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The dynamics of a time-dependent quantum system can be qualitatively different from
that of its classical counterpart when the latter is chaotic. It is shown that small noise can

strongly alter this situation.

PACS numbers: 03.65.Bz, 05.40.+j

What is the nature of a quantum system whose
classical counterpart exhibits chaotic dynamics?
The subfield dealing with this question has been
called quantum chaos. A striking result in quantum
chaos has been obtained by Casati ef al.! These au-
thors considered a particular Hamiltonian and a po-
tential representing periodic impulses kicking the
system. If the strength of the kicks is large enough,
then, in the classical description the motion is
chaotic, and the momentum variable, p, behaves
diffusively. That is, the average value of p? ap-
parently increases linearly with time. Casati et al
considered numerically the quantum mechanical
version of the same problem with #7 small. They
found that for early times, the average value of p?
increased linearly with time at roughly the classical
diffusive rate, but that for long time this linear in-
crease slowed and eventually appeared to cease.
Thus, there was no numerically discernible dif-
fusion in the quantum case.

The observed saturation of the growth of (p?) is
understandable if the Schrodinger operator for this
problem has an essentially discrete quasienergy lev-
el spectrum.!-* Recently, Fishman, Grempel, and
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Prange* have presented strong arguments support-
ing the idea that the quasienergy spectra for systems
of the type studied by Casati ef al. are essentially
discrete. These arguments are based on an analogy
with Anderson localization of an electron in a solid
with a random lattice. Futhermore, it has been
pointed out that these results have implications for
other physical systems’~’ and experiments have
been proposed. For example, the ionization of an
atom by high-frequency electromagnetic waves and
the interaction of electrons on the surface of a su-
perconductor with an oscillating electric field have
both been suggested®>® as systems for which the
consequences of quantum localization in a classical-
ly chaotic system could be experimentally observed.
A question then arises as to how sensitive the local-
ization is to real effects not included in the model,
e.g., finite bandwidth of the ionizing radiation, fin-
ite temperature, etc. In this Letter we crudely
model such effects as noise. That is, we introduce a
small random component into the quantum rotator
equations® (see also Shepelyanski®). (Since our sub-
sequent arguments are apparently not model depen-
dent, we believe that they should be relevant to real
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physical experiments.) We find that the quantum
interference leading to localization of p? is a delicate
effect that is strongly affected by small noise. It is
the goal of this paper to investigate the mechanisms
by which small noise leads to diffusion, as well as
the regimes of dependence of the quantum momen-
tum diffusion coefficient on the noise and kicking
strength.
We consider a Hamiltonian

P2 _ + oo
=—27+ [€R cost +vep(0,t)] E 3(t—nT),

n=—oo

1)

where 0 has period 27, P is the angular momen-
tum, I is the moment of inertia, € is the strength of
a periodically applied (period T) horizontal impul-
sive force, R is the radius at which the force is ap-
plied, and the term ¢ (0, is a random function of
time representing a noise component in the kicking
with v a parameter governing the noise strength.

The classical problem corresponding to the Ham-
iltonian (1) yields the well-known standard mappingL

Unr1(0)=expl(iv/i)d,1(0)1L1y,(0)],

2w
LIp@)1=3, " (d6//2m) [~ K P/2+i1(0—6") + ic cost/ 1y (8").

In what follows we shall consider €2 >> v? and
discuss the parameter dependence of D, on v, e,
and #. We distinguish three regimes in terms of
which we can state our main results as follows: (a)
(e/r)* << 1 (large ) for which we find D, =v?%2;
(b) (e/f)?>>1 and (v/)*(e/f)? << 1 (moderate
%) for which we find D, ~v2(e/i)* and (c) (v/k)?
x (e/f)?>>1 (small #) for which we find D,
= Dcl'

Thus, from our result for regime (c), in the
“classical limit” (i.e., # — 0) D,— Dy whenv >0
(see also Ref. 3). This is not so for v=0, since
then the quantum diffusion coefficient is apparently
zero for any # > 0 (hence, with v=0, limD,=0 as
£#— 0). Thus we may say that noise, however
small, restores the classical limit. Furthermore, we
emphasize that D,= D can apply even for very

small noise li.e., (v/f)? << 1] provided that we are

Dq(m) = %(V/fl—)zsz <um’|¢p’||um> |§ve(pm’—pm)2:

(including noise),
Pni1=Dnte€sing, 1 —vd, i 1(8,41),
0pe1=0,+ Dy,

where ¢,(0)=¢(0,nT), ¢,=dd,/d0, (p,0,)

denote the values of (p(1),0(#)) just after the nth

kick (at t=nT), and €e=€RT/I, p=PT/I, and
v=vT/I One possible choice for ¢, that we will
use in all of our subsequent -calculations is
¢,(0) =~2A,cos(6+a,), where A, is a Gaussian
random variable (A,A /) =3 . and @, is random
with a uniform distribution in [0, 27]. For the case
where € is large most initial conditions for the clas-

sical map generate orbits which are diffusive with a

momentum diffusion coefficient given approxi-

mately by>'0 D =e*/4+v¥2. Thus, if v2<< €2

(which applies to all of our subsequent considera-

tions), the noise has little effect on the value of D.

Turning to the quantum problem, we impose
periodic boundary conditions, s (8,£) = (64 2m7,1).

Thus momenta are quantized at p=1# (/is an in-

teger). Integrating Schrodinger’s equation with

Hamiltonian (1) through one time period,!!! set-

ting ¥,=¢(0,nT+0%), and normalizing & to I/T

gives

(2a)
(2b)

in the semiclassical regime.

Regimes (a) and (b) may be treated by random-
phase-approximation perturbation theory consider-
ing the effect of finite noise (v > 0) as the pertur-
bation. For v =0, we assume that (2) has an essen-
tially discrete quasienergy spectrum.>* Thus v, (6)
may be expanded as ,(8) =34, exp(—iwyun)
X u,,(#), where from Eq. (2) the u,(8) and
exp(iw,,) are the eigenfunctions and eigenvalues of
the unitary operator L, Llu,]l=exp(—iw,,)uy,.
Since v/k << 1 for both regimes (a) and (b), the
factor explive,(0)/E]=1+iv¢,(8)/k in Eq. (2),
and, with the assumption that perturbation theory is
valid, the probability per kick of a transition from
Uy 10 U is = W/E)|(u, ¢, tupy) 3 where
the subscript ‘‘ave’’ indicates an average over the
ensemble of random ¢,. With use of the transition
probability «, ., the diffusion coefficient is

(3)

where p,, is the momentum expectation value for the state u,. Note that, whenever Eq. (3) applies, D, is

proportional to v2.

We now consider regime (a). In this case the term expli(€/f )cosf] in L may be neglected to lowest order;
thus the u,(x) are as in the freely rotating (unkicked) rotator, u,(x)==(2w)~Y2exp(im). For
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¢p,=2A,cos(0+a,), we obtain = w/i)?
X (sm,m'+l+8m,m'—l)/2' Since, in this approxima-
tion, u, is an eigenfunction of the momentum
operator corresponding to a momentum p = m#k, we
obtain from (3) D,=v%2. This result is the same
as the diffusion that one would obtain for the classi-
cal map with noise if € were set equal to zero.

We now consider regimes (b) and (c). In these
cases, (e/f)?>> 1, and the eigenvalue problem for
u,(8) is not analytically solvable. Thus we shall
only be able to obtain estimates for D,. First, we
note that, on the basis of Anderson localization,
Fishman, Grempel, and Prange* have argued that,
in the momentum representation, the eigenfunc-
tions are exponentially localized about the ‘‘lattice
points” p=It. The localization length in p (which
we denote A) is large compared to%. Furthermore,
for (e/#)? >> 1, the momentum eigenfunctions,

2
f, (1) = (217)‘1f0 exp(—il®) u,,(08)de,

are not smoothly varying on the lattice. That is,
although on average there is a slow exponential de-
crease of |#,, (/)| with /away from the center of lo-
calization of #,,(/), there are also typically ~ 100%
variations of i, () on the lattice-spacing scale [i.e.,
typically  |@, () — &, (1 £1)| ~ |&,,(D]].  This
results from the factor exp(— % /%/2) in Eq. (2b)
which for large / gives each u,, (/) a nearly random
phase.

We now obtain an estimate of A using the argu-
ments of Chirikov, Izrailev, and Shepelyanski.? We
observe numerically, for the case with no noise,
that (p?) increases with time initially at roughly the
classical rate, but then turns over at some time
n ~ n,. This is interpreted as being due to the exci-
tation of many Anderson-localized modes by the in-
itial condition (which is localized near p=0).
Furthermore, those modes most strongly excited
are those which are localized around momenta
within A of p=0. Hence the effective number of
modes excited by an initial condition with p=0 is
of the order of A/f. Each mode has an associated
eigenvalue exp(—iw,). Thus the w, may be
taken to lie in [0,27]. Since there are A/ modes,
the typical frequency spacing between modes is
8w~ 2mw/(A/E). For n<1/8w, the system does
not yet ‘‘know’’ that the quasienergy spectrum is
discrete. Thus we expect that (p?) increases with
time until 1/8w, at which time the turnover in (p?)
should occur. Thus n,~ 1/8w~ A/#. In addition,
at the turnover the characteristic spread in momen-
tum will be the localization width of the modes, i.e.,
(p?*) ~ A% Let ny denote the time to classically dif-
fuse the distance A, n; ~ A% D4~ A% €2 Since the

initial increase of (p?) is at the classical rate, we
have n.~n; or A/i ~A?%e€?, which yields the
result? A ~ e%/%.

Before considering regime (b), we ask what is the
limit of validity of perturbation theory, Eq. (3).
Localization is dependent on the maintenance of
phase coherence for the time it would take a wave
packet to classically diffuse the distance A in p (e.g.,
see Thouless'?). Thus, if noise destroys this phase
coherence in the time ny, then the localized modes
will also be destroyed. With localization no longer
operable we expect a return to the classical result
D,= D. To see how much noise is needed to do
this, we recall that an eigenstate in the momentum
representation has —~ 100% variations down to
momentum separations of # (the lattice spacing).
Thus, if the cumulative effect of the noise scatters p
by an amount equal to %, then the phases have been
randomized. Noting that v%/2 is the component of
momentum diffusion due to the noise, the time n,
for the noise to scatter p by # is n,(v%/2) ~%? or
n.~k*v? Thus, if n, < ng, or (W/k)*(e/f)?> 1,
then we expect that D, = D,. This defines the
boundary between regimes (b) and (c).

To estimate D, when (/i) (e/f)?< 1 and (e/
£)2>1 li.e., regime (b)], we note that the phase
coherence of the waves is maintained for a time n,.
Thus we expect transitions between localized modes
on this time scale. Since transitions are appreciable
only for modes within a localization length of each
other, D, ~ A%/ n,, or D, ~v*(e/fi )*.

The above arguments are similar to those of
Thouless!'? who considered the effect of finite tem-
perature on localization in a solid. Thus our nu-
merical experiments testing the above arguments
(described below) may also be viewed as a test of
Thouless’s heuristic treatment of the low-tem-
perature conductivity of disordered solids. To our
knowledge no other numerical experiments testing
Thouless’s arguements exist.

The estimate D, ~v2(e/#)* can also be obtained
directly from (3) as follows:

Uy (9) = E&m(l)exp(ill)).

From the fact that the #,, are localized, there are ef-
fectively of the order of A/# appreciable terms in
the sum over /. Thus, with use of the ,(/)
representation, the quantity (u,_.l¢,lu,), with ¢,
=+2A,cos(f+a,), will involve a sum over
roughly A/f appreciable terms. Since (u,|u,) =1,
|21, ()|~ (A/£) 1. Now assuming that the &, (/)
are pseudorandom in /, we see that the sum in-
volved in the calculation of (u_.|¢,|u,) will be of

the order of (A/#)~Y2. Thus (3) yields D, ~ (v/
2189



VOLUME 53, NUMBER 23

PHYSICAL REVIEW LETTERS

3 DECEMBER 1984

éDq =D¢| 1
for dots

10-1 109 ] 102 103
€/h

FIG. 1. D,/(v%2) vs €/t with v=0.0354 in regime
(b). Solid line corresponds to D, (e/£)*. Dots, €=5.0,
% varies; crosses, # = 5.0, € varies; triangles, € =55.26, &
varies. The iteration method is discussed by Hanson
et al. (Ref. 11). For the dots, regime (a) corresponds to
e/k < 0.8, regime (b) to 2 < ¢/# < 10, and regime (c) to
e/ > 30.

#)2A? which again gives D, ~v2(e/i)*.

As a test of these arguments, Fig. 1 shows nu-
merical results obtained from long-time evolutions
of Eq. (2). (Values of € were chosen to avoid ac-
celerator modes,? while values of #/4 are irrational
to avoid quantum resonances.’’) The dots show
results for D, versus €/i with e=5.0, v=0.0354,
and # varying (horizontal axis). For (e/#)?<< 1
[regime (a)] there is good agreement with
D42v2/ 2, and D, apparently becomes asymptotic
to D for large €/ appropriate to regime (c). Fig-
ure 1 also shows other data (triangles and crosses)
for regime (b). The triangles and dots have v and €
fixed and # varying, while the crosses correspond to
v and % fixed and € varying. The three sets of data
fall close to each other and are consistent with an
approximate proportionality of D, to the fourth
power of €/f in regime (b), as predicted theoretical-
ly (solid line in Fig. 1). In addition, we have ob-
tained extensive data on the variation of D, with v
(e and # held fixed). Excellent agreement is found
with the theoretically predicted proportionality to v2
in regimes (a) and (b) [cf. Eq. (3)].

In conclusion, the presence of small noise can
greatly modify the behavior of a quantum mechani-
cal system which is classically chaotic, particularly
for systems in the semiclassical regime.
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was supported by the U.S. Department of Energy.
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