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Ray splitting is the phenomenon whereby a ray incident on a boundary splits into more than one ray
traveling away from the boundary. The most common example of this is the situation, originally con-
sidered by Snell in 1621, in which an incident light ray splits into reflected and transmitted rays at a
discontinuity in refractive index. This paper seeks to extend techniques and results from quantum chaos
to short wavelength problems in which ray splitting surfaces are present. These extensions are tested us-

ing a simple model problem for the Schrodinger equation in two dimensions with a finite step potential
discontinuity. Numerical solutions for the energy spectrum and eigenfunctions in this system are then
compared with predictions based on quasiclassical theoretical results suitably extended to include ray
splitting. Among the topics treated are the ray orbits for our problem, energy level statistics, scars, trace
formulas, the quasiclassical transfer operator technique, and the effect of lateral waves. It is found that
these extensions of quantum chaos are very effective for treating problems with ray splitting.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

The study of wave equations in the short-wavelength
limit is important in many fields. Examples are seismolo-

gy, acoustics, optics, microwaves, and, perhaps most not-
ably, quantum mechanics. In the latter case the resulting
approximate theories are referred to as quasiclassical In.
general, short-wavelength prob1ems are, to lowest order,
addressed by ray equations that necessarily have a Hamil-
tonian form. Quasiclassical approximation techniques to
the solutions of wave equations in the case of integrable
ray Hamiltonians have been well developed for a long
time. The study of the opposite case of chaotic ray Ham-
iltonians or ray Hamiltonians yielding a mixed chaotic-
integrable phase space is much more recent [1—4]. This
latter field of study, called quantum chaos, has been very
active and notable successes have been achieved. The ob-
ject of this paper is to consider and test extensions of pre-
vious successful quantum chaos techniques and results to
a broad class of problems not previously extensively ad-
dressed by these techniques.

In particular, we study systems in which there exists a
surface at which an incident ray is split into two or more
rays propagating away from the surface [5,6]. For exam-
ple, a light ray incident on a discontinuity of refractive
index sp1its into a reflected ray and a transmitted ray
[Fig. 1(a)]. This was first quantified by Snell in 1621. The
same thing happens for a wave function solution of the
Schrodinger equation incident on a discontinuity in po-
tential. Elastic media support two types of waves, shear

(S) and pressure (P) waves, and when an elastic wave is
incident on a clamped or free boundary, ray splitting
occurs [Fig. 1(b) and Ref. [5]]. Elastic wave ray splitting
as shown in Fig. 1(b) occurs in the interesting experimen-
tal papers in Refs. [7—9]. An example where a ray splits
into four rays at a discontinuity between two elastic
media is shown in Fig. 1(c). Another phenomenon typi-
cally associated with ray splitting boundaries is total
internal reflection. In total internal reflection an incident
wave is reflected, but acquires a phase shift. The totally
internally reflected wave also results in an evanescent
wave exponentially decreasing away from the boundary
in the classically forbidden region. A third, much less
well-known, phenomenon connected with ray splitting
boundaries is the lateral wave. This wi11 be briefly dis-
cussed in Sec. V.

To put the phenomena associated with ray splitting
boundaries in perspective, we note that the standard
justification of semiclassical approximations is based on
the smallness of the parameter A, /a, where A, is the wave-
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FIG. 1. Examples of ray splitting.
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length and a is a representative classical length. Howev-
er, there are often isolated places where this param. eter is
not small, for example, caustics and foci, and these cases
can be satisfactorily dealt with. At a ray splitting bound-
ary there is a change in medium properties that occurs
over a distance d «A, . Thus ray splitting is fundamental-
ly a wave (i.e., nonclassical) effect. We assume, however,
that, aside from d, all other classical lengths (e.g. , the
curvature of the ray splitting surface) are large compared
to the wavelength.

In this paper we concentrate on a particular model
problem for the two-dimensional Schrodinger equation.
We emphasize, however, that we believe the results to
have general utility for other geometries and for wave
equations other than the Schrodinger equation. The
model situation we study is illustrated in Fig. 2. There is
a circle of unit radius that is regarded as defining a circu-
lar potential well with infinitely high walls. In one half of
the interior of the circle, m/2&8&3m/2, the potential
vanishes. In the other half, —

m /2 & 0 & vr/2, the poten-
tial has a constant value Vo) 0. In this "stepped" well
we put a quantum particle of mass m =

—,'. Setting fi= 1,
the energy is E =ko, where ko is the wave number in the
zero potential region. We thus study the equation

[V +E—Vou(x)]4=0, r & 1,
where 4=0 at r =1, u (x) is the unit step function, and
the rectangular coordinates (x,y) are as shown in Fig. 2.
[For the case of a cylindrical electromagnetic cavity with
the electric field parallel to the cylinder's axis and with
dielectric of refractive index n 0 in vr/2 & 0 & 3n /2, Eq.
(1.1) applies if we replace E by the square of the wave
number ko in the dielectric and VD by ko(1 no ).]-

In Sec. II we discuss ray aspects of our model problem.
We consider rays in two limits: (i) A, «d (d still small
compared to any other classical length) and (ii) A, ))d. In
case (i) the ray dynamics is classical and deterministic
and there is no ray splitting. We find that, depending on
the energy E, the phase space can be predominantly
chaotic with only relatively small regions occupied by in-
variant tori. In case (ii) ray splitting is shown to destroy
essentially all of the sizable tori, thus increasing ergodici-
ty still further [5,6].

Following Sec. II, the rest of the paper considers solu-
tions of the wave equation. For this purpose we utilized
a simple numerical technique. The technique is to ex-
pand the wave function 4 in an orthonormal basis for the
circle with 4=0 at r =1 [sinusoidal functions of m8

PLITTING
NDARY

FICx. 2. Model problem.

multiplied by Bessel functions J (k zr), J (k ~)=0].
Truncation and projection onto the basis yields a finite
matrix, which is then numerically diagonalized.

Section III considers spectral statistics for our numeri-
cally calculated energy levels. The Weyl result for our
problem yields a spectral staircase function N(E) that is
linear in E for E & Vo and E & Vo, but with a discontinui-
ty in slope at E= Vo. Our numerical results agree well
with this if a perimeter correction is included. We also
verify good agreement of the nearest-neighbor level spac-
ing distribution with the prediction of the Gaussian or-
thogonal ensemble [1—4]. Thus ray splitting apparently
does not alter these well-established quantum chaos re-
sults. This has also been previously shown in the elastic
wave experiments of Refs. [7—9] and in the numerical
computations of Ref. [6).

In Sec. IV we present a pictorial display of large se-
quences of eigenfunctions (a "gallery of eigenfunctions").
We observe apparently ergodic eigenfunctions, along
with many nonergodic (scarred [10]) eigenfunctions.
Three types of scarred eigenfunctions emerge as particu-
larly prominent.

(i) Internal reliection scars in which the wave stays
close to the ray splitting surface on the zero potential
side.

(ii) Whispering gallery scars in which the waves are
guided by the outer wall at r = 1.

(iii) Central bounce scars in which waves localized in
angle apparently bounce radially between the wall and
the center of the circle (r =0).

The next two sections (Sec. V and VI) deal with quasi-
classical approximation techniques.

The Gutzwiller trace formula is the standard quasiclas-
sical approach to studies of the spectrum in quantum
chaos. Recently it has been extended [5] to include ray
splitting. This formula predicts that an appropriate
scaled Fourier transform of the 5-function spectral densi-
ty should exhibit sharp peaks at acti.on values corre-
sponding to periodic orbits. The difference here, as com-
pared to previous work [11]exhibiting such action value
peaks, is that ray splitting leads to different kinds of
periodic orbits involving reAection, transmission, and to-
tal internal reAection. In Sec. V we find peaks of all three
of these types in our numerical Fourier transform data.
We also find evidence for a diffractivelike contribution
called a lateral ray (e.g. , see Appendix 8 and Ref. [12]).

The quasiclassical transfer operator technique [13,14]
essentially provides a convenient way of counting and
summing over classical paths. Section VI formulates and
discusses the quasiclassical transfer operator for our
problem in terms of direct, refIected, and transmitted ray
contributions. Numerical implementation of the transfer
operator for calculation of the spectrum yields good
agreement with the full numerical calculations. This
verifies the validity of the quasiclassical transfer operator
technique for a ray splitting problem.

Section VII contains an analysis of the various types of
scars discovered in Sec. V. It turns out that these scars
can be quantitatively understood by use of the quasiclas-
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sical transfer operator of Sec. VI.
In summary, the main message of this paper is that

techniques and results developed for the study of prob-
lems in quantum chaos can be extended to apply to a
wide class of practically important problems involving
ray splitting boundaries. In addition, we find several phe-
nomena associated with ray splitting, internal reAection
(e.g. , the internal reliection scars), and lateral rays [12].

V5
Q4

II. RAYS

A. Deterministic rays

We first consider the ray problem for small wave-
lengths X, but with k«d, where d is the distance over
which the potential in Fig. 2 increases from zero to
Vo)0. That is, we consider the transition width from
zero to Vo to be classically negligible, but still large com-
pared to a wavelength. In this limit there is no ray split-
ting and we have a classical orbit problem of the usual
type. The effect of the boundary can be obtained from
conservation of energy and of the momentum component
parallel to the boundary. A particle of energy E) Vo
whose velocity vector makes angles of aI and o.z to the
normal to the boundary satisfies

&E sina~ =QE —Vo sinai', (2.1)

where al (ai, ) applies to the left (right) of the boundary
in Fig. 2. Equation (2.1) applies for ~al ~

less than the an-

gle for critical reAection o.„where

sina, =+1—Vo/E (2.2)

When ~al ~

)a, a particle incident from the left is specu-
larly reAected. If E & Vo the particle is always on the left
and is always specularly rejected from the boundary.

When E & Vo the problem is that of a half-disk with no
interior potential. This problem is completely integrable.
When E » Vo the dynamics is a slightly perturbed ver-
sion of the integrable dynamics for the circle with Vo =0.
Thus, for E ))Vo, we expect (and numerically confirm)
that most of the invariant tori for VO=O are preserved.
Hence the interesting case is E/Vo & 1, but not too large.
Figure 3 shows a surface of section plot for VO=O. SE.
Here the surface of section is taken to be the outer
boundary at r =1 and the position on the boundary
parameterized by 8 is plotted horizontally and the angle
0 ~ P ~ ~ of the velocity vector to the counterclockwise
tangent to the circle just after bouncing is plotted verti-
cally (see Fig. 4).

The features evident in Fig. 3 are reAection symmetric
about g=~/2 and about 8=~. As can be seen from the
figure, there is a large "chaotic sea" interspersed with is-
land chai~s. The island chains contain invariant tori
encircling elliptic periodic orbits. We see that the largest
island chain is a period three chain located near P=g3 in
the figure (and, by reAection, there is also a period three
chain near g= —P3). Close inspection also yields less
prominent island chains of period n near g values labeled
1i„in the figure. Apparently g„accumulates on p=~ as

FIG. 3. Surface of section for deterministic ray orbits with
Vo =0.5E. Fifty orbits are plotted with 10' iterates each.

n increases. The elliptic periodic orbits corresponding to
islands of order n = 3—6 are shown in Fig. 5.

Two other features are also evident in Fig. 3. In par-
ticular, near 1i =m. /2 we note an apparently horizontally
striated structure. This structure is due to the presence
of the neutrally stable continuous set of orbit families
shown in Figs. 6(a) and 6(b), where in Fig. 6(a) the angles
of incidence satisfy Eq. (2.1) and Fig. 6(b) corresponds to
incidence at greater than the angle for critical reAection.
The other important feature is the horizontally striated
structure evident near /=0 and m. This is associated
with long epoches of time in which the chaotic orbit
closely follows the circle at r = 1 (so-called "whispering
gallery" motion). Because the orbit, although chaotic,
experiences low exponential divergence while in whisper-
ing gallery motion, it takes a long time to leave this type
of motion and a correspondingly long time to enter it.
(This comment also applies to the orbits of Fig. 6.) Thus
our numerical chaotic orbits ofPnite duration cover these
regions nonuniformly. As we shall see subsequently (Sec.
VII), both the orbits illustrated in Fig. 6, as well as those
of the whispering gallery type, will result in significant
wave function scars when we consider solutions of Eq.
(1.1).

The features discussed above either prevent ergodicity
(in the case of island chains) or lead to a slower rate of
approach to it (in the case of the orbits of Fig. 6 and the
whispering gallery motions). Nevertheless, most of the
area of the surface of section in Fig. 3 appears to be fairly
uniformly filled by the chaotic sea. Thus an orbit in the
chaotic sea should be approximately ergodic over the en-
ergy surface. To test this, we first note that for a two-
dimensional potential problem with potential V(r) the as-
sumption of ergodicity over the energy surface implies
that the particle distribution function has uniform proba-
bility density per unit area in the allowed area E ) V(r)
of configuration space and equal probability density in

V

0-———

FICs. 4. Definition of P.
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FIG. 6. Con
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FIG. 5. Elliptic periodic orbits corres
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g~(E) = + (L /477)(2yygE /$ ) (3.1b)

Thus the average spacing between adjacent levels
[dN(E)/dE] ' is 8 for E & Vo and 4 for E ) Vo. Figure
11(a) compares (3.1) with our numerical data for the odd
symmetry eigenvalues and Vo =1000 [restricting to either
even or odd symmetry multiplies Eq. (3.1a) by —,']. The
result is much improved [Fig. 11(b)] if we incorporate the
perimeter correction hg(E) (see Ref. [1]). For a region
of zero potential inside a billiard,

corresponds to Dirichlet (Neumann) boundary conditions
on P. For the case of odd symmetry eigenfunctions we
may regard the area as the upper half of the circle
(0 & 8& m. ) with /=0 on the symmetry line (8=0,7r) T.he
length of the efFective boundary is (m. +2) with one-half
the length in the V =0 region and one-half the length in
the V= Vo region. %e thus obtain

r

bN(E)= ———+1 [v'Eu(E)+QE —Vou
2

where L is the perimeter length and the minus (plus) sign X(E Vo)] —. (3.1c)
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The result including the perimeter correction is shown in
Fig. 11(b). The agreement is extremely good in spite of
the fact that an additional correction (at the same order
as the perimeter correction) occurs due to the ray split-
ting boundary [15]. Numerically, however, this correc-
tion is unobservably small for the case of Fig. 11 with our
present statistics. In the case of even eigenfunctions the
length factor (m+2) becomes (m —2), corresponding to a
Neumann boundary condition on 8=0,n. In the even
case similar good agreement with the numerical results is
also obtained.

A standard prediction of quantum chaos is that the
probability distribution function of the level spacings
normalized to [dN(E)/dE] ' is the same as that for the
Gaussian orthogonal ensemble (GOE) of random ma-
trices [1—4]. In our problem, however, we expect ray er-
godicity to be very weak for E ))Vo because the step in
potential is relatively unimportant in this case. Also for
E & Vo the ray dynamics in the half disk vr/2 & 8 & 3'/2
is integrable. Thus to observe the GOE prediction we
consider a restricted energy range for which the ray dy-
namics is observed to be approximately ergodic over the
region within the circle. Figure 12 shows a histogram of
the spacing distribution P (S) for modes with odd parity
about 8=0,m. with the GOE prediction plotted as a su-
perposed smooth curve. This histogram is obtained using
3127 energy levels in the range Vo & E & V, +200 and 150
evenly spaced values of Vo in the range 200~ Vo ~2993.
Thus we confirm the GOB prediction for an example
with ray splitting (see also Ref. [5]).

In order to avoid the variation of the character of the
classical dynamics with energy E, we now considered a
"scaled" problem. That is, we set Vo/E =rI and rewrite
Eq. (1.1) as

N(E)
80—

60—

40—

20—
P(s)

1.0

[V' +E(1—gu(x))]4=0, (3.2)

I

400 800
E

1200 1600

0.0
FIG. 11. X(E) versus E for (a) the unscaled problem without

the perimeter correction, (b) the unscaled problem with the per-
irneter correction, and (c) the scaled problem with the perimeter
correction.

FICx. 12. P(S) versus S using odd parity eigenfunctions for

the unscaled problem.
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where we now hold g fixed. The classical dynamics is in-
variant to changes of E and Vo with rl=VO/E fixed.
[Note that this scaled problem for the Schrodinger equa-
tion corresponds precisely to the electromagnetic prob-
lem mentioned following Eq. (1.1).]

The numerical level counting function for the scaled
problem is shown in Fig. 11(c) and closely follows the
quasiclassical smoothed prediction, which results from
setting Vo =11Ein (3.1). For Fig. 11(c),rl= —,'.

IV. GALLERY QF WAVE FUNCTIGNS

Figure 13 shows a pictorial representation of odd pari-
ty wave functions 4„for n =1—70 with Vo held fixed at

V0=200. Values of n appear in the upper right of each
wave function representation. The figure shows regions
of high probability density

~ %„~ as darkened. We note
that, as expected, for E & Vo, corresponding to the first

few eigenfunctions (n = 1—10), most of the wave probabil-
ity is located in the left half of the circle. Many of the
eigenfunctions appear to be very irregular as one would

expect from the ergodic nature of the ray dynamics for
n ) 15. In particular, we note the eigenfunctions of index
n =23, 31, 39, 40, 41, 42, and 57.

We also note the appearance of many eigenfunctions
that deviate substantially from the prediction of ergodici-
ty. In particular, we note the sequence shown in Fig. 14,
where the n number is shown in the upper right of each
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eigenfunction representation (n values of 1, 3, 6, 11, 20,
33, 49, and 67 already appear in Fig. 13) and an index p
corresponding to this particular sequence is shown in the
lower left. As we shall see (Sec. VII), these eigenfunc-
tions may be associated with the internally rejecting ray
shown in Fig. 6(b). We thus call these orbits internal
reliection scars (IRS's). Whispering gallery scars
(WIGS's) are also evident from Fig. 13, namely, n =2, 4,
7, 10, 14, 16, 26, 30, 34, 38, 43, 50, 54, 59, and 66. With a
little more imagination one can also identify a few scars
that are apparently based on the centrally bouncing ray
orbits of Fig. 9 (n =18, 24, 3S, and 63). We call these
central bounce scars (CBS's).

As discussed in Sec. VII, quantitative theories for the
IRS's and %"IGS's can be developed. For example, con-
sider the energy levels E for the sequence of IRS wave
functions in Fig. 14. We find numerically that these lev-
els can be well fit by the equation

E„=~[p+y ] (4.1)

where, as shown in Fig. 15, the "defect" y varies
smoothly with p. The theory of Sec. VII will give an
analysis yielding the solid approximation curve shown in
the figure.
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FIG. 14. Internal reAection scars ( Vo =200).
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V. THE QUASICLASSICAL APPROXIMATION:
FOURIER TRANSFORM OF THE SPECTRUM

The Gutzwiller trace formula [1—4] for a problem
without ray splitting has been extended to problems with
ray splitting in Ref. [5]. The extended Gutzwiller formu-
la (for isolated unstable periodic orbits) is

0.2

0.1

(Ai)' T
d(E)—= Im g . exp[i[(S /fi)+P ]JiA . 2sinh A, . /2)

(5.1)
I I I I I I I I I I I I0

0 10 20

FIG. 15. Defect y~ de6ned in Eq. (4.1) versus quantum num-
ber p. The data points correspond to the numerically obtained
eigenvalues and the solid line corresponds to the analytic solu-
tion for IRS's presented in Sec. VII.

where d(E) is an asymptotic approximation to the devia-
tion of the density of states from the smoothed density
de(E)/dE. The index j labels the discrete sets of closed
periodic orbits. Here, by a periodic orbit we mean a
closed ray path obtained for a periodic sequence of
reAection-transmission decisions (some examples are
shown in Fig. 16). The action is given by S (E)= f p dq,



RAY SPLITTING AND QUANTUM CHAOS 3293

Hard wal1 ~
(a

/
Boundary between
Regions 1 and 2

FIG. 16. Some closed orbits for a ray splitting stadium bil-
liard corresponding to Schrodinger s equation with two homo-
geneous regions of different potential separated by the diagonal
line shown.

where the integral is taken around periodic orbit j. T. is
the primitive period for periodic orbit j. k. & 0 is the sta-
bility exponent for orbit j; it gives the exponential rate of
increase of linearized perturbations of the orbit with the
perturbed orbit satisfying conservation of tangential
momentum at all transmissions (Snell's law) as well as an-
gle of incidence equals angle of refIection at all
reflections. The quantity A. is given by

(5.2)
i=1 k=1

where r, is the reAection coefficient at the ith reAection of
periodic orbit j, rk is the reAection coefficient at the kth
transmission of orbit j, and r and t are the number of
reflections and transmissions for periodic orbit j. Thus

is the quantum probability that a particle completes
one circuit of the closed periodic orbit. For example, for
the closed orbit in Fig. 16(a), rj = 1, tj =0, and A~ is Ir, I,
where r, is the reflection coefficient for the particular an-
gle of incident for the ray in Fig. 16(a) incident on the
boundary between the two regions; for the orbit in Fig.
16(b), r =0 and t =2; .for the orbit in Fig. 16(c), r =1
and tj =2. Finally, the phase PJ includes the phases of all
reflection coefficients, plus the usual Maslov contribu-
tions. In particular, if r, is real and negative then the cor-
responding angle is m.. Also, if there is critical reAection
then r; is complex with magnitude one, r; =exp(i &5; ), and

adds a contribution to P . (Note that there is no
phase contribution on transmission because the transmis-
sion coefficient 1 rk is always positive fo—r real rk. )

Noting that
I pI =&E —V, the actions SJ = f p d q can

be expressed as

orbit j that lies in the left (right) half of the circle. Con-
sidering the scaled problem [i.e., fixed i) in Eq. (3.2)] the
reduced actions are energy independent and the only en-
ergy dependence of the actions occurs in the overall mul-
tiplicative factor &E.

The transfer operator technique discussed in Sec. VI
can be used to derive Eq. (5.1) and its generalizations to
include nonisolated periodic orbits. This is discussed in
Sec. VI A. The important point is that nonisolated
periodic orbits make a contribution whose fast energy
dependence is still exp[i(SJ/R)] with SJ. given by Eqs.
(5.3).

Now consider the Fourier transform F(o) of the densi-
ty of states with respect to &E,

F(o )= Jd(E)exp( iov'—E )dV'E (5.4)

The extended Gutzwiller formula implies sharp peaks of
IF(o)I occurring at the scaled actions [11]o =o

Figure 17 shows a plot of IF(cr )I obtained for i) =0.5
using energy levels of odd symmetry eigenfunctions in the
range 0 ~ E ~E,„,where E,„corresponds to the 200th
level. The computation utilized a windowing function
si n[m+ E/E,„],inserted in the integrand of the Fourier
transform for smoothing. Distinct peaks are clearly evi-
dent. The first eight of these peaks are labeled —,'a, —,'b, —,'c,
d, b, e, f, and g. The numerical values of the actions at
these peaks can be precisely identified with the corre-
sponding orbits shown in Figs. 18(a)—18(g). The orbits in
Figs. 18(a)—18(d) are nonisolated. The orbit shown as a
solid line in Fig. 18(cl) arises as follows. If we imagine
that the potential is zero everywhere in the circle, then
the dashed square orbit in Fig. 18(c2) exists as part of a
continuous family corresponding to rotation by an arbi-
trary angle. In the presence of the potential jump we can
simply reAect that portion in x & 0 of the dashed orbit in
Fig. 18(c2) through the potential jump boundary. The re-
sult [the solid curve in Fig. 18(cl)] automatically satisfies
the condition (angle of incidence) = (angle of refiection) at
the jump boundary. The same construction applies for
any regular polygon [e.g., the refiected equilateral trian-
gle in Fig. 18(h) is part of a nonisolated family]. Due to
the up-down symmetry and our restriction to odd up-
down parity modes for the data of Fig. 17, we can imag-
ine that there is e6'ectively a perfect reAector on the x

400

IF(.)l'

200—

S~ =&E crJ. ,

where the scaled action cr is given by

o =PL, +&I—i)Xa, ,

(5.3a)

(5.3b)

0 1

I I I I I I

2 3 4 5 6 7 8 9 10
&2a

with XLJ (Xzj) the path length of that part of the closed FIG. 17. Fourier spectrum versus scaled action cr.



3294 BLUMEL, ANTONSEN, GEORGEOT, OTT, AND PRANGE

(a) (b) (c1) (c2)

(g) (h)

FIG. 18. Orbits corresponding to the first few spectral peaks.
For the value g=0. 5 used in Fig. 17 the peak at a (not labeled
in Fig. 17) and the peak at 2c coincide. Another closed orbit
not shown is that obtained by reflecting the closed orbit in (cl)
through the y axis. For g=

2 (as in Fig. 17) the action of this
orbit is identical to that in (b) and so does not contribute a
separate peak in addition to those labeled in Fig. 17.

9
(C)

a Sla ka a ~ Sa

axis. Thus the halves of orbits a, b, and c in the top half
of the circle constitute periodic orbits of the up-down
symmetric problem with one-half the action of orbits a, b,
and c, and the corresponding peaks in Fig. 17 are labeled
—,'a, —,'b, and —,'c. The orbits labeled h and i' are discussed
subsequently.

To provide further evidence that we have correctly
identified the orbits with the peaks of ~F(o )~ we have
varied g and verified that the numerically determined
spectral peaks track our analytical calculations of the o. ..
This is shown in Fig. 19. The plotted dots give the loca-
tions of the various numerically determined spectral
peaks for 50 values of q. The solid curves are trigonome-
trically determined analytical expressions for the reduced

actions. The orbits labeled (c) and (h) in Fig. 18 do not
appear in the spectrum shown in Fig. 17 (which is done at
il= —,'), but do appear at larger r) (Fig. 19). (Presumably
this is because the heights of their spectra1 peaks are pro-
portional to the reAection coe%cients raised to the fourth
power, and this increases with increasing il. )

We now note a feature of Fig. 19 that appears to be a
manifestation of the lateral ray [12] mentioned in Sec. I.
The term "lateral ray" refers to the situation in which
there appears a contribution to the Green's function cor-
responding to the ray depicted in Fig. 20. In Fig. 20 the
ray from the source travels to the boundary incident at
the critical angle; it then travels laterally along the
boundary on the high potential side, exits at the critical
angle, and travels to the observation point. This contri-
bution is in addition to the usual direct and reAected ray
contributions, but is smaller than these by a factor of the
order of the wavelength (see Ref. [12] and Appendix 8).
A trace formula including such lateral ray paths can be
formulated. Thus the Fourier transform F(cr ) can exhib-
it peaks at closed "orbits" including lateral ray paths.
An example of such a closed path is shown in Fig. 18(i).
Note that the closed orbit of Fig. 18(e) only exists below a
critical value of r). This critical value (at i1-=0.8) is la-
beled in Fig. 19 by a short vertical line. The orbit in Fig.
18(i) exists for 1 ~ rj ~ 0.5. Its action closely (not exactly)
follows the action of the orbit of Fig. 18(e), but extends
past the critical i) value where the orbit of Fig. 18(e)
ceases to exist. The action of the lateral ray orbit in Fig.
18(i) is shown as a dashed line in Fig. 19 and appears to
be an extension of the action of the Fig. 18(e) orbit past
its critical g value. Thus the presence of observed peaks
of ~F(o)~ (the dots .in Fig. 19) that follow the dashed ac-
tion curve (F1~0.8) indicates a manifestation of the la-
teral ray in our spectra.

There are a number of interesting problems in the
theory of the quasiclassical approximation that arise be-
cause of the existence of lateral rays (e.g., finding the la-
teral ray contribution amplitude in the Gutzwiller formu-
la). We plan to address these problems in a future work.

VI. THE TRANSFER QPERATQR

The method of Bogomolny [13] provides a convenient
way of doing the quasiclassical approximation. It is also
known how to use this method to avoid the divergence
problems encountered in the standard Gutzwiller ap-
proach. The method introduces an operator T(q, q', E),
which gives the semiclassica1 contribution for paths of
energy E from a point q' on a surface of section to a final

observation
point j

0 I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tl

soUt ce

C &, LC

FIG. 19. Scaled actions of the orbits in Fig. 18 versus q. In
this figure, for clarity, we include only those peaks (dots) that
track the indicated labeled action curves.

FIG. 20. (a) Lateral ray excited by a point source. (b) A
closed ray orbit including a lateral ray path.
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T(q, q', E)= 1

2mik.
d S(q, q', E)

BqBq'

(i /h )S(q, q', E)+i (m/2) p (6.1)

Here a surface of section has been chosen and q measures
distance along it. The action of a classical orbit of energy
E from q' to its first return at q is denoted by S(q, q', E)
and p is a Maslov index counting the points along the or-
bit where the simplest quasiclassical approximation
breaks down. We shall measure the action in units of R
or, equivalently, choose units such that %=1.

In the present case, we take the surface of section as
the boundary of the circle BC. We first write down the
result for our problem, which, given Eq. (6.1), is quite in-
tuitive. In Appendix A, we outline a formal derivation of
the T operator. The left semicircle is described by
m. /2&8&3m/2 (denoted 0 in CI ), while the right has
—m/2&8&m/2 (0 in C~). Let k~ =QE —Vo be the
wave number for x )0, while kL =V'E is that for x &0.
If E & Vo then k~ = +i

l kz l. We assume that Q Vo ))1.
The transfer operator is a sum of three terms

point labeled q crossing the surface of section for the first
time. Paths passing n times through the surface of sec-
tion are obtained by considering the nth power of the
operator. Calculated in stationary phase, this yields the
standard quasiclassical expressions.

The general form of a term of Bogomolny's operator is
[13)

' 1/2

These two angles must both be either in Cz or CI, re-
spectively.

The contribution of the reAected orbit is

T„(0,0') = r~ L
—(8,8') ' cos 0+0'

4m 2

1/2

0+0'
X exp 2lkg I cos

7 2
(6.4)

kL cosA'L kg coscxg
rL (8, 8') = r~—(8,0') =

kL coscxI +kg coscxg
(6.5)

where in this case 2aL ~ =0—0' if 0, 0'E CL, ~ and uL, ~
are related by Snell's law Eq. (2.1). The physical meaning
of al is that kL cosuL is the component of the momen-
tum perpendicular to the potential discontinuity, i.e., the
x component of the momentum.

The contribution to the transfer operator for a
transmitted orbit is

a'S,(0,0 )

O0a0
T (g gp) t(gag )

v'2mi-
1 /2

iS, (0, 0')
e (6.6)

In Eq. (6.6) (where 8& is the angle in CL, 8) is the angle
in C~, and 0, 0' are not on the same side)

Since such an orbit is generally split, we must extend the
definition given in Eq. (6.1) and include the refiection
coefficient r~ t (8, 8') given by

T= Td+ Tr+ Tt (6.2) S,(8,8')=kttL(8„$)+ktL(g„g)'(6.7)

g gg )
R t 8 8k

4m'

1/2

0—0'
X exp 2lkg L, sin

t
(6.3)

where we suppress the dependence on energy. The nega-
tive sign is a Maslov index counting one bounce from the
circular boundary. The action is just the wave number
times the chord length between the points on BC at 0, 0'.

FIG. 21. Illustration of paths corresponding to Td, T„and T,
in Eq. (6.2).

whose orbits are illustrated in Fig. 21.
The direct orbit between 0 and 0' that does not en-

counter the discontinuity at x =0 gives a contribution

Here L(0,$) is the distance from a point 8 on the bound-
ary to a point on the discontinuity at x =0 a distance g
from the center such that Snell's law is obeyed by the two
rays. In fact, g is determined as that value which mini-
mizes S, of Eq. (6.7). [Criven 8 and 8', g(8, 0') can be
found as the solution of a quartic equation, but the result
is so cumbersome that we have found it best to minimize
Eq. (6.7) numerically. ] The lengths are given by

L(8,$)=+1+/ —2gsing. The transmission coefficient
t ( 8, 8' ) in the prefactor is given by

2t/ kL coscLL kg cosGg
t(8, 8') =

kI coscxL +kg coscxg
(6.8)

kg coscxg

(6.9)

where tana, = (g—sing & )/cosg & and

=kL "y sin a, —sin e&.2 2

For angles aI &a„the critica1 angle for internal
reAection kz coso;z becomes pure positive imaginary, the
reAection coe%cient has unit magnitude, and the
transmitted wave is evanescent rather than propagating.
In this case, the transmitted wave should be quasiclassi-
cally neglected [i.e., T, (8, 8') =0].

It should be noted that t is the geometric mean of the.
transmission coefficients tiiL, tL~ of Eq. (2.5). An intui-
tive reason for this is that the cruxes through the surface
are conserved, and the T operator is constructed to
reQect that fact. This conservation is expressed by
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where the ray reflected from 0 to 0' is split and transmit-
ted to 0". In fact, the operator T is quasiclassically uni-
tary, that is,

I d8 T(8,8')T(8, 8")=5(8' —8") (6.10)
ac

when the integral is done in the stationary phase approxi-
mation. (Here T denotes the complex conjugate of T.)
Equation (6.10) requires Eq. (6.9) for its validity.

The T operator can be used to find contributions of
very long trajectories, making many bounces from the
boundary. We will here concentrate on eigenstates and
eigenvalues. This information is obtained by solving

Jd8'T(8, 8', E, )g, (8')=g, (8) . (6.11)

Solutions will exist, of course, only for energies E, caus-
ing D(E)=det[1 —T(E)] to vanish. In Appendix A we
will see that, essentially, f, (8)=8+(r, 8)/Br ~„„where
4 solves Eq. (1.1).

A. The IGutzwiller trace formula

The Gutzwiller formula may be written [14],more gen-
erally than usual, as

—1 1 dD (E)Im D(E +i ri) dE
(6.12)

where D(E)=det[1 —T(E)] is evaluated as the
Fredholm determinant of the kernel T. The Fredholm
expansions [14] of D and dD/dE are absolutely conver-
gent. The series in E for d does not converge (for real E)
because D(E) vanishes on the spectrum. Clearly, at a
zero E, of D, there is a contribution 5(E E, ) to d(E—).
(In Ref. [14] it is shown that this formula also gives a
contribution equal to the negative of the smoothed densi-
ty of states. )

The Fourier technique of Sec. V does not rely on the
convergence of the series for Eq. (6.12). Therefore, we do
not worry about convergence and use the relation
ln det(1 —T)=Tr ln(1 —T) to obtain

d(E)= —Im g — Tr T(E)'=1 1 d
1T i S dE

Im g d, (E) .
s=1

(6.13)

Equation (6.13) is more general than Eq. (5.1) in that it
does not require that all orbits are hyperbolic unstable or-
bits. In particular, it works when there are stable orbits
or nonisolated orbits present, as in the present model.
The quantity d, gives the contributions of all periodic or-
bits of "length" s, i.e., those making s bounces from BC.

Since the present model has both isolated periodic or-
bits and continuous families of periodic orbits, Eq. (6.13)
must be used in place of Eq. (5.1) if amplitudes are to be
correctly calculated. The actions are correctly given by
both formulas.

A number of interesting points come up in calculating
the amplitudes. These will be reported separately.

(6.11) by discretization of the integral. There are a cou-
ple of points worth mentioning.

One could use other representations of the operator in-
stead of the position on the surface of section. The max-
imum rate of change of T with respect to the variable 0'
occurs in the exponent and is given by kL . This indicates
that the angular momentum representation T ~ will
have large matrix elements only for

~
m

~
& kl . In

other words, T ~ will be approximately an XXX
matrix, where X=2kI =4m /A, =2 X (circumference)/
(wavelength). More precisely, the large elements of T
will be confined to an XXN submatrix. Combined with
the approximate unitarity result, Eq. (6.10), this indicates
that this XXN matrix is approximately unitary, so its ei-
genvalues will be close to the unit circle, while the eigen-
values coming from the small elements will be small.

A straightforward discretization of the angle will re-
quire several times more than X points, however, say R
points. This gives an effective R XR matrix. Since there
is a representation where the matrix is N XN, one expects
about X of the R eigenvalues of T to be close to the unit
circle and the rest to be rather small.

The procedure is to choose an energy or wave number
kl, numerically obtain the eigenvalues of the R XR ap-
proximation to T, pick out one of them of the form
t =ae, where a=-l, and vary kL until co=0. The
energy that makes the phase vanish gives an approximate
quasiclassical solution of Eq. (6.11) and the correspond-
ing eigenstate can be calculated.

This method, since it is an approximation to the
boundary integral method, is e%cient in the sense that
the size of the matrix grows as &E, whereas the direct
method [i.e., expanding 4 in (1.1) as the product of
sinusoids in angle and Bessel functions in radius] must di-
agonalize a matrix of size proportional to E. That sub-
stantial economy is partially offset by the necessity to find
the zero of the eigenphase. (In addition, the complete
wave functions are not so readily found and the program-
ing effort is somewhat greater as well. )

We tested this method of direct diagonalization of T
and compared the energy eigenvalues of even parity
modes with the exact numerical answers. The results are
compared with those obtained using the direct method in
Table I. One sees that this approximate evaluation of the
transfer operator eigenvalues is quantitatively effective.

One can also compute the eigenvectors corresponding
to the eigenphases zero. In Fig. 22 we present the numer-
ical plot of the absolute value of some even parity eigen-
vectors as a function of position on the boundary circle.
They correspond essentially to the normal derivative of
the wave function at the associated energy. These eigen-
vectors were arbitrarily chosen among the data. For
comparison, in the insets to Fig. 22 we show the corre-
sponding state as a function of position in the billiard
determined using the direct method (as in Fig. 13).

VII. SCARS

B. Numerical computation using the transfer operator

A simple and numerically rather straightforward
method of using the transfer operator is to solve Eq.

Often there are eigenstates whose modulus squared
shows the presence of scarring, i.e., enhanced magnitude
along periodic ray orbits [10]. We discuss some scars
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that appear in this model that have striking and unusual
properties.

A. Internal reAection scars

0.50 I I

10 even state, V0=100
th

E
„ t

——80.025

E = 80.299
Consider the states that seem to reAect from the center

of the step at angles greater than critical (Fig. 14). We
call these internal reflection scars. First note that such
states cannot exist in a perfect semicircular billiard, with
infinite potential on the diameter. Such a billiard is inte-
grable and its states are a subset of the states of the circu-
lar billiard, namely, those odd under reAection through
the diameter. These states are not localized in angle and
consequently do not look like IRS's. In this system, any
orbit passing through the center of the circle is part of a
periodic orbit. There is a continuous infinity of such
periodic orbits, all with the same action, and so these
periodic orbits are not isolated. They are marginally un-
stable. As we shall show, localization in angle of wave
density (and consequently IRS's) results from the angular
dependence of the phase of the total internal reflection
coeScient.

A simple theory of such scars features "second" WKB
quantization. To do this, we note that for such orbits
only the rejected orbit is important. Thus we approxi-
mate T by T„ofEq. (6.4). Let the states desired be denot-
ed g(0). Such states, which classically pass close to the
center, will have low angular momentum, but obviously
will not have angular momentum zero, since that would
make it independent of 0. It turns out that the state
varies quite rapidly with 0, but much less rapidly than
does T. In fact, we can parametrize g(8) in WKB
fashion as

0.25

0.00
~/2

0.500

3m/4

0

0.125

0.000 '

z/2

0.500

3x/4
0

even state, Vo-100

Q 375 E t 1 23.552

E „„=124139

Q.250—

0.125—

11 even state, Vo ——100

0 375 — E,„„,= 80.640

Egpplpx 80 724

0.250—

(b)

(c)

i/~(8)=sin[+k f(8)], (7.1)

in m/2~8~ 3m/2, where the unknown function f(8) is
either even or odd about the x axis, f(8)=+f(2' —8).
(This respects the remaining symmetry of the problem. )

The variation off is on the scale of unity. One is led nat-
urally to this particular choice of scale intermediate be-
tween kl and unity as we shall soon see. We wish to
solve

Id8'T„(8,8')i/i(0') =i/i(8) . (7.2)

Substituting the expression (7.1) for i/i, the integral in (7.2)
is done in the spirit of stationary phase. We encounter
the integrals I+ (8)

0.000 '

0 n/2
e

FIG. 22. Eigenfunctions of the transfer operator. Three ex-
amples of even eigenfunctions are given, together with the exact
energy and the approximate energy determined by diagonaliza-
tion of the transfer operator. The insets show the exact eigen-
functions in the representation used in Fig. 13. Note that states
10 and 11 are accidentally nearly degenerate and display a mix-
ing between a pure IRS state and a whispering gallery state.
This fairly delicate effect is reproduced quite well in the transfer
operator approximation.

I+(8)= —f d0'r(8, 0')
a/2

kI cos[ —,'(8+8')]
4mi

2ikL ~COS[( 8+8)/2 )+i V k& f(8')
Xe e

(7.3)

where' the refiection coefficient r(8, 2~—8)=e'~(8) is
determined from Eq. (1.5) and Snell's law assuming
g )cos a&, cosa~ =

~
cos8~, and k~ cosa+

=ikL +g —cos 8. The phase of the refiection coefficient
thus satisfies

The stationary point of the most rapid oscillations is at
8'= —8. We thus expand the exponent in Eq. (7.3)
about —8, i.e., cos[ —,'(8+ 8') ]= 1 —

—,'(8+ 8'); f(8')
=f(2' 0)+f'(2n 8)(8+0'). T—his yields—

&b(8) = —2 arccos( ~cos8~ /r/) . (7.5)

In order to have a solution of Eq. (7.2) the first exponen-
tial in I+ must be equal to + i, in the even and odd cases,
respectively. Therefore we have the condition

I+ =i exp[i [2kr + [f'(8) ] +@(0)j ]& 2kl +[f'(8)] +@(8)=2m(p+ —') (7.6)

(7.4) where p is a positive integer. This condition is to deter-
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TABLE I. Exact and semiclassical eigenvalues for g =
3 and —' and for Vo = 100.

No.

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Exact E
9=3
3.407
9.091

15.418
17.774
25.169
30.369
34.308
40.S64
44.024
47.076
57.953
60.068
63.455
72.152
74.676
76.919
82.783
90.044
93.011

102.521
107.419
107.898
112.625

Semiclassical E

3.552
9.188

15.923
18.040
25.424
30.543
34.196
41.S19
44.113
46.996
58.685
60.223
63.680
73.006
74.807
77.385
82.920
89.934
93.185

103.426
107.050
108.247
113.074

Exact E

3.674
10.566
16.523
19.359
28.241
34.239
39.098
42.687
49.983
51.869
63.196
69.221
70.213
76.198
82.384
87.696
95.422
99.968

103.755
110.298
119.221
120.846
121.677

Semiclassical E

3.834
10.741
17.185
19.505
28.735
34.374
39.661
43.244
50.298
51.713
64.077
69.166
70.840
77.377
82.688
88.145
95.630

100.451
103~ 810
110.715
119.273
121.293
122.538

Exact E
Vo = 100

6.538
18.550
21.932
35.048
43.058
46.296
55.827
68.768
75.297
80.025
80.640
98.094

10S.777
108.334
110.538
114.351
120.042
123.552
125.932
131.122
136.838
142.445
144.704

Semiclassical E
Vo = 100

6.568
18.598
21.990
35.099
43.138
46.434
55.890
68.904
75.432
80.299
80.724
98.410

106.115
108.899
110.351
11S.029
120.276
124.137
126.085
131.520
137.573
142.720
144.935

mine kL and thus the energy of the scar E =kz.
Denoting

E =2m (p + —')—2kI (7.7)

the phase change occurring at the turning point. This re-
sults in the quantization condition

0

J d 0&E—4(0)=m.(1—1/4) /QkL (7.9)
m/2

we see that the condition (7.6) is a sort of WKB condition
in which (f') is a momentum squared or kinetic energy,
N is a potential energy, and c is the total energy. Note
that 4 is an attractive, i.e., negative, potential. Compar-
ing (7.7) with (4.1), we arrive at the expression

y =+(1/4) —(s/2m) for the defect y . Equation (7.6)
can be integrated to obtain f(0),

f(0)=f d0'&E —@(0')+const. (7.8)
~/2

The next question is to determine c. and the constant of
integration. We argue that g(0) —sin[ski f(0)] must
vanish for 0~m. /2. This follows from a side calculation
in which both the direct and rejected orbits are included.
For 0~m. /2, these two orbits contribute with equal mag-
nitude and opposite sign, since according to (7.5),
&b(m. /2) = —~. We satisfy this requirement by setting the
constant of integration in (7.8) to —lm. /Qkz, where l is
a positive integer.

The value of c is now determined by the second quanti-
zation condition. Two situations are possible. First,
there may occur a turning point at an angle 0, defined via
4&(0,)=E(0. At this point the positive and negative
solutions for f merge. This is illustrated in Fig. 23 by
the higher curve and corresponds to the usual turning
point case of WKB theory. Equation (7.2) can be expand-
ed around this point with the result that g(0) satisfies a
second-order differential equation of the Airy type. Thus
the appropriate value of QkL f(0, ) is m. /4 accounting for

and I = 1,2, 3. . . .
A numerical solution of (7.9) and (7.7) yields the

smooth curve y =
—,
' —(e/2') versus p displayed in Fig.

15. Here the quantization index l is unity. As the index
p and correspondingly kI increase the critical angle 6„
where ~cos0,

~
=cosa, =Q Vo/kl moves toward vr/2

This happens at a rate faster than kL increases such that
at some point, according to (7.9), it is no longer possible
to And a solution with a turning point satisfying
0, )0, &~/2. Physically, wave density diffracts out of
the range of angles corresponding to total internal
reAection and can then enter the high potential side of
the circle. At this point the IRS's and CBS's probably
merge, and a more refined theory is required to describe
them.

The second situation occurs when x/ Vp/kL ) 1 and
the particle is classically forbidden from the right-hand
side. In this case there may or may not be a turning
point in Eq. (7.9). The situation without a turning point
is illustrated by the lower curve in Fig. 23. In this case,
the quantization condition is determined by requiring
that the wave function (7.1) be continuous at 0=+~. For
the case of odd modes we require f(+m. ) =0 and for even
modes QkL f(+sr ) =vr/2. The resulting quantization
condition then is written

I d0&E —C&(0) =sr(1+5)/QkL
~/2



RAY SPLITTING AND QUANTUM CHAOS 3299

z/2 states concentrated near the circular boundary. Quasi-
classically, except near the step, the state will not "know"
that angular momentum is not conserved. We therefore
take as an ansatz

cos
f(8)=; (m 8), (7.10)

FIG. 23. Phase of the reflection coefticient versus angle for
(a) g =E / Vo ) 1 showing a turning point at 0E and (b)
g =E/Vo & 1 showing N(0) —c)0 for all 6.

where 6=0 for odd modes and 6= —,
' for even modes. In

the above analysis, the index I is restricted by the require-
ment that the angular momentum be small l « kL .

B. Central bounce scars

States such as the ones shown in Fig. 13 (18, 35, and
63), and probably those of Fig. 13 (17, 45, 47, 56, 62, and
69) (in addition to those in Fig. 14), are clearly strongly
influenced by the classical orbits passing through the
center of the circle. This suggests that an approximation
along the lines of the preceding subsection might work,
where, however, one must retain both T, and T, . We
have not yet been able to find a formulation sufficiently
simple to report here, and a fuller explanation of this type
of scar must remain for the future.

C. Whispering gallery scars

The whispering gallery scars evident in Fig. 13 (1, 2, 4,
10, 14, 16, 26, 34, and 38—66) are well known in billiards.
We present a simple theory for those WIGS's whose ener-
gy is less than Vo.

For a circular billiard, angular momentum m is a good
quantum number and the energy is determined by
J (k „)=0.The WICxS's for this case are states with
the lowest value of energy for a given m.

For our model, angular momentum is not quantized.
However, for large angular momentum we can still seek

where m is not an integer. We may imagine the state
"penetrating" a bit into Cz, about to the first zero of P in
that "classically forbidden" region. Beyond that, we take
g to vanish.

In this case, we have no transmission possibility. Cal-
culating

Id(8)= J dB'Td(8, 8')e™~
vr/2

in a stationary phase leads to

(8) g(8)
'~~ ' L, ~ ime

where the phase is

i8( m, k~ ) =2+k~ —m —m 58—2 2 3'

(7.11)

(7.12)

(7.13)

Here 58=(m/~m )2cos '(m/kl ). A classical particle
of angular momentum mfi increments its angular posi-
tion by this amount at each bounce.

For a circle, 6= 1, m is an integer, and the solution of
P( m k „)= 2m ( n —1 ) is the semiclassical approximation
to the nth zero k „ofBessel's mth function first found
by Keller and Rubinow [16]. In our case, the stationary
phase point 0'=0—50 is not in the domain of integration
of (7.11) (3m/2&8'&n. /2) if m/2&8&ri. /2+58 (m &0)
or 3m/2 —~58~ &8&3vr/2, (m &0), and we consequently
take 6(8)=0 in these ranges and unity otherwise. These
conditions exclude those classical skips of size 60 arriving
at 0 from outside CL. This geometry is illustrated in Fig.
24. Next, consider

I„(8)= J d 8'T„(B,B' )e
™~

(7.14)

as evaluated in stationary phase. It is not difficult to find
that

(7.15)

According to this formula, the reAection reverses the an-
gular momentum and, in addition to the standard phase
P, it gives to the wave function an additional phase
vrp =vrm+N(kl ). Therefore, we see that Eq. (7.10) is an
eigenstate if, for the even cosine states p is an even integer
and for the odd sine states p is odd.

The phase 4(kL ) is the shift for normal incidence

@(kL ) = —2 cos (7.16)

FIG. 24. WIGS orbit.

At zero energy or infinite step height, @=—~. In this
case, m will be an even integer mo for odd states and an
odd integer for the even states. This guarantees that the
state vanishes at 0=+~/2 as required.

The WIGS's of interest are those for n = 1 and
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TABLE II. Energies and angular momenta of whispering

gallery scars. The nominal angular momentum is in the first

column, the "classical" angular momentum shifted by the

reAection is in the second column, the energy in this approxima-

tion is in the third column, the exact energy is in the fourth

column, and the energy for a simicirular billiard is in the last

column.

mp m (mp, k) Semiclassical E Exact F for semicircle
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1

2
3
4
5
6
7
8

9
10

0.8
1.8
2.7
3.7
4.6
5.5
6.5
7.4
8.3
9.2

12.8
23.2
36.0
51 ~ 1

68.4
87.7

109.1
132.3
157.1
183

13
24
37.2
52.4
70
89.8

111.6
135.4
161.2
188.4

14.7
26.4
40.7
57.6
76.9
98.7

122.9
149.5
178.3
209.5

APPENDIX A: EXACT FORMULATION
OF THE TRANSFER FUNCTION

An alternative formulation to the problem of finding
numerical solutions to Eq. (1.1) (and its boundary condi-
tions) is given by the boundary integral method based on
Green's theorem. Let G (r, r', E) be the exact Green's
function for this problem Le.t Go(r, r', E) be the Green's
function for all space that includes a jump in the potential
at x =0. In other words, Go satisfies Eq. (1.1), but not
the boundary conditions on the circle. Green's identity
gives

p =m 0
—1. The actual "angular momentum" is

m(mo, k )—:(mo —1)—@(kL )/~. Our approximate
eigenenergies for the WIGS states are then given by the
roots of

G(r, r', E)=GO(r, r', E)—f d 0GO(r, r( 0), E}p( 0) .
ac

(A1)

We have used the fact that G(r, r', E) vanishes on BC and
have defined

P(m (mo, kL ), kL }=2'(n —1), (7.17) p(0) =BG(r(0),r', E }/Bn . (A2)

which we have determined numerically for n = 1,
ma=1, . . . , 10, and Vo=100. In Table II we display ex-
act energies of the corresponding states, those predicted
by (7.17), and those for the semicircular billiard, corre-
sponding to 4= —m. We also display the angular
momentum m for the state. The agreement is quite
reasonable. Note that even for the ground state mo=1,
the effect of reAection is not totally negligible, even when

Vo is fairly large.
It is also possible to find approximate energies for the

"second-order" WIGS's, such as those in Fig. 13 (3, 5,
and 8). These states have one radial node and are given
by our approximate Eq. (7.17) with n =2. The results are
listed in Table III. These give energies that are too small.
This may be because the classical orbits for such states do
not impinge on the interface normally, as we assumed in
the above derivation. Thus the effective phase for
reAection @ is closer to —~ than we have assumed,
which would raise the energy.

Regarding r', E as parameters, we find an equation (a
Fredholm equation of the second kind) for p

p(0) = V+ (0)+f d0'K(0, 0')p(0'),
ac

(A3)

Go(r, r', E)= dk~GO(x, x', k, E)e2' (A4)

which consists of three pieces: a direct, a reAected, and a
transmitted part. Go(x, x', k~, E) is a one-dimensional
Green's function, so it is easy to find that

where K(0, 0') = —2BGO(r(0), r(0'), E )/Bn and V+ (0)
=2BGo(r(0), r', E }/Bn. [The factor 2 comes because
BG (ro, r(0'), E)/Bn has a 5-function singularity as r~r',
this singularity is removed from K.] We remark that the
eigenenergies and eigenstates are given by solutions of the
homogeneous version of Eq. (A3)

The "bare" Green's function Go has a Fourier integral
representation

TABLE III. Energies and angular momenta of second-order whispering gallery scars with one radial
node. The entries are as in Table II.

Alp m (mp, k)

0.7
1.6
2.6
3.5
44
5.3
6.1

Semiclassical E

42.9
62.1

83.7
107.5
133.4
161
189.3

Exact E

43.8
68
86.1

117.5
137.5
177.3
196.2

E for semscj. rcle

49.2
70.8
95.3

122.4
152.2
184.7
219.7
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1 k,.l

—
I

~L, k,.l + 'I
e + . e for x,x'(0

2l kL~ 2EkL ~

1 ik~„I
~ —x'

I
"R ik„ l~+ x'

I

Go(x, x', ky, E)= . e " + . e "" for x,x')0
2lkRx 2lkRx

1 ikRx x & +ikLx Ix ( I

e " for xx' (0
i(kii„+kL )

Here kL ii„=+klz —
k» and x ( ) is the lesser, greater

of x,x '. The reAection coe%cients are rl =
—(kL„ki,„)—/(kL +k~„), r~ = rl . —Except for the
direct contributions, which are Hankel functions, the in-
tegral over k cannot be done in closed form. Note that
although Eq. (2.4) has different transmission coefficients
for RL and LR, this does not appear in the transmission
component of Go. This is because the Green's function
automatically takes into account Aux conservation.

Perhaps the simplest method to evaluate (A4) is to
make the substitution

ky ~kL sin(y), kl„~kLcos(y),

which yields the integration path C in the complex y
plane shown in Fig. 25. Since we are interested in the
quasiclassical approximation, it is natural to do these in-

tegrals by the saddle point method. The leading saddle
point approximation to Go yields the quasiclassical ap-
proximation to K, when the points r =(x,y) are placed on
BC. (In the evaluation of K, consistent with the quasi-
classical approximation, —2B/Bn is applied only to the
exponential. ) This approximation for K is in some sense
close to T(8,8'). Actually, T is a symmetrized version of
K, which is quite natural since K involves a one-sided
normal derivative of Go. In fact, T is chosen so that it
manifestly displays the Aux conservation or unitarity
property, which is not manifest in the operator K.

Consider the reflected ray in CL . Call this contribution
to the Green's function G, . We find

1 ik& F cos((p —+0)G„(x,x',y —y') = dqr rl e
4mi

(A6)

where ~x+x'~ =r cosqro andy y'—=r sinpo. The phase is
stationary at y=yo, so a stationary phase evaluation
yiel ds

Tl
G„(x,x', y —.y') =

2l 27TE k p

(A7)

where rI is evaluated at y=yo. Now set x=r cosO,

y =r sinO, x'=cosO', and y'=sinO'. Follow this by tak-
ing the normal derivative, i.e., 8/Bn =8/Br~„&, again
acting only on the exponent. Then

1/2

(AS)
Br

K„(8,8') =
27i'E

The expression for T„(8, 8' ) is

rL 8 (k—l r)
a8a8

1/2
ik~ r

e (A9)

T„(8,8') = K„(8,8'), (A10)

where k„is the component of the momentum normal to
BC of the ray arriving at O and k„' is the normal momen-
tum of the initial ray.

We calculate T, exphcitly, since it is not completely
obvious that the transmission coefficient of Eq. (6.S) is
correct. Take, to be definite, x) =x and x ( =x'. Then

i [kL„~x'~+k&„x+k (y —y')]

G, (x,x',y —y') = f 7Tl kL„+kR

(A11)
The phase is stationary when k solves

It is easy to find that Br/dr =SF/r, whe're 8' is the out-
ward normal at O. Similarly, the derivatives in the pre-
factor of T„may be calculated. This yields the standard
answer

1/2

k k„
y —y' — ' /x'/ — ' x=o.

kI k„ (A12)

0 (&ac ego)o, c Denote the derivative of this expression with respect to
k by Skk. Then

FIG. 25. Schematic steepest descent integration paths in the
complex plane. In one case, a detour is needed to avoid a
branch cut and this extra contribution gives the lateral ray.

1 1 e
v'2~i kl +kii„Q

~ g„„~
(A13)
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Everything is evaluated at the stationary point and
S, =kL„~x'~+k~ x+k (y —y'). Setting x =r cosO, etc.
as before, taking the derivative of 6, with respect to r at
r =1 yields

2l kRX cosO+ky sinO
K, (0, 0') =

v'2tri kL„+k~,

Note that, since BS, /c)k vanishes, one can ignore the
dependence of ky on r. This should be compared with

1/2
Qk,„k,„a'S,

T, (0,0') =
v'2~i kL„+ktt„ t)Or)0'

iS,
e (A15)

The cross derivative may be evaluated as

a's, y sinO+COSO
Skk Rx

k
sinO'+ cosO'

kL

(A16)

This in turn implies that

kR~ cosO+ky slnO
1/2

kL cosO'+k sinO'

' 1/2
k~ sin(0 —a~ )

kL sin(0' —aL )

1/2
Rn

kL„
(A17)

The angles are given in Fig. 21. Again, this is the canoni-
cal relationship involving the normal component of the
momentum.

It should be noted that within the quasiclassical ap-
proximation these prefactors usually have little efFect.
This is because the magnitude of the normal component
of the momentum is conserved at a bounce from BC.
Therefore, if powers of T are evaluated in stationary

phase, prefactors systematically cancel. However, our
notation hides the fact that the factors k„depend on both

O and O', and furthermore, are difFerent for direct,
rejected, and transmitted rays. Therefore, the eigenfunc-
tions of the T operator g are not precisely proportional to
the eigenfunctions of the K operator, which are related to
the solutions of (1.1) by p(0) =8%'(r, O)/r)r ~„,. Howev-

er, P(0) =p(0) up to a slowly varying factor.

APPENDIX 8: LATERAL RAYS

In doing the integral for the rejected rays, it is to be
noted that the prefactor [Eq. (A5)] is not analytic. The
saddle point is at y= go, where tan~„=(y —y')/~ x+x'~.
The function kz (y)=kl +sin a, —sin y has a branch
cut at y =a„the critical angle for total internal
reflection. For ~(po~ (a„the contour can be chosen to
pass over the saddle point, staying clear of the branch
point. On the other hand, for ~tpc~ )tz„the steepest des-
cent contour is required to pass around the branch point,
which gives an additional, somewhat smaller, contribu-
tion. This contribution has an action S&„
=kc~x+x' Icosa, +koL, sina„where L, =

~y
—y'~

—~x+x'~tana. This action can be interpreted as belong-
ing to the path in Fig. 20, which slides along the interface
laterally for a distance I, Evaluation of the integral
gives

e3~~~4 kL [tana, ]'
G

This contribution is smaller than the main term by a
factor of order [kt L, ] '. When ~yo~ is close to a„so
that [kL L, ] is not small, the simplest expression is not
adequate. We do not record the contribution to the la-
teral wave Green's function in this case.

[1]M. C. Gutzwiller, Chaos in Classical and Quantum
Mechanics (Springer-Verlag, Berlin, 1990).

[2] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,
Berlin, 1991).

[3] E. Ott, Chaos in Dynamical Systems (Cambridge Universi-
ty Press, Cambridge 1993),Chap. 10.

[4] A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos
and Quantization (Cambridge University Press, Cam-
bridge, 1988).

[5] L. Couchman, E. Ott, and T. M. Antonsen, Jr., Phys. Rev.
A 46, 6193 (1992).

[6] R. N. Oerter, E. Ott, T. M. Antonsen, Jr., and P. So (un-
published).

[7] R. L. Weaver, J. Acoust. Soc. Am. 85, 1001 (1989).
[8] D. Delande, D. Sornette, and R. Weaver, J. Acoust. Soc.

Am. 93, 1873 (1994).
[9] C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, J.

Nygard, and M. Oxborrow, Phys. Rev. Lett. 75, 1546
(1995).

[10]E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).

[11]For example, see U. Eichmann, K. Richter, D. Wintgen,
and W. Sandner, Phys. Rev. Lett. 61, 2438 (1988). In the
elastic wave experiment of Ref. [8], Fourier transforms of
the spectral fluctuations were also taken, yielding a few
rather broad peaks. These peaks were attributed to
"bouncing ball" orbits normally incident on the boun-
daries. Thus they did not involve ray splitting, since I' and
S waves [see Fig. 1(b)] do not couple at normal incidence.

[12]L. M. Brekhovskikh, &aves in Layered Media (Academic,
New York, 1960).

[13]E. B.Bogomolny, Nonlinearity 5, 805 (1992).
[14]B. Georgeot and R. E. Prange, Phys. Rev. Lett. 74, 2851

(1995).
[15]We discuss the contribution to bg (E) from a ray splitting

boundary elsewhere [R. E. Prange, E. Ott, T. M. Anton-
sen, B. Georgeot, and R. Bliimel, Phys. Rev. E 53, 207
(1996)].

[16]J. B. Keller and S. I. Rubinow, Ann. Phys. (N.Y'.) 9, 24
(1960).


