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Quasiperiodically Forced Damped Pendula and Schrodinger Equations with Quasiperiodic
Potentials: Implications of Their Equivalence
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Certain first-order nonlinear ordinary differential equations exemplified by strongly damped,
quasiperiodically driven pendula and Josephson junctions are isomorphic to Schrodinger equations
with quasiperiodic potentials. The implications of this equivalence are discussed. In particular, it is

shown that the transition to Anderson localization in the Schrodinger problem corresponds to the
occurrence of a novel type of strange attractor in the pendulum problem. This transition should be
experimentally observable in the frequency spectrum of the pendulum or Josephson junction.

PACS numbers: 05.45.+b, 03.20.+ i

—d'e/dx'+~V(x)e(x) =Em(x). (2)

Here we consider (2) in the case of a quasiperiodic po-
tential V (x ) = u (k &x, k2x ), where u is 2m periodic in

its arguments. Schrodinger equations with quasi-
periodic potentials have been the subject of much re-
cent study (see reviews by Souillard" and Simons) be-
cause of applications in condensed matter physics and
also because they are an intermediate case interpolat-
ing between purely periodic potentials, for which the
states are extended (Bloch waves), and random poten-
tials, for which the states are Anderson localized.
Past work has shown that, for k, /k2 a typical irrational

The strongly damped, driven pendulum with time-
dependent forcing and/or string length is described by

v d@/dt = y(t ) cos@+f (t),
where v, y, and f represent frictional, gravitational,
and external torques, respectively. In (1) we have
neglected the inertial term, d2$/dt, as is appropriate
in the case of strong damping and suitably slow time
dependence of y and f. Equation (1) also describes
Josephson junctions with a large shunt conductance.
We take y(t) and f'(t) to be quasiperiodic with two
incommensurate frequencies, i.e. , f(t) =f (to&t, to2t),
where f is 2m. periodic in both of its arguments, and
co&/to2 = co is irrational. Nonlinear differential equa-
tions of second order with periodic forcing have been
extensively studied and are known to exhibit interest-
ing nonlinear dynamical behavior (e.g. , period dou-
bling, intermittency, etc.). Quasiperiodic forcing, how-
ever, has received little attention. As we shall show,
quasiperiodic forcing, even in the case of a single first
order differential equation, can lead to interesting
dynamics. In particular, as a forcing parameter is in-
creased the solutions undergo a transition to a novel
type of strange attractor with distinct power-spectrum
characteristics.

Our analysis of Eq. (1) will be based on a transfor-
mation originally used by Prufer in 1926 to study the
spectrum of the Schrodinger equation,

= h (@,x), (3)

which is of the same form as (1). By a change of in-
dependent variables an arbitrary positive function can
be introduced multiplying the right-hand side of (3).
[To transform (2) into (1) with a positive y, we need
to take g') maxk'(x). ]

For the Schrodinger equation the integrated density
of states (the number of states per unit length with en-
ergies less than E) is equal to 1/27r times the winding
number& (E) = (h (@(x),x))„,where (. . .)„denotes
an average over x. The Lyapunov exponent for (3) is
A = (Bh/B@)„and also has the significance of being
the negative of the exponentiation rate of ~a ~2. For
(E, A. ) in the localized and stop-band regions, A com-
puted from (3) with typical initial conditions is nega
tive For extended . states A = 0.

We now consider the pendulum and Josephson-
junction equation, (1), with v = 1, y ( t ) = 1, and quasi-
periodic forcing f(t ) = Ko+ V(oc sotot + costo2t ),
where to2=1 and to, =to = (&5 —1)/2 (the reciprocal
of the golden mean). This corresponds to

k'(x(t)) = g'[f (t) —1]/lf'(t) +1]
with the change of variables

x(t) = (2g) '[(K +o1)t+ Vo(sint +to 'sintot)],
which is valid when Ko ) 2 Vo —1. With a switch to

number7 and for small A. , the states are typically ex-
tended, while for large A. localized states are typical. In
both cases allowed energies fall on a Cantor set of fin-
ite measure with stop bands on the complement of this
Cantor set. s

We now use Prufer's transformation9 to show the
connection between Eqs. (1) and (2). For the com-
plex amplitudes, a (x) = qr'+igW and b (x) =4"
—ig'4r, Eq. (2) yields a'=i (ua —pb) and b'=i (pa
—nb), where 2a= (k /g) +g, 2P= (k /g) —g, g is
an arbitrary constant, k (x ) = E —

A. V(x ), and the
prime denotes differentiation with respect to x. For 9
real, (a (

= ~b ~
and a/b = exp[i @(x)] with P real. We

then obtain

d~t/dx = g '[[g'+ k'(x) ] + [g' —k'(x) ] cos@}
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the I, variable, the winding number K and Lyapunov
exponent A for (1) are, to within a constant factor, the
same as those for (3), K/K = A/ A = (Kp+ 1)/2g. Fig-
ure 1 shows a numerically obtained map of the Kp- Vp

plane giving regions where A is negative (hatched) or
zero. Figure 2 shows A and ~ vs Eo at the value of Vo

indicated by the arrow in Fig. 1. Making use of the
analogy with Eq. (2) we can make the following state-
ments concerning Eq. (1). First K vs Kp is a "devil' s
staircase": a continuous, nondecreasing curve with a
dense set of open intervals on which K is constant and
given by9

K = ffl CO ~
+ I 0)2, (4)

with l and m integers. Between these plateaus is a
Cantor set, generally of finite measure, on which & in-
creases with Kp. For low Vp or large Kp [small A. or
large E in (2)], A is zero on the Cantor set and nega-
tive on the plateaus. For large Vo, A becomes nega-
tive on the Cantor set as well as on the plateaus. In
the Schrodinger problem, the plateaus are the stop
bands, the Cantor set with A = 0 corresponds to the
extended regime, and the Cantor set with A & 0 corre-
sponds to the localized regime.

In Fig. 1 the regions where (4) holds appear as nar-
row tongues emerging at small Vp. The set of points
where the tongues touch each other appear to lie on a
smooth (but nonunique) critical curve which separates
the localized and extended regimes. A crude approxi-
mation to such a critical curve is indicated in Fig. 1.

We now consider the surface of section for (1) by
strobing the system at times t, = (2jvr/&p2) + tp (j
is an integer) and plot @,= @(tf)(mod27r ) versus
gj =

cutj (mod27r). The solution of the differential
equation thus generates a discrete time map, @J+ t

=M(QJ, Hi), OJ+t = (8, +2mt0)(mod2n. ), where M is

invertible for $. In the case of Kronig-Penny models,
where V consists of 5 functions (and, hence, also the
discrete Schrodinger equation), it is simple to compute
M explicitly from (3).

The extended, stop-band, and localized solutions of
the Schrodinger equation give rise to surface-of-
section plots with qualitatively different characteristics.
For the extended case typically the orbit in the surface
of section densely fills the two-torus (0, p), apparently
generating a smooth density of points, the winding
number ~ is irrationally related to co& and ~2, and thus
a 27r-periodic function of P(t) will possess frequency
components at ltpt+mt02+nK (l, m, n are integers).
Thus extended states of (2) correspond to three-
frequency quasiperiodic orbits of (1).

In a stop band, the attracting orbit in the surface of
section lies on a smooth single-valued curve,
@= F (8), which wraps m times around the torus in @
for each time that it wraps once around in H. [This is a
consequence of (4).] Since ~ satisfies Eq. (4), a 2m-
periodic function of P will have frequency components
at lcot+mt02. Thus stop bands of (2) correspond to
two-frequency quasiperiodic attractors of Eq. (1). The
attracting curve P =F(0) is invariant under the map.
In addition, there is also an unstable invariant curve,
@= F (8), which repells initial conditions (attracts
them as t —~).

To see whether @= F(H) also applies to the "local-
ized" case, we initialized a large number of points at a
single initial 0 value, but with different initial
values. After a large number of iterates, we find that
the orbits are all attracted to a single value @J. This
implies that the attractor for the localized case also sat-
isfies a functional relationship, @= F (0). However,
from the correspondence with localized states of (2),
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FIG. 1. Plot Ko- Vo plane. The hatched regions indicate a

negative Lyapunov exponent for Eq. (1).

FIG. 2. Lyapunov exponent and winding number for Eq.
(1) as a function of Kp for Vp=0. 55, indicated by an arrow
in Fig. 1.
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FIG. 3. (a) Surface-of-section plot for a strange attractor
for the pendulum equation at Ko ——1.34, Vo ——O.SS. The sys-
tem is strobed at times t, = (j+3/16)27r, j integer. (b)
Log-log plot of X (S) for the case in (a).

the rotation number is typically irrationally related to
cot and coz. Thus F(0) cannot be a continuous curve.
Otherwise it would continuously join up with itself
after m wraps in @ implying ~= mcut+nt02. Hence
F(0) must contain discontinuities. If F(0) is discon-
tinuous at some 0 = Od, then it must be discontinuous
everywhere, since the 0 map is ergodic for irrational co.

This is also suggested by Fig. 3(a) and from its similar-
ity with the analyzable case discussed in Ref. 3. Hence
this attractor is geometrically strange, but, in contrast
with strange attractors usually encountered in non-
linear dynamics, it is not chaotic (the Lyapunov ex-
ponent A is negative). Thus, in the localized regime for
(2), Fq. 0) has strange nonchaotic attractors with A & 0.
The possibility of strange nonchaotic attractors with
A & 0 and positive measure in parameter space has
been discussed for systems forced at two incommensu-
rate frequencies in Ref. 3.

Approaching the edge of a region where (4) holds,
the transition from two- to three-frequency motion
(below the critical curve in Fig. 1) occurs when the
stable and unstable curves coalesce [i.e. , F (0) = F (0)
at the transition and the curves remain smooth]. In
the transition from two-frequency to strange solutions,
however, the stable and unstable invariant curves be-
come more and more wiggly as one nears the edge of a
two-frequency band, and the curves approach each
other only at certain points, appearing to touch at the
transition. An indication that they must touch for the
localized regime' is the fact that for a localized solu-
tion, ia i decays at both x + ~ and x —~, and
that decay at x —~ corresponds to an orbit of (1)
on the stable invariant curve, while decay at x —+ ~
corresponds to the orbit being on the unstable invari-
ant curve.

Now consider the discrete-time Fourier transform of
a sequence P (@1), where P is some smooth 2m-

periodic function. For strange attractors and for two-
frequency quasiperiodicity, @= F(0), and we define
C(0) =P(F(0)). Expanding C(0) as gc(m)exp(im

x0), and noting that 0, = (2' ~+0o)(mod2~), we
see that the discrete-time Fourier transform of C(0~. )
is C(Q) =pc(m)5(& —27r[mcu(modl)]), where
the frequency variable 0 is restricted to the range
27r ) 0 ~ 0. Thus C(A) consists of discrete peaks at
2m [m a& (mod 1 ) ] with strengths i c (m ) i. For strange
attractors the discontinuous nature of F(0) and C (0)
results in a rich high-harmonic content of c(m), and
one might expect a power law i c (m ) i

—m 'i, for
large m. With N(S) the number of spectral com-
ponents larger than some value of S, the power-law
spectrum implies

N(s) —s-.
,

for strange attractors. Figure 3(b) shows results for
N(S) with P(@)=cos@ obtained by Fourier transfor-
mation of the strobed numerical solution" of (1) for a
strange-attractor case. The result confirms (5)
[o. =1.2 for Fig. 3(b)]. Numerically we find that n
falls in the range 1 & o. & 2. Following a fixed irra-
tional winding number K, as Vo is increased, a three-
frequency quasiperiodic orbit will undergo a transition
to a strange attractor at some critical value Vo ——V, (~).
We find that o. is near 2 at V, and rapidly decreases to-
ward 1 as Vo is raised above V, . The exponent a=1
can be understood by the following crude argument.
The discontinuities of F(0) appear to result from suc-
cessive iterates of jumps of p, by approximately 2m,
over a short range in 0 [see Fig. 3(a)]. In the strongly
localized regime the width 50 of a jump decreases
sharply on iteration of the map. For cos@ these jumps
appear as spikes of height —O(1) and width —50.
Thus one jump gives rise to Fourier components
ic(m) i

—50 for im i
& 1/50. Summing over jumps,

we expect the scaling ic (m ) i

—m '. We believe that
the power-law behavior of N (S) is an important signa-
ture that should make such attractors experimentally
identifiable. Finally we note that for the two- and
three-frequency quasiperiodic cases' N —lnl/S and
N —(ln/1S), which is clearly distinguishable from
(5).

All of the previous discussion has considered the
first-order differential equation describing a pendulum
or Josephson junction, Eq. (1). This equation is spe-
cial in that it is related to the linear, time-independent
Schrodinger equation by Prufer's transformation. To
what extent do equations of the more general type
d@/dt = h (P, t), where h is periodic in @ and quasi-
periodic in t, exhibit behavior similar to that for Eq.
(I)? To address this question we have performed a
series of numerical studies' with the main results as
follows. At low forcing the generic case is similar to
that of Eq. (1) in that three-frequency quasiperiodic
motions occur on a Cantor set of finite measure, while
two-frequency quasiperiodic motions occur on a dense
set of intervals. However, the generic case differs in
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that the plateaus with two-frequency quasiperiodic at-
tractors occur at winding numbers ~= [(I/n )t0t+ (m/
n)cu2j(mod1) (l, m, n are integers), corresponding to a
n-times-multivalued I' (0) in the surface of section [cf.
Eq. (4)]. Similar to Eq. (1), as the nonlinearity is
raised, strange attractors occur on a Cantor set separat-
ing intervals on which two-frequency quasiperiodic at-
tractors occur, and the frequency spectra associated
with the strange attractors appear to be characterized
by Eq. (5) with exponents 2 ) n ) 1. The main
difference with Eq. (1) is that the measure of the Can-
tor set with strange attractors seems to be zero, or at
least is very small. The latter does not, however,
prevent observation, since all that is required to see
spectra with the property of Eq. (5) is the tuning of a
single parameter. '

In conclusion, the quasiperiodically driven-damped
pendulum equation' may be said to represent the sim-
plest continuous-time systems with strange attractors.
These attractors have a clear signature in the character
of their frequency spectra, and this signature should be
experimentally observable.
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