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Smoothed density of states for problems with ray splitting
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Ray splitting is the phenomenon whereby a ray incident on a boundary splits into more than one ray
traveling away from the boundary. Motivated by the recent application of ideas of quantum chaos to
cases with ray splitting, we present an analysis of the smoothed density of states for two-dimensional bil-
liardlike systems with ray splitting. Using a simple heuristic technique, we obtain a contribution (analo-
gous to the usual perimeter contribution) that is proportional to the length of the ray splitting boundary.
The result is expressed in a general form, allowing application to a variety of physical situations. A com-
parison is also made of the analytical result with numerical data from a particular example.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

Ray splitting is the phenomenon whereby a ray in-
cident on a sharp boundary splits into more than one ray
traveling away from the boundary. For example, a light
ray incident on a discontinuity of refractive index splits
into a reflected and a transmitted ray. The same thing
happens for a plane wave of the Schrédinger equation in-
cident on a discontinuity in the potential ¥V (r) [Fig. 1(a)].
As another example, we note that elastic media support
two types of waves, shear (S) and pressure (P) waves, and
when an elastic wave is incident on a clamped or free
boundary, ray splitting occurs [Fig. 1(b)]. An example
where an incident ray splits into four rays at a discon-
tinuity between two elastic media is shown in Fig. 1(c).
Other examples of waves that experience ray splitting
occur in a variety of physical contexts (e.g., acoustics, mi-
crowaves, and plasma waves).

Recently, ideas of quantum chaos have been shown to
apply (with suitable modification) to problems with ray
splitting [1-3] and attention has focused on billiard-type
examples [e.g., Figs. 1(a) and 1(b)]. A basic ingredient in
previous quantum chaos studies of billiards is a
knowledge of the smoothed level counting function N(E).
This quantity is a smoothed version of N (E), which gives
the number of energy levels with values below E. For the
case of a quantum particle of mass m in a simple billiard
(without ray splitting) it is found [4—7] that N(E) is given
by the Weyl formula
A 2mE T L
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2mE +K

N(E)= z

u(E), (1)

where u (E) is the unit step function, A is the area, and L
is the perimeter length of the billiard. The quantity X is
a number that depends on the topology of the domain
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and the curvature and corners of the boundary. For

sufficiently large E the contribution from K is small and

we shall not consider it further in this paper.

In Eq. (1) the minus sign applies for the case of Diri-
chlet boundary conditions (=0 on the boundary) and
the plus sign applies to the case of Neumann boundary
conditions (d¢¥/0n =0 on the boundary, where 3/9n
denotes the normal derivative). See the work of Balian
and Bloch [7] for a full account including the case of the
general linear boundary condition d¢/dn = —«ky. More
general cases were considered in [8].

The area term is the leading order quasiclassical effect.

y=0

! Clamped
boundary

(b)
Elastic medium
Boundary between
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FIG. 1. Ray splitting examples. In (b) and (c) the S waves are
polarized in the plane of incidence (commonly designated SV
waves). For S wave motion polarized perpendicular to the
plane of incidence (i.e., SH waves) there is no coupling to P
waves at the boundary.
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The correction terms (including that due to ray splitting)
are wave corrections arising because the medium changes
its properties in a distance short compared to a wave-
length at the boundary. The leading corrections can be
thought of as a change in effective area by an amount
proportional to AL, where A is the wavelength; e.g., for
Dirichlet conditions the area is effectively reduced by an
amount AL /2.

Intuitively, it seems natural to suspect that, in cases
with ray splitting, there will be a contribution to N(E)
from the ray splitting boundary and that this contribu-
tion will occur at the same order as the perimeter contri-
bution. That is, we suspect that the contribution from a
ray splitting boundary will be proportional to V' E and to
the length of the ray splitting boundary. In this paper we
will show that this is indeed the case and we will provide
a general expression that yields the ray splitting result in
a variety of different physical cases, which we discuss.
We will also illustrate our result for the ray splitting con-
tribution by comparison with explicit numerical compu-
tations on a particular model example.

II. ANALYSIS

To be specific, first consider the case of the
Schrodinger equation in two dimensions with an arbi-
trary potential ¥(r), which may have step discontinuities.
The eigenstates of this system satisfy Hv,=E 1,, where

ﬁZ
A=——"—v4+Vy(r)
2m
is the Hamiltonian operator. (Henceforth we take #i=1
and m =1.) The density of states d(E)=3 ,8(E—E,),
where E, are the energy levels, is formally given by [4-7

d(E) 7Tlm{fd rG(r,r,E)} , 2)

where G(r,1’, E) is the Green’s function, which satisfies
(E—H)G=58(r—r'), 3)

along with the same boundary conditions that are im-
posed on the eigenfunctions 3,. Equation (2) follows by
representing the Green’s function as a superposition of
the eigenstates

DY)
Gl B)=3 P

a

and noting that Im[1/(E—E_ +ie)]=—a8(E —E,)
when e —>0+. The level counting function is given by

NE)=[" d(ENdE" . @

In order to evaluate the desired contributions to the
density of states we can use an approximation to the
Green’s function. Specifically, the leading term in the
smoothed density of states results from replacing the ex-
act Green’s function by the free space Green’s function.
As a result, the shape and location of the boundary do
not affect this contribution. To find the perimeter correc-
tion, one must do a little better by including contribu-

tions to the Green’s function from nearby boundaries.
Since these contributions are only important for positions
within a wavelength of the boundary, it is adequate to
treat the boundary as flat on the scales of interest. With
this in mind, we study the problem of all space divided by
a ray splitting boundary at x =0. The specific example
we consider is that of a potential V(x,y) given by

V(x,y)=Vyu(x)

for —oo <x and y < + 0. Other examples will be treated
subsequently. We will then calculate the contribution
from the x =0 boundary per unit length in the y direction
to d(E), the smoothed density of states.

The Green’s function for this problem is easily deter-
mined by Fourier transforming in the y direction and
solving the resulting second-order differential equation in
x. For the case in which both the source and observation
point are on the left-hand side of the boundary (x,x’ <0)
one obtains

G(x,x',y,y', E)

=J Gk, explik,(y —y")]

X {exp[ik,|x —x'|]

+r(k,,E)exp[ —ik,(x +x")1} , (5)

where r(ky,E ) is the reflection coefficient for plane waves
incident from the left on the ray splitting boundary. The
function r(k,,E) is determined from the boundary condi-
tions. For the specific case under consideration [i.e., a
potential jump Vyu (x)]

r(k,,E)= Kk

== 6
k,+k. ©

where k, and k, are the components of the wave vector
normal to the surface on the left- and right-hand sides,
respectively. These are defined by

k.,=V'E—k} (7a)
and
ki=V'E—V,—k?. (7b)

Since the transform variable k, extends from — oo to
+ 0, one must specify the way in which the square root
in Egs. (7) is to be taken. The conditions on the Green’s
function at |x|— + « require that k, and k, be positive
if they are real and positive imaginary otherwise. This al-
lows the Fourier inversion in (5) to be viewed as a con-
tour integral in the complex k, plane, which is deformed
around _the branch points at k, =+V'E and
ky=i\/E —V,, as shown in Fig. 2. We now evaluate
the contributions to Eq. (2) from the left half space by
setting x =x' and y =y’ and integrating over x and y.
The first term in the Green’s function (5) is the free
space contribution and gives, as mentioned, the lowest-
order density of states when integrated over the relevant
area in the full problem. The second term gives the effect
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FIG. 2. Contours C and C’ in the complex k, plane.

of the boundary and will be proportional to the length of
the ray splitting boundary Lzg. We thus obtain for the
boundary contribution, after integrating over x from
— o to 0,

dg(E)=

Lgs dk,
Im
87T2 l f k 2__

where C labels the contour depicted in Fig. 2. (In three
dimensions x,y,z the term in curly brackets in (8) is re-
placed by [ .r(k,E)[k}—E] 'k dk , where now C
runs from k, =0 to oo, circling below the points
k,=VE,VE—V,.)

It is important to note that Eq. (8) is actually more
general than the derivation first indicates because we
have yet to use any specific information on the particular
form of the reflection coefficient. Thus (8) applies for the
Helmholz equation with any appropriate set of boundary
conditions. To illustrate this, we note that if the ray
splitting boundary is replaced by one with Neumann or
Dirichlet conditions on the wave function, the appropri-
ate reflection coefficient is » = +1 or — 1, respectively. In
this case the integral in Eq. (8) can be evaluated by clos-
ing the contour in the upper half plane and picking up

r(k E)] (8)

the residue from the pole at k, = V'E. One obtains
LRSr
SrEV2

Integrating over energy to obtain N(E) gives precisely
the perimeter correction of Eq. (1).

As another check on Eq. (8) we may also apply it to the
case of a mixed boundary condition 0y /dn = —k1.
this case the reflection coefficient is r(k,,E)
=(ik, —«k)/(ik, +«k). The integral Eq. (8) may then be
evaluated by deforming the contour to C’ as shown in
Fig. 2 and setting k, = —io. The boundary contribution
to the density of states is then given by

dg(E)= )

Lgs = E+o2—i?
d,(E)= 2 do . az KZ
8w —w E+0° E+o“+«k

Evaluating the integral, we obtain a result in agreement
with Balian and Bloch [7,9],

Lrs | 1 2
87 El/2 (E+K2)1/2

dg(E)= (10)

Thus, as one might expect, at low energies the boundary
term behaves as in the Dirichlet case and at high energy
(E >>k?) the behavior is as in the Neumann case.

We now return to the problem of the ray splitting step
discontinuity and evaluate its contribution to the
smoothed density of states. Equation (8) gives only the
contribution from the left-hand side of the ray splitting
boundary. By inspection we can add in the contributions
from the right-hand side

Lgg r(k, E)
5 Im [fcdky
(11

2__
k2—E

r'(k,,E)

dy(E)=
3(E) k}+V,—E

where r’(ky,E )= —r(ky,E) is the reflection coefficient for
plane waves incident from the right. If one carries out
the integration along the contour C in Fig. 2, there are
two types of contribution to the imaginary part of the in-
tegral in Eq. (11). The first is contributions from the sem-
icircular _arcs around the points k, =+VE and
k,=+V'E—V, (f E>V,). This contribution may be
wrltten

u(E—V,)
(E—V,)!7?

Lgs | u(E)
8 E1/2

(731='_ ’ (12)

where u (E) is the unit step function. The second contri-
bution comes from the portion of the contour along
which the reflection coefficient has an imaginary part.
For O0<E <V, this corresponds to |k |<\/E and for
¥V, <E this corresponds to VE — V< [v k,|<VE. Writ-
ing k, =V'E sina, where a is the angle of incidence of a
plane wave on the left-hand side, we see that the contri-
butions come from angles for which there is total internal

reflection. Specifically, for E >V, the contributions
come from _angles satisfying o, <a<w/2, where

a.=sin"}(v'1—V,/E ) is the critical angle for total
internal reflection. Using the expression (6) for the
reflection coefficient, this contribution can be written

g2 dk

z , (3
m VE—k} V,—E+k?

- _ Lgs
B=
2t Yk

where k,, =0 if E <V, and k,, =V E—V, if E > V. In-
troducing the variable z=E /V,, the contribution (13)
may be expressed in terms of K (k)= fg/zd(?(l
—kZin?0)~1/2, the complete elliptic integral of the first
kind
7 =LRS Kz~ %)
B2 52 V})/z

forz <1 and

_ LRS K(z 1/2)
B2 2'17'2 (zV)1?

for z>1. Combining the two contributions and integrat-
ing over energy gives the contribution AN(E) from ray
splitting to the level counting function
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AN(E) _ _ ~|Vz _u@)—u(z—1)
L. V'V, o u(z) B E—
VNI | — ST Viz—1 1
xfOK( Z2)dz | =V'Vo | =~ =
1 k(') |
2w v dz |u(z —1). (14)

In Fig. 3(a) we plot AN(E)/LgsV/ ¥, as a function of z.
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FIG. 3. AN/(LgsV V) versus z.

Note the discontinuity at z=1. Also note that AN from
(14) is generally smaller in magnitude than the Dirichlet
and Neumann values AN /L = FV'E /4w. The integrals
in Eq. (14) can be evaluated in terms of complete elliptic
integrals if desired.

As a numerical check on Eq. (14) we consider the mod-
el problem shown in Fig. 4, where the boundary condi-
tion on the side walls is taken to be Dirichlet and on the
upper and lower walls is taken to be Neumann. Con-
tinuity of the wave function and its normal at the ray
splitting boundary give the energy levels as the solutions
of a transcendental equation

[E—(nw/Ly)*)"V*tan{[E —(nw/Ly)*1"/*L,}
+{E—Vy—(nm/Ly)?*]~ 172
Xtan{[E—Vy—(nw/Ly)*]"?L,}=0, (15)

where for Neumann boundary conditions (cf. Fig. 4) on
the top and bottom walls we have n =0,1,2, . ... Taking
Vo=10° and L,=L,=L,/2, we have numerically
solved for the energy levels from E=0 to 2X10°
(The second term in (15) becomes [(n7/L,)*—E
+ Vo] *tanh{[(nw/L¥*—E+V,]'"/’L,} when E <V,
+(nm/Ly)?.) Using these we obtain the level counting
function N (E). Using (1) to subtract out the area contri-
bution, we obtain the residual AN(E). The quantity
AN(E) shows rapid fluctuations with energy, as one ex-
pects (there are continuous families of classical periodic
orbits). Smoothing AN(E) over 50 levels, we obtain the
numerical AN(E) shown in Fig. 3(b). Smoothing over
~10? levels we obtain Fig. 3(c). The dotted lines in Figs.
3(b) and 3(c) are the theory. Because we take Dirichlet
boundary conditions on the side walls and Neumann
boundary conditions on the top and bottom walls, the
contribution to the perimeter term from the walls is pre-
cisely zero (L;=L,=Ly/2). Thus, at lowest order,
AN(E) is due solely to the ray splitting boundary. The
agreement between the results from the numerical solu-
tion of (15) and the theoretical curve is very good.

I _
an
P=0
/ /w:O
Lo V=0 V=V
I _
an \
L4 Lo

FIG. 4. Model problem.
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III. OTHER APPLICATIONS

So far we have restricted the discussion to the case of
the Schrodinger equation with a discontinuity in poten-
tial. The analysis, however, is readily applied to other
physical situations. Several of these are discussed below.

Case 1: Schrodinger equation with a &-function poten-
tial. Using V(r)=vyd(x) in place of V(r)=V,u(x), we
have a ray splitting boundary of a somewhat different
type than that considered above. In particular, although
an incident wave is still reflected and transmitted, there is
no refraction of the propagation direction upon transmis-
sion and hence no total internal reflection. An elementa-
ry calculation yields the reflection coefficient

r(E)=—[1—2ik, /vy]"} (16)

and r'(E)=r(E) by the symmetry of the potential. Thus
AN(E) is given by (8) [with (16) used for ] multiplied by
a factor of 2 to account for the two sides of the ray split-
ting boundary.

The integral may be evaluated by switching to the con-
tour C’' in Fig. 2 with the result

Lgs 1 1

d,(E)= 1 L
? 47 | \/E+(ogr2? VE

; (17)

which has a somewhat analogous character to that for
the mixed boundary condition Eq. (10).

Case 2: Thin microwave cavity with a discontinuity in
height. Now consider a vacuum filled microwave cavity
that is very thin in the z direction. The quantity of in-
terest here is N (@), the number of cavity resonant modes
with frequencies below w. Since the cavity is thin in the z
direction, the z component of the electric field satisfies
the two-dimensional Helmholtz equation in x and y,

(V2,+k*E,=0,

where k?2=w?/c?, c is the speed of light, and E, satisfies a
Dirichlet boundary condition on the bounding curve.
This situation has received much attention as a con-
venient experimental system for studying quantum chaos

[10]. In Ref. [2] it was suggested that ray splitting could

be introduced in such a system by introducing a discon-
tinuity in the vertical height of the cavity. Say the height
is hin x <0 and A’ in x > 0. For wavelengths large com-
pared to h and &', the boundary conditions on the electric
field E, are continuity of dE, /dy and continuity the volt-
age between the upper and lower plates [i.e.,
hE,(x=0—)=h'E,(x=0-+)]. One obtains reflection
coefficients r and ' that are real and independent of ener-
gy and angle [2],

r=—r'=(h"—h)/(h'+h) . (18)

As a consequence of r=—r’, Eq. (8) yields precisely zero
for dg(w) when the contribution from the two sides are
added. This is easily understood in the case A’ /h —0. In
this case the two sides decouple into two independent
cavities, one with a Dirichlet boundary condition
(r=—1) and one with a Neumann boundary condition
(r=+1). When the two N(w) for each side are added

the Dirichlet decrease on one side (x <0) is precisely can-
celed by the Neumann increase on the other side (x >0).

Case 3: Scaled Schrodinger problem. We now consider
a “scaled” Schrodinger problem defined by replacing ¥,
in {V24+[E —Vou(x)]}¥=0 by V,=1E (i.e., we vary V,
with E) to obtain

{(V2+[1—nu(x)]E}¥=0. (19)

[Here >0 and u (x) can be the step or, more generally,
any non-negative function.] For this scaled problem we
ask what is the number of eigenvalues N (E,n) below E
when 7 is held fixed. As shown schematically in Fig. 5,
the level counting function N (E,,n) for the scaled prob-
lem at energy E=E, and scaling parameter 7 is the
number of net crossings from left to right of the dash-
dotted line E/Vy=n=E,/V, by E, versus V, curves.
The level counting function N (E,,V, ) for the unscaled
problem at constant potential ¥, and at energy E, is the
number of crossings of the vertical dashed line by E,
versus ¥, curves. We claim that this number is the same:
N((E,,n) at n=E,/V, is equal to N (E,,V,) at
Vo=V,. To prove this, we need the positivity of
E, (Vy>0) and we need to show that

dE,/dVy<E,/V, ; (20)

i, once an E_, versus FV, curve crosses the line
E /V,=n, it never crosses back. An energy level of the
unscaled problem is given by

E,=({,,HY,), 1)

where H=—V?*+V,u(x). Differentiating (21) with
respect to ¥, we have
dE_,/dVy =, u(x),) , (22)

where derivatives of 1, with respect to ¥, do not contrib-
ute due to the variational property of H. Using (21) to
reexpress the right-hand side of (22) as
(E /Vy)+ (¥, VH,) and noting the negativity of
(¥4, V*,), we obtain (20), which proves our assertion
that N (E,7)=N(E,V,) when V,=nE. Note, howev-
er, that the corresponding densities of states
dy(E,V,)=(3N,/3E)y and d,(E,n)=(3N,/dE), are

(E*!V*)

FIG. 5. Schematic illustration of E, versus V.
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unequal. For example,
d,(E,n)=d(E,Vy)+1 3N /3Vy)g -

Case 4: Thin microwave cavity with a discontinuity in
dielectric constant. Again consider a thin microwave cav-
ity, but this time one with a constant height. Assume
that there is a dielectric of relative dielectric constant € in
x <0 and a dielectric of relative dielectric constant €' in
x>0. Then the phase velocity of plane waves is
v=c/Ve in x <0 and v'=c/V€ in x>0. For e>¢
there can be total internal reflection for waves incident on
the x =0 boundary from x <0. This problem for N(w) is
formally the same as the scaled Schrodinger problem
with a step potential as can be seen by writing the wave
equation for Ez as

v2+

{1—[1—(v/v Ylu(x)} |E,=0. (23)

Equation (14) can then be used to obtain AN(w) by re-
placing E by (0 /v)* and ¥V, by (0 /v)*[1—(v /v")*].

Case 5: Elastic medium billiard with a clamped or free
boundary. This case [Fig. 1(b)] is considered in the con-
text of quantum chaos in Ref. [1]. Let v denote the veloc-
ity of S waves and v’ the velocity of P waves. The dis-
placement u of a point in the elastic medium due to
waves may be expressed in terms of a scalar and a vector
potential u=V¢'+V X A, which give the P and S wave
components, respectively. Setting A=z,$ [appropriate
to two dimensions and vertical polarization of the S
wave; Fig. 1(b)], the S wave potential ¢ and the P wave
potential ¢’ both satisfy Helmholtz equations

r(k E)
AN(w )"

(V2+k*)¢p=0

and
[V2+(k )¢ =0,

where k=w/v and k'=w®/v’. The S and P wave fields
are coupled through boundary conditions at the billiard
edge. Thus we are again dealing with a scaled problem
very similar to that of the microwave cavity containing a
discontinuity in dielectric constant.

As before, the boundary conditions require the satis-
faction of Snell’'s law for this problem,
(w/v)sina=(w/v')sina’, where a (a’) is the S wave (P
wave) propagation angle to the normal to the boundary.
Since the shear wave velocity is slower than the pressure
wave velocity v <v’, Snell’s law implies that there is an
angle for total internal reflection of S waves (but not P
waves). Thus the § waves are analogous to the waves in
the x <0 region of the Schrodinger problem with the step
potential and the P waves are analogous to the waves in
the x >0 region of the Schrodinger problem. Using this
analogy we can apply Eq. (11) as follows. Let r (r')
denote the reflection coefficient for conversion of an in-
cident S wave (P wave) to a reflected S wave (P wave).
[Note that the expressions for » and r’ in this case are
different from (6) so that (14) does not apply.] In the ex-
pressions for r and r’ now_make the replacements
(@/v)—VE and (0/v')—>VE—V, V,. Then put the re-
sult into (11) and do the integration with respect to E.
After this is done convert back via E—(w/v)* and
Vo—(o/v)*[1—(v/v’)?] to obtain AN(w),

r'(k,,E) —

f(a:/v)

S ak, —
—E e

where §=[1—(v /v")%].

As a specific example consider the case of a clamped
boundary (u=0 on the boundary). Using
u=V¢’'—z,X V¢, we obtain the reflection coefficients

k. .k, —kﬁ

kek,+k2 '’
where k, =(k?*—k2)!/? and k;=[(k")*—k2]'/%. [In the
case of a free boundary the boundary condition is
n-T=0, where n is the unit normal and T is the stress

tensor (see, e.g., Ref. [1] for r in this case).] To obtain
AN (w) for this problem we thus write

r=r'= (25)

k.=V'E—k?, k,=VE(1—-8)—k?, (26)
substitute (26) in (25), and put the result in (24). This
yields v

AN(w)=(87)" (wLgs/v)F(8) , (27a)

a)8

dE , (24)

—FE

Vz—nVz—8— 'r] 7]
\/z— 7?Vz—8—n*+
1 1
+
"—z n*+6—z

F(8)= [ 'dz Im

f dn

X

(27b)

Thus the same result [Eq. (11)] yields the leading-order
ray splitting contribution to the smoothed level counting
function in a variety of physical situations [11,12].
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