes, while on the right itis a constant,
oldest and best understood effects of this type. Vo [8]. The above wave equation describes a quantum

In this paper, we consider the case of refraction angarticle in units mass: = %, i = 1,and energyE = k%_
reflection at an interface. A ray or classical trajectoryQOr if we consider a cylindrical microwave cavity with
splits into a reflected and refracted ray when it strikesdielectric of index of refraction, in x < 0 and vacuum in
the interface. Thigay splitting is characteristic of the x > 0, ¥ could describe an electric field polarized in the
situation where there are just a few places that a length
d < Mexists. Another example is the surface of an elastic
solid, where incident pressure waves split into reflected
pressure and shear waves [2,3]. In general, if two or more
distinct bulk waves can coexist at an interface, there will
be a coupling between them describable as ray splitting.
See also Refs. [2] and [4] for discussion of ray splitting
and quantum chaos.

We have extended recent developments in the theory of
the quasiclassical approximation in quantum chaos to the
case of ray splitting at an interface. A typical model has
been worked out in detail and there are a number of in-
structive new results. We concentrate here on the most
important of these and we will give further details else-
where [5]. In particular, we give here a generalization of
Gutzwiller’s trace formula, valid for ray splitting as well
as nonisolated and stable periodic orbits. (The standard

formula assumes hyperbolically unstable isolated periodig|G. 1. Geometry of the ray-splitting billiard. A typical ray-
orbits.) It is expressed in terms of Bogomolny's trans-splitting trajectory is also shown.

Ray Splitting
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zdirection, and/y = k(1 — ny2). Oritcould describe a minimizessS,. The transmission coefficient is
drumhead with different mass membranes in left and right ,
semicircles. We are interested in the short wavelengtt (0s 0') = 2vkikg coswy coswr / (ki cOSr, + kg COSR) ,

caseE,Vy > 1, E/Vy ~ 1. The critical angle (from the (5)

normal) for internal reflection is given by /E = co$ a.,
so that rays incident from the left at an angle are

reflected at anglex; and refracted or transmitted at an gument oft which is in Cy.

angleay according to Snell’s law, s, = Sina, Sinag.

where tam; = (¢ — sind;)/co9;, 0, being that ar-
Note that|r(@, 6)|*> +
[t(6,6"))*> = 1, where the ray reflected frora to 6’ is

Bogomolny’s operatof’ (6, #') gives the semiclassical split and transmitted t@”. This makes the operatdr

contribution of a ray emitted o®C at point §’ and
arriving at pointd with no intermediate bounces froéc.

unitary in QCA. For angles; > a., kg becomes pos-
itive imaginary, the reflection coefficient has unit mag-

T is a precise expression of Huygen’s principle. Pathsiitude but nontrivial phase, and the transmitted wave is
bouncingn times from dC are obtained by considering evanescent rather than propagating.

the nth power (iterate) ofT. The right semicircle is
described by|0| < 7/2 (denotedd & Cg) while 6 €
C; means|§d — w| < w/2. Letkr = JE — V, be the
wave number irCg. If E > V, thenkz = +ilkg|. The
T operator can be writtehl = T, + T, + T,. Thedirect

orbit betweend and ¢’ that does not encounter the

discontinuity gives a contribution

1 9254(0,0’)
m@%=—k; T

0000’
where the actios ;(0, 0') = 2kg | sin% (6 — 0] (# and
0’ both in C; or both in Cg). This is the only kind

eiSd(B,H’) (1)

These expressions far may be written down almost
by inspection. They can be checked by formulating
the problem as an exact integral equation [5]. The
Fredholm theory provides an expression for the Fredholm
determinantD(E) = def(l — T(E)) whose zeros give
the spectrum [9]. The imaginary part of the logarith-
mic derivative of D is a generalization of the series
known (in the hard chaos case) as the Gutzwiller trace
formula. Using the relation between the determinant
and the trace, we obtain the formal expression for
the trace formula [7] for the density of states [10],
d(E) = d(E) — w "m[d/dEY r'TIT(E)"],  where
d(E) is the smoothed state density [11]. (See Ref. [2] for

of contribution for the circle billiard. The negative sign the Gutzwiller formula in the case of ray splitting with

accounts for the Dirichlet condition oAC. For the

reflectedorbit we must generalize Bogomolny’s formula

Eqg. (1) to include theeflection coefficientgiven by

r(6,0") = *(k; cosxy,

— kg coswg)/(k; cosy + kg COSrp)

)

hyperbolically unstable isolated periodic orbits.)

If the integrals ovenC involved in the trace are evalu-
ated by the method of stationary phase, the result is
expressed in terms of periodic orbits. We note that in the
presence of ray splitting the term “periodic orbit” means
a closed ray path traversed with periodically repeated
particular choices of transmission or reflection at the ray
splitting boundary. (See some examples in Fig. 2.) The
trace ofT’" gives the contribution of all periodic orbits with

encountered in the elementary problem of a plane wavebounces fromdC. Such a contribution will have a phase

incident on an interface. In Eq. (Y.z = %(0 - @), if
0,0' € C. g anda, is related toag by Snell's law. The
positive sign is taken fof € C,. Then

—r(6,0) ’ 028,(0,0") | ., /
Tr 0’ 0/ — ’ r\v» iS,. (6,0 ), 3
N A | T @

ands, = 2kL,R|cos% @ + 6")|.
The contribution tdrl' of atransmittedor refracted orbit
is

N _ —1(6,6") ‘ 925,(0, 6" ’ i5,(0.0')
10.0) = = 57— 2000’ |€ - @
In Eq.(5) (f 6 €cC.,0e€Cr) 5.(6,0)=
krL(0,&) + ki L(0, &), where L0,¢) =

J1 + €2 — 2£sind is the distance from a poin®
on 9C to a point on the interface = ¢, x = 0 such
that Snell’s law is obeyed by the two rays. In fagt,

S, = § PdQ, the action along the orbit. The contribution
of a given periodic orbitp is a,e’». The weightsa,

for nonisolated orbits can be evaluated as well as the
ones for isolated orbits. In the electromagnetic version
of the problem, wherex,. is fixed andv is proportional

to k, Vo = mki, each actiors, = k.s, wheres,(n) is
independent ok,. A Fourier transform with respect to
k; of our formal trace expression fal(E) has peaks at
the values of the transform variabfe= s,. (One does
the transform for complek; thus avoiding the divergence
problem.)

In Fig. 2 we show such a power spectrum [12] for our
model (atn = 0.5) labeled by a schematic indicating the
type of orbit giving the peak. [Several peaks appear at
reduced actions half those of the orbits indicated. This
is because the transform was made for those levels odd
under reflection through theaxis. This symmetry can be
geometrically represented by replacing the circle billiard
by its upper semicircle, with Dirichlet conditions on tke
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400 [ @070, Eva@) = 000, ©
e (D
[F@)[? @ e The most interesting example of this novel use of the
@ d / transfer operator is probably that of the internal reflection
200 \ | scars [e.g., Fig. 318+)] which are apparently based on
@ classical periodic orbits totally internally reflected from

the circle center. In the modedny orbit passing through
the center is part of a periodic orbit. There is a continuous
infinity of such periodic orbits, all with the same action,
and so these periodic orbitare not isolated. They
are marginally unstable. Prominent scars of nonisolated
orbits are well known in other billiards, e.g., the Sinai
billiard or the Bunimovich stadium billiard.
FIG. 2. Fourier transforny dk, e "* d(k}) (power spectrum) A remarkably simple theory of such scars features “sec-
for » = 0.5. (The peak a@ and the peak at coincide for  ond” WKB quantization. Since only the reflected or-
n =05) bit is important we approximat& = T,, Eq. (3). The
state desired classically passes close to the center and so
r@a\s low angular momentum. It thus varies comparatively
owly with #. In fact, parametrize in WKB fashion,
(0) = sin(\Vkz £(8)), where we use the system symme-

-+

a
2
T
2

axis. Neumann conditions give the even states. Retraci
orbits thus desymmetrized give half the action, while
orbits such as (d) are not so affected.] The first four peak X .
are associated(vgith nonisolated famili]es of periodic oprbits ry to take the unknown fl.mCt'oﬁ(ﬁ) elther_ even or odd
and the other labeled peaks are for isolated orbits [13]L_Jn_(j¢r0 — 2m — 6. The integral Eq. (6) is done in the
We have also tracked these peaks as a function ahd Spirit of stationary phase. We encounter
found that they agree with the,(n)’s found from simple
trigonometry. The position of the peaks is determined F.(9) = if do'r(6,0') \/kL cos(% 6 + 6)/2m
by simple geometry. By exploiting th& operator, we
can find the amplitudes as well, even for nonisolated and w tikileos(3 0+ ,+i V7 f(6'). @)
stable orbits. We will report on these results elsewhere.
Figure 3 shows a few of many wave functions we have : , . . .
obtained numerically, together with their energy values.’A‘,S'S_um'n_g f(eT)hT l’h theh stationary point is ?}t
The notation18+ indicates the 18th even state (which o =m—90 s has the geometric meaning that

has energy 123.6). There are chaotic sta2es;, 32+, the orbit reflects frqm the interface at the' circle cen-
whispering gallery state§5+,58—, internal reflection ter. The prefactor is S\(/(f)lluated at the Sta“onaﬂi’(g‘)’o'”t'
scarsl8+, 31+, and states clearly based on periodic orbits' S Yields Vk/2m e, where r(9, —) = e
refracting through the center of the circl®,+,63—. The and v(6) =/—2arcco$cos9/ cosx,). We now ex
regions of high probability density are dark. pand the ¢ , dependelnce Of/ the explonent ',n2 ()
We can also, in several cases, obtain semianalytié‘bo/Ut —0, le, /COS(E(H + 0,)) ~1-g(0 + 0",
approximate solutions to the eigenvalue equation f(0) = f(=0) + f'(=0)(6 + 0"). 'll'/t;en F+(0) =
i expi{2k, + [f1(0)F + v(0)}explxik, f(—6)}.
In order to have a solution of Eg. (6) the first ex-

123.6 125.9 142.4 176.6

— ; ponential inF must be equal tori, in the even (odd)
| | Y ; case, respectively. This leads to the condifigi(#)]> +
F M v(0) = € = 27(p T 1/2) — 2k;. This is a WKB-like
-~ condition wheref’ plays the role of a momentum and
18+ 19+ v(0) (the phase of the reflection coefficient) is an attrac-

tive potential. [Notee = 1, so it represents a small dif-
ference of two large numbers. In the language of energy
levels, it is a quantum defect. This also means that the
scale of variation of/(0) is intermediate betweeky and
unity, which is rather unusual.]

35+ An appropriate boundary conditiogh = 0 at [0 —

FIG. 3. Some eigenstates féf) = 100. Energies are given @| = 3 7 is obtained by considering the grazing orbits.

(above the pictured state), as well as the number of the stafghen the direct orbit h‘f"s ”eaf'y the same I_eng_th as_the
and its symmetry € for even and— for odd with respect to reflected one, and contributes with the opposite sign, since

the x axis). the reflection coefficient is-1 at grazing incidence. This

192.4 344.2
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FIG. 4. The quantum defect in the semiclassical approxi-
mation of Eq. (8) (solid line) and the full qguantum defects
(squares).

yields the expression

[:/2 do+Je — v(9) = \/Lk—L(l +5).

Since v(#) is an attractive “potential,” there can be a
“turning point” 8. < 7 where € = v(6.) and in this
case § = 1/4. |If there is no turning point then in
effectd, = = andd = 0 for odd modes and = % for

(8)

R. E. Prange and B. Georgeot were partially supported by
National Science Foundation Grant No. DMR-9114328.

*Present address: Universitat Freiburg, 7800 Freiburg,
Germany.
TPresent address: Department of Physics.
*Present address: Department of Electrical Engineering
and Institute for Plasma Research.
Spresent address: Niehls Bohr Institute, Copenhagen,
Denmark.
**Present address: Institute for Systems Research.
[1] Diffraction effects on quantum chaos are discussed by
G. Vattay, A. Wirzba, and P.E. Rosenqvist [Phys. Rev.
Lett. 73, 2304 (1994)], and by N. Pavloff and C. Schmidt
[Phys. Rev. Lett75, 61 (1995)].
L. Couchman, E. Ott, and T. M. Antonsen, Jr., Phys. Rev.
A 46, 6193 (1992).
R.L. Weaver, J. Acoust. Soc. Amg5, 1001 (1989);
D. Delande, D. Sornette, and R. Weaver, J. Acoust.
Soc. Am. 93, 1873 (1994); C. Ellegaard, T. Guhr,
K. Lindmann, H. Q. Lorensen, J. Nygaard, and M. Oxbor-
row, Phys. Rev. Lett75, 1546 (1995).
R.N. Oerter, E. Ott, T. M. Antonsen, Jr., and P. So (to be
published).

(2]
(3]

[4]

even modes. The energies are labeled by two quantunid] R. Blimel, T.M. Antonsen, Jr., B. Georgeot, E. Ott, and

numbersp andl. The former counts the radial nodes and
the latter the angular. The state shown has 1, p = 3.
(Higher values ofl in the range of energies we studied
generally involve incident angles less than the critical, so
the approximation keeping onl, fails.) We carried out
this WKB calculation and found approximate energies for

the sequence of internal reflection scars. These energies

are parametrized by the “quantum defegt; such that
E, = m*(p + y,)* and the results are compared with
the numerical levels in Fig. 4.

To recapitulate, we have generalized the modern the-
ory of the quasiclassical approximation to certain practi-
cally important cases for which the classical limit does not
strictly exist, namely to the case of sharp interfaces where
classical rays may split with certain quantum probabilities
Our main tool has been the generalization of the transf
operator to include probability amplitudes, including both
magnitude and phase. We have found numerical confir-
mation that the resulting theory, an approximation at the

R. E. Prange (to be published).
[6] E.B. Bogomolny, Nonlinearitys, 805 (1992).
[7] B. Georgeot and R.E. Prange, Phys. Rev. Le#. 2851
(1995);ibid. 74, 4110 (1995).
[8] We find the classical system to be characterized by mixed
chaos with both stable, unstable, and nonisolated periodic
orbits for E > V,. (The concept of chaos can be general-
ized to this nondeterministic case.) The spectrum (obtained
numerically) was checked against the theoretical smoothed
spectral staircase. These results will be published sepa-
rately [5]. The characteristic Wigner repulsion of energy
levels is found [5]. These results indicate that the statisti-
cal properties of the spectrum generalize to the case of ray
splitting.
[9] Absolutely convergent series in terms of periodic orbits
are known for this function.

e[‘_10] The sum over diverges, and the result must be regarded

as an analytic continuation of the series from unphysical
parameters, e.g., from an energy with a large positive
imaginary part to the physically significant real energy
axis.

quasiclassical level, is quite a good approximation. In parf11] 4(E) with ray splitting is discussed by us elsewhere [R.E.

ticular we verified that split-ray periodic orbits give rise to

Prangeet al., Phys. E53, 207 (1996)].

distinctive energy level correlations. As an example off12] For Fourier transformed spectral density without ray

a result which is completely inaccessible to the standard
type of trace formula, we developed a new method which

explains a novel type of scarred eigenstate which depend§

explicitly on the phase shift of the total internal reflection.
This method should be useful in other contexts.

The work of R. Blimel was supported by the Institute
for Plasma Research at the University of Maryland.
The work of B. Georgeot was partially supported by a
Lavoisier Fellowship. E. Ott and T.M. Antonsen were
partially supported by the Office of Naval Research.

splitting, see, e.g., U. Eichmann, K. Richter, D. Wintgen,
and W. Sandner, Phys. Rev. L&itl, 2438 (1988).

Evidence exists [5] for a periodic orbit involving a lateral
ray. In this case, the lateral ray orbit is a sort of limiting
case of the orbit indicated in Fig. 2(e), where the angle
of incidence from the left isy, and the part of the orbit
parallel to the interface is exactlgt the interface itself.
The lateral ray is a higher order quasiclassical effect with
a distinctive signature. Lateral rays are discussed in L. M.
Brekhovskikh,Waves in Layered MedigAcademic Press,
New York, 1960).

3]

2479



