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The properties of “scars” on eigenfunctions (i.e., enhancements along unstable classical periodic or-
bits) of a two-dimensional, classically chaotic billiard are studied. It is shown that the tendency for a
scar to form is controlled by both the stability of the periodic orbit and the statistical fluctuations in the
time for wave density to return to the unstable orbit once having left. Both scars and “antiscars” are
predicted to occur depending on the nearness of the eigenvalue of the chaotic eigenfunction in question
to a value that quantizes the periodic orbit. The theoretical predictions are compared with direct nu-

merical solutions for a bowtie shaped billiard.

PACS number(s): 05.45.+b, 03.65.Ge, 03.65.Sq

I. INTRODUCTION

The properties of semiclassical eigenfunctions of wave
equations when the corresponding classical dynamics is
chaotic are important in a variety of fields of scientific
research. Some time ago Berry proposed that, locally,
the eigenfunctions appear to be a superposition of WKB
solutions with random phases and amplitudes [1] distri-
buted such that the classical microcanonical ensemble is
recovered [2]. In the case of solutions of the two-
dimensional Helmholtz equation, AV+Ek2W=0 with
A=23%/3x2+3%*/3y? and ¥=0 on the boundary, this
leads to the expectation [1] that wave functions in the
semiclassical regime will locally appear to be a superposi-
tion of plane waves:

e N
\Il=Nlim V(2/AN)Re| 3 a;explia; +ik;x) { , (1)

where A is the area of the connected region under con-
sideration, the amplitudes a; are real positive random
numbers whose mean squared value is 1, the phases a;
are randomly distributed on an interval of 27, and the

wave vectors k; are uniformly distributed on a circle in k

space with ijI=k. The factor V/(2/AN) in (1) normal-
izes the wave function so that [ ,|¢|%dx dy =1.

Due to the fact that the wave function (1) is composed
of a superposition of a large number of random variables,
the distribution of the values of the wave function was
predicted by Berry [1] to be a Gaussian with zero mean
and a variance inversely proportional to the area A of the
region. This prediction was tested numerically by
McDonald and Kaufman [3,4] for a stadium shaped
boundary, and they found that it was nearly true for most
eigenfunctions but that there were exceptions. In partic-
ular, Heller [5] showed that occurrences of excessive con-
centrations of eigenfunctions on domains corresponding
to unstable classical periodic orbits were necessary. He
did this by showing that a superposition of chaotic eigen-
functions of the form (1) could not describe the initial
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propagation and spreading of a wave packet along a
weakly unstable periodic orbit. Heller named these con-
centrations “‘scars,” and their study has been the subject
of much recent interest.

As mentioned, Heller’s result [5] is based on considera-
tion of the initial spreading of a wave packet; that is, for
a time longer than the spreading time determined by the
classical stability of the periodic orbit, but shorter than
the recurrence time associated with the separation in fre-
quency of adjacent eigenfunctions. As such, his result ap-
plies to a superposition of a large number of eigenfunc-
tions and does not determine the degree to which indivi-
dual eigenfunctions are scarred. Similarly, the theories of
Bogomolny [6] and of Berry [7] on fluctuations of the
wave-function density based on Gutzwiller’s [8] periodic
orbit formula also describe the average properties of a
large number of eigenfunctions in a classically small ener-
gy range. All of these theories have shown that the
strength of scarring depends on the stability of the
periodic orbit through its Lyapunov exponent.

Subsequent work [9-11] has pursued the approach
based on summations over periodic orbits. Efforts have
centered on decreasing the classically small energy range
of Refs. [6] and [7] to zero in order to arrive at the prop-
erties of single eigenfunctions [10]. Ultimately, this re-
quires summing over a large number of periodic orbits,
the length (and number) of which increase as the energy
averaging range is made smaller. Thus, for detailed
answers, the approach becomes computationally inten-
sive.

In this paper, we will discuss the statistics of scars on
individual eigenfunctions. We will show that the proper-
ties of scars can be described as a natural extension of the
chaotic eigenfunction picture leading to Eq. (7) below.
Our first step is to define a quantitative measure of the
degree to which an eigenfunction is scarred by a periodic
orbit. In the theories of Bogomolny [6] and Berry [7] the
quantity of interest is the wave-function spatial probabili-
ty density [6] or the phase space density [7] (the Wigner
function). These can be compared with the correspond-
ing expected classical value based on the microcanonical
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ensemble.

We will consider another quantity ¥, (to be defined in
Sec. II), which is the projection of the wave function
along the periodic orbit on to a plane wave which quan-
tizes the orbit. This quantity will have a value which
varies erratically from individual wave function to wave
function. A particularly large value will signal the pres-
ence of a scar. We will investigate the variations of V),
both numerically and analytically for a spe01ﬁc example
of a chaotic billiard problem.

The goal of our analysis is not to derive a formula
which when evaluated gives the numerical value of ¥V, for
a particular eigenfunction. This requires, essentlally,
solution of the wave equation for each eigenfunction.
Rather, our principal result is a formula [Eq. (8)] showing
that the eigenfunction to eigenfunction variations in the
strength of a scar as measured by ¥, on a particular
periodic orbit can be modeled as a Gaussian random vari-
able with zero mean and a variance that can be easily
determined. The tendency to form a scar depends on two
factors: one ‘“‘deterministic” and one “‘statistical.” The
deterministic factor (which gives the variance of our
model random variable) depends on the closeness of the
eigenvalue of the eigenfunction in question to quantizing
the given periodic orbit. This factor is larger when the
instability of the periodic orbit is weaker. The statistical
factor is essentially the time for wave density to return to
the vicinity of the unstable periodic orbit once having
left. The latter quantity varies erratically from eigen-
function to eigenfunction and is characterized by a prob-
ability distribution function.

Strictly speaking, our results are limited to solutions of
the two-dimensional Helmholtz equation in the bowtie
shaped region of Fig. 1, but we believe that they are, in
fact, more general.

The organization of our paper is as follows. In Sec. II
we introduce the variable ¥, which will give a quantita-

FIG. 1. The bowtie billiard along with the square of the mag-
nitude of the wave function for an eigenfunction which exhibits
a scar on the periodic orbit bouncing back and forth between
the upper and lower boundaries.

tive measure of the degree to which an eigenfunction is
scarred by a periodic orbit. We will first calculate the
properties of this variable under the assumption that the
wave function is described by Eq. (1). This gives a point
of reference for comparison with our subsequent analytic
and numerical results. Second, we will present an analyt-
ic formula giving the properties of ¥, for eigenfunctions.
Section III presents the results of a numerical study
which confirms to some degree our picture of scars. Sec-
tion IV presents the detailed mathematical steps by
which the results of Sec. II were obtained. Finally, in
Sec. V we give some conclusions and speculations.

II. SCARS

The chaotic wave function described by Eq. (1), despite
being the sum of a large number of independent waves,
still exhibits a degree of long range coherence as was
pointed out by O’Connor et al. [12]. Consider the vari-
able,

V,=J"" wx)costk,dl , @

where the integral is taken along a straight line of length
L, and k,, is a constant (#k, is the momentum component
along the line). If W(x) is a chaotic eigenfunction de-
scribed by Eq. (1), then V), is a Gaussian random variable
with zero mean and a variance given by

(V,f),:n/(zm)]f:”[F+(9)+F_(9)]2de , 3
where

F,(0)=sin[(k cosOtk,)L /2]/(k coseikp ).

Here the subscript 7 on ¢ V2) signifies that the result for
(¥}) is from the random plane wave hypothesis Eq. (1).
To obtam (3), substitute (1) in (2), square the result, aver-
age over the independent random variables a; and a;,
perform the integrations over I/, and pass to the limit
N — oo (thus producing the integration over the angle 6).
If kL and k,L are large and |(k —k,)L|>>1, the main
contributions to the integral in Eq. (3) come from the vi-
cinity of the 6 values satisfying k cos6+k,=0. In this
limit we obtain

(V2),=L/(AV k*—k}), @)

where use has been made of the integral

fzguzsinzé‘ dé=m. Thus, in the limit that kL, k,L,
and |(k —k,)L| are large, the expression (3) for the vari-
ance exhibits a square root singularity as k, approaches
k. The square root singularity in Eq. (4) can be seen to
result from the projection of the semiclassical Wigner
function, which is uniform on a circle of radius k in
wave-number space, onto a single axis parallel to the line
along which the integral in (2) is carried out. This is il-
lustrated in Fig. 2 for the case in which the line is parallel
to the y axis.

Equation (4) is only an asymptotic evaluation of the in-
tegral, Bq. (3), giving (¥7?),. It breaks down when
(k —k,)L ~1. Reevaluating the integral in Eq. (3) for kL
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FIG. 2. Wave-number space for a wave function with wave
vectors uniformly distributed on a circle of radius k. The
dashed line illustrates the projection process by which V), is ob-
tained.

and k,L large but (k —k, )L ~1 reveals that the apparent
singularity in (4) is cut off. In this case, in the vicinity of
k,+k cos6=0, we can use the approximations

k,—k cosf=(k,—k)+k6*/2

and
k,+k cosf=(k,—k)+k(0—m)*/2 .

One then obtains from Eq. (3)
(V2),=L*G(A)/(AVKL) , (5)

where

G=[" (h/a—¢) sin*(A/4—gHdS/(2m),  (6a)

A=2(k —k,)L . (6b)

Note that as A— o Egs. (5) and (4) match, as they must.

In terms of Fig. 2, we note that, due to the finite length
L of the line, the projection process yielding sz has a
minimum resolution of order L ~!. This finite resolution
becomes important as k, approaches k and the dashed
line in Fig. 2 becomes tangent to the circle representing
the Wigner function. Further, as k, approaches k, V,
measures the “overlap” between the wave function ¥ and
a plane wave propagating along the line.

Equation (5) predicts that the greater the length of the
line, the larger the variance of ¥,. However, Eq. (5) can-
not hold if the length of the line approaches the size of
the region in which the eigenfunctions are determined.
This is because (1) only describes the local properties of
the eigenfunction and does not account for properties at
larger scale that are determined by the details of the
shape of the boundary. We will now argue that, if the
straight line is made to be a periodic orbit, then the
eigenfunction to eigenfunction variations of ¥, will ap-

pear to be a Gaussian random variable with a variance
described by Eq. (5) in the important range (k —k,)L =1,
but with the function G (1) determining the cutoff of the
square root singularity in (2) replaced by another func-
tion involving the length of the periodic orbit and its
Lyapunov number.

Our particular result applies to the bowtie shaped re-
gion depicted in Fig. 1. Due to the negative curvature of
the boundary, the classical orbitals of the system are
chaotic. We focus on a particular unstable orbit, namely,
the orbit that bounces back and forth between the upper
and lower boundaries at the center of the bowtie. This
orbit is only weakly unstable when the radii of curvature
of the upper and lower boundaries are large. We again
consider the variable

_rLn
Vp—j;L/Z‘I/k(O,y)cos(kpy)dy , (7)

where, now k,=pw /L, p is an odd integer. L is the sepa-
ration of the two boundaries at x =0, and ¥, is a nor-
malized eigenfunction with eigenvalue k for the
Helmholtz equation V?W, +k>¥; =0. The value of ¥,
defined in this way will vary from eigenfunction to eigen-
function. A particularly large value of V, signals the
presence of a scar since this implies W, has a large
Fourier component which quantizes the orbit. Our
analysis (to be presented in subsequent sections) indicates
that the eigenfunction to eigenfunction variations of V),
may be modeled as different realizations of a random
variable,

V2=vL>G,(A;,A)/(AVKL ) , ®)

where v is a Gaussian random variable with zero mean
and unit variance. The form factor G,

GI(AI,A)ZZ(A——1)_1/218U+(}\'1’§)/a§|g=20 ’ (9)

depends on the nearness of the eigenvalue k to k,
through the variable

7»1=(k2—kp2)L/[k(A—l)] ) (10)
and
U, (A, E)=exp[—m(A+i/2)/4]
XU(—ik, expl—im/4]E),

where U (q,z) is the parabolic cylinder function defined in
Ref. [13]. Here A=1+1/8L /R, is the stability index
(Lyapunov number) for the periodic orbit and R, is the
radius of curvature of the upper and lower boundaries.
We note that, similarly to Eq. (5) for the chaotic eigen-
function, Eq. (8) agrees with Eq. (4) (apart from a factor
of 4) if the_asymptotic limit of G, is taken for large
ALGy =4V k/[L(k*—k2)].

The extra factor of 4 in G, is due to the even symmetry
of the wave function about the x and y axes. This sym-
metry was used in the derivation of G, (Sec. IV), but not
in the derivation of the expression for G [Eq. (6)]. The
large argument expansion for Eq. (5) can be brought into
agreement with that of Eq. (8) by constraining the chaotic
eigenfunction (1) to have even symmetry about the x and
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y axes [i.e., on the periodic orbit, replace the summand in
(1) by a; cosk ;% cosky;x with the appropriate normaliza-
tion factorj Henceforth we insert the factor of 4 where
appropriate by defining the new function

G,(M=4G (M),

which applies to the symmetric random eigenfunction.
the corresponding version of Eq. (5) has G replaced by
G;.

The analysis giving rise to Eq. (8) leads to the following
physical interpretation. A scar will appear on the period-
ic orbit (measured by the tendency of V2 to exceed
(¥2),) if either the time for waves to escape the periodic
orblt is large (as determined by the factor G, /G,) or the
time for waves to return, once having left, is short (as
determined by the Gaussian random variable v). The ra-
tio

(VY /vy, =

gives the expected enhancement of sz over the random
plane wave prediction { sz),, and gives a measure of the
tendency for a scar to form.

The difference between the predictions of Egs. (5) and
(8) for the variance of ¥, concerns the way in which the
square root singularity in Eq. (3) is cut off as k ap-
proaches kp. In both cases, the cutoff occurs when the
difference of the two wave numbers is the inverse of a
length. In the case of Eq. (5) (which only applies for
sufficiently short lines), the cutoff [occurring at A ~1; cf.
Eq. (6)] is determined by the length of the line; and in the
case of Eq. (8), the cutoff [occurring at A;~1; cf. Eq.
(10)] is determined by the classical exponential length of
the unstable orbit [14]. Thus for weakly unstable orbits
(i.e., A just slightly greater than 1) the cutoff of the
square root singularity occurs at higher values for G,
than for G;. Hence, for p values in the cutoff range, the
values of ¥, on weakly unstable orbits tend to be larger
than would be expected from the random eigenfunction
hypothesis, i.e., there are scars.

In the small wavelength limit there will be many eigen-
functions [O (k4 /L)] whose eigenvalues fall in the range
where the predictions of Egs. (5) and (8) for the variance
of V, differ significantly. This coupled with the
knowledge that v is a Gaussian random variable allows
one to make detailed predictions of the number of eigen-
functions which are scarred.

G,(A,A)/G,(A), (11)

III. NUMERICAL TEST

To test our ideas, we have numerically solved for the
eigenvalues and eigenfunctions for the bowtie billiard (re-
stricted to even symmetry about the x and y axes) using
the same technique as McDonald [4].

Two different bowtie billiards, corresponding to
different dimensions and radii of curvature of the sides,
were considered in detail. These are shown in Table I.
For each billiard we calculated about 500 eigenfunctions
corresponding to the 200th to 700th eigenvalue. Further,
we have calculated the scar strength ¥V, for several
different periodic orbits, and about 30 different kp values,

TABLE I. Billiard dimensions.

Billiard A B

L, 2.0 2.0

L, 2.0 2.0

R, 1.5 4.0

R, 10.0 2.0
A 4.677 120 4.764292

for each orbit and eigenfunction.

We first examine the distribution of V, values. We
note that in the asymptotic range (k —k,)L >>1, where
Eq. (4) is expected to apply, the quantity V (k*— )1/ i
by (4) anticipated to have a Gaussian dlstrlbutlon ThlS
assumption is tested in Fig. 3 where we have made a his-
togram of V,(k?—k2)!/* values for the vertical line
placed on the periodic orbit at x =0, for the billiard
shape labeled 4 in Table I. Also shown in this plot is a
Gaussian fit to the data. The measured variance of the
data is 0 =1.27 compared with the theoretical value of
0, =1.31 based on Eq. (4) and the known dimensions of
the billiard. For the example shown here the Gaussian
prediction appears quite accurate.

Most of the ¥, values contributing to the histogram of
Fig. 3 are for values of k, such that (k —k,)L >>1 so
that Eq. (4) applies and the form of the cutoff for k ~ k is
not resolved. To investigate the cutoff, we plot in Fig. 4 a
histogram of the average value of Vk V2 versus

—(kz—k )L /[k(A—1)]. This is done by assxgmng
the value of V, for each eigenfunction and k, value to
one of 50 bins based on the corresponding value of A;.
Only data points for which —5 <A; <15, that is, in the
cutoff region, are included in this process. The average
value of Vk V2 for each bin is computed and plotted.
According to Eq (8) the histogram should approach
L3/2G|(A;,A)/ A which we have plotted as a solid curve
in Fig. 4. Also shown on Fig. 4 as a dashed curve is the
random plane wave cutoff function L3/2G,(A)/ A where
G,=4G and G and A are defined in Egs. (5) and (6). This
is the result that would be expected if the random plane
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FIG. 3. Histogram of V,(k?—k?)!/*( 4 /4L)'/? values for the
vertical periodic orbit at x =0 for billiard A4 of Table 1.
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FIG. 4. Histogram of average values of VKL ¥ versus A, for
the same case as Fig. 3. Also shown are the theoretical predic-
tion of Eq. (8) as a solid line and the prediction of Eq. (5) as a
dashed line.

wave hypothesis applied. As can be seen, the shape of
the histogram reproduces the function G; which is con-
siderably more peaked than the random plane wave
cutoff function G;. The same binning procedure is used
in Fig. 5 where we plot a histogram of the average of
sz(kz——kpz)” 2 4 /4L separated into 40 bins based on the
value of k, /k. According to Eq. (4) the value of the his-
togram in each bin should approach unity. This reflects
the uniformity of the Wigner distribution around the cir-
cle in Fig. 2. The theoretical and numerical values agree
quite closely.

Similar studies were made for the periodic orbit which
bounces back and forth along the line y =0 in billiard 4.
The Vp(kz—kpz)l/ 4 and cutoff histograms are shown for
this orbit in Figs. 6 and 7. The agreement for this orbit is
not as good as in the case of the vertical orbit. In partic-
ular, the Vp(k2 -kpz)” 4 histogram shows an anomalous
concentration of small ¥, values. One possible cause of
this discrepancy is that the radius of curvature of the top
and bottom of this billiard is too large and the resulting
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-En F 1
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RN ]
NG 0 %wwf“——ﬁ_mﬁ—uwmwl—rj
= r ‘
S |
3 05- 4
~ k
r «:
! |
0.0 L . . . .
0.0 0.2 0.4 0.6 0.8 1.0
k,/k
FIG. 5. Histogram of  average values of

VXk*—k})'"* A4 /(4L) versus k, /k for the same case as Fig. 3.
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FIG. 6. Histogram of V,(k*>—k?2)'/*( A /4L)'”? values for the
horizontal orbit at y =0 for billiard A4 of Table I.

classical orbits are not sufficiently chaotic. This hy-
pothesis is supported by the results of billiard B of Table
I in which both radii or curvature are large. Shown in
Figs. 8(a)-8(c) are histograms of Vp(kz—-klf)“4 for (a) the
vertical orbit at x =0, (b) the horizontal periodic orbit at
y =0, and (c) the diamond shaped orbit shown with a
scarred eigenfunction in Fig. 9.

For the diamond shaped orbit of Fig. 9 we must gen-
eralize our definition of V), for an orbit which does not re-
trace itself. In addition, it is necessary to account for the
vanishing of the wave function at the boundary of the bil-
liard. Close to the boundary the wave function can be
thought of as the sum of an incident and reflected wave.
The condition ¥=0 at the boundary implies that the
reflected wave has the same amplitude as the incident
wave but has a phase shift of 7. As a result we define

v,=1

LT
»=2J, ‘P(l)sin(kpl+n1r)dl,

where L is the total length of the orbit, / is the distance

(kL))

FIG. 7. Histogram of average values of VKL V: versus A, for
the same case as Fig. 6. Also shown are the theoretical predic-
tion of Eq. (8) as a solid line and the prediction of Eq. (5) as a
dashed line.
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along the orbit starting at some boundary, and n is the
number of reflections between the starting point and the
point I. The k, are quantized according to

k,Ly+Nm=pw,

where N is the total number of reflections along the orbit.
The factor of 1 in the definition guarantees that the ex-
pression for ¥, reduces to the previous definition for the
back and forth orbits considered previously.

0.50F T 3
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T T T T T

Probability

0.40

AR RERRRERRL

0.30

A RARARRRRRNRRRRR]

Probability

o
o
I

c) l ' I

0.40F E

0.30

T

Probability

0.20

LARARRRRSRRERRRERS)

0.00E . . ‘ ]
—4 -2 0 2 4
Vp(kz—kpz)‘/‘éé/‘ti‘)l/z

FIG. 8. Histograms of V,(k>*—k2)!/*( A4 /4L)"/* values for
three periodic orbits in billiard B of Table I: (a) the vertical or-
bit at x =0, (b) the horizontal orbit at y =0, and (c) the dia-
mond shaped orbit of Fig. 9.

5% 0% 0
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©009000% . |
0%0%s0 ©
. 00, 194

Yl

FIG. 9. A scar on the diamond shaped orbit of billiard B.

For the diamond shaped orbit and in the case of wave
functions with symmetry in both x and y, the only
nonvanishing amplitudes occur for k,=4mp /Ly
(p=1,2,3,...). The definition for v, is then equivalent
to

L,/4
V,=2f " WDsin(k,dl ,

where the integral is carried out along one of the four
legs of the orbit. Since the wave functions are no longer
symmetric with respect to reflection about the orbit the
expected values of sz should only be enhanced by a fac-
tor of 2 as opposed to a factor of 4 for the back and forth

orbits. Thus for the diamond orbit Eq. (4) should read
2L,
AVE =K

Similar modifications apply to Egs. (5) and (8).

The histograms shown in Figs. 3, 6, and 8, are con-
structed using approximately 1.5 X 10* values of V,. The
central bins contain about 460 entries. Thus one expects
the fluctuations in the histogram height to be about
+1.4X 1072, This is indicated by the error bar on Fig.
8(a).

Figure 10 displays the cutoff histograms for the same
three orbits as in Fig. 8. Again, the histograms corre-
spond to the prediction of Eq. (8).

In conclusion, the numerical results show that the
eigenfunction to eigenfunction variations in ¥, can be
modeled as a Gaussian random variable with zero mean.
The variance of V, appears to be given by Eq. (4) if the
wave number k, and eigenvalue k are sufficiently
different. The variance is given by Eq. (8) if k, and k are
close to one another. The expected value of sz is
enhanced in this latter case if the relevant periodic orbit
is weakly unstable. This enhancement signals the pres-
ence of a scar.

(v2),=
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IV. ANALYSIS

We now describe the mathematical steps by which Eq.
(8) is obtained. We first expand the wave function and its
derivative with respect to x in a Fourier series in y,

W(x,p)=(2/L) 3, V,(x)cos[k,(x)y], (12a)
)

V¥ /3x =(2i /L) 3, I,(x)cos[k,(x)y] , (12b)
P

where k,(x)=pm/L (x), p is an odd integer, and L (x) is
the vertical width of the bowtie billiard at x. Here we

((kL)"*V,5)

FIG. 10. Histograms of the average values of V' kL V: versus
A, for the same three cases as in Fig. 8.

have assumed the wave function is even in y. Such an ex-
pansion makes sense as long as one restricts x to values
such that |x|<L,, where L, is the distance from the
center of the bowtie to the curved side walls. Inserting
Eqgs. (12a) and (12b) into the Helmholtz equation, and
projecting out various Fourier components, results in the
following set of differential equations for the coefficients
I,(x) and ¥V, (x):

3 -
30 EKPP:VP =i, (13a)

9 -
P EKPP:IP—-I[kZ—kPZ(x)]Vp , (13b)

where
A L2 a -
Kpp,(x)—Zf_Lﬂdy coskpyg{L 1(x)cos[kp,(x)y]}

is a coupling coefficient due to the varying height of the
bowtie. Equations (13a) and (13b) are formally the same
as those for the voltages and currents on an infinite set of
coupled transmission lines. This analogy will be noted at
stages of the development. However, it is not essential to
following the derivation.

We now imagine partitioning space into a small
“inner” region surrounding the periodic orbit and an
“outer” region, namely, the rest of the billiard. For small
x (i.e., near the periodic at x =0) and assuming the orbit
is weakly unstable (R_ /L is large), we can neglect in Eq.
(13) the coefficient «,, which couples *“voltages” and
“currents” on different transmission lines (i.e., p7p’).
The precise conditions under which this is permissible
will be given subsequently. The result is that the “volt-
age” V,(x) satisfies a Weber equation near the periodic
orbit at x =0,

YV, (x)+(k*—k2(0){1—2x2/[R,L(0)]})V,(x)=0,
(14)

which follows from an expansion of k,(x) in Eq. (13b) for
small x,

k,(x)=~k,(0){1—x?/[R.L(0)]} .

Here the instability of the periodic orbit appears as an
effective quadratic potential (an antiwell) produced by the
curvature of the boundaries.

Solutions of Eq. (14) can be expressed in terms of para-
bolic cylinder functions,

V,(x)=cRe{U, (A,{)+ exp(i®,)U% (A,0)} , (19
where {=x/R, A, =R%k’—k}), R*=V/R,L(0)/8k2,

and
U, (A,E)=-exp[—m(A;+i/2)4]
XU(—i), exp[—im/4])E) ,
U?% is the complex conjugate of U, U is the parabolic
cylinder function [12], ¢ is a normalization constant, and

we have assumed k, ~k.
The quantity ®,(k?) in the above solution for V,(x)
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describes the phase relation between a wave leaving the
vicinity of the unstable periodic orbit and one returning.
One can think of exp(i®,) as the reflection coefficient
characterizing the outer region. This is seen by examin-
ing the asymptotic form of the solution ¥, as {— =, in
which case

U, (A,6)= exp[if®/4+(ir,— 1) Ing]

represents an outgoing wave and U% an incoming wave.
The behavior of the phase ®,(k?2) depends on the solu-
tion of the wave equation away from the periodic orbit.
It is through ®, that details of the global shape of the
boundary influence V,.

It follows from Eq. (15) and its subsequent definitions
that for k ~k, the characteristic scale for variation of the
V, with x is R [which is defined following Eq. (15)]. The
assumption that coupling to other Fourier components in
Eq. (13) can be neglected will be valid provided that vari-
ation of separation between the upper and lower boun-
daries as x is varied over a distance R is much smaller
than a wavelength. Using L (x)=~L(0)+x?/R_, this re-
quires kR?*/R.<<1 or v/L(0)/8R.<<1. Thus the ap-
proximation leading to Eq. (14) requires that the orbit be
only weakly unstable.

Equation (15) describes the amplitude of the Fourier
component of the wave function which quantizes the
periodic orbit. Since the orbit is unstable, the effective
potential does not confine wave density to the orbit.
Rather, wave density spreads away from the orbit where
it bounces around the rest of the billiard, eventually re-
turning and interfering constructively or destructively
with itself. These processes occurring in the rest of the
billiard are described by the phase ®,(k) while the
behavior of wave density in the vicinity of the periodic
orbit is described by the parabolic cylinder functions.

We would like to extract from Eq. (15) the value of ¥,
at x =0. This requires determination of the normaliza-
tion constant ¢. The value of ¢ is determined by the re-
quirement that the square of the wave function when in-
tegrated over all area is unity. To determine ¢ we borrow
a technique from circuit theory. We imagine that a
source is added to the Helmholtz equation,

Vz\P+k2\I’=%cos(qu)5(x) . (16)

Here the source is localized to the periodic orbit by the &
function and has a sinusoidal variation with wave number
k, along the orbit. The strength of the source is deter-
mined by the parameter I which will be likened to a
current in the transmission line analogy.

Equation (16) is no longer an eigenvalue equation, and
k2 may be viewed as a continuously adjustable parame-
ter. Equation (16) will be singular if k is chosen to be one
of the eigenvalues for the billiard. In this case a vanish-
ingly small current I can produce a nonzero wave eigen-
function W.

The presence of the localized source in Eq. (16) pro-
duces a discontinuity in the x derivative of the wave func-
tion. That is,

3 x==+0
)4 _al
O x:—o_T COS(qu) , (17a)
or, in terms of voltages and currents defined in Eq. (12),
x =0+
Sy =i (17b)
ax ? x=0— .

The source can be accounted for in the transmission line
equations by adding the term i6(x)I8,, (where §,, is the
Kronecker delta function) to the right-hand side of Egs.
(13b) and (14). This implies that a current source of
strength 7 has been added at x =0 to the gth transmission
line.

The source will excite a wave function, producing a
“voltage” V,(0) at the location of the source. Since the
problem is linear, one can write

Y, (k*V,(0)=I, (18)

where the constant of proportionality Yq(kz) can be
thought of as an admittance characterizing the billiard or
its transmission line system equivalent.

According to Egs. (17b) and (18) the admittance is
given by the ratio of the jump in the x derivative of ¥ to

the value of Vgs
o —i qu

Yo (=5 0) "ax

x =0+

(19)

x=0—

The admittance has several important properties.
First, we multiply Eq. (16) by ¥* and integrate over all of
the billiard to obtain

[ dx dy kP = (VY PI=i2- Y, GOV, . 20

Thus the admittance is imaginary. This is a consequence
of the Hermitian property of the Helmholtz equation. In
terms of the transmission line analogy, energy is stored
on the transmission lines but no power is dissipated, im-
plying an imaginary admittance. Second, if k2 is selected
to be an eigenvalue of the billiard it follows from Eq. (18)
that the admittance must vanish. This is because, for an
eigenvalue, one has a nonzero ¥, in the absence of a
source. Finally, we differentiate Eq. (20) with respect to
k? and evaluate the result for k2 equal to an eigenvalue
and consequently ¥ equal to the corresponding eigen-
function. In performing this differentiation we must
differentiate k2 not only where it appears explicitly, but
also where it appears implicitly; for example, in the wave
function ¥ and the “voltage” V,(0). Fortunately, the im-
plicit dependences vanish. Variations of the wave func-
tion about an eigenfunction make the left-hand side of
Eq. (20) stationary. Further, since the admittance van-
ishes for an eigenvalue, variations of the voltage on the
right-hand side of Eq. (20) do not contribute. The result
is

2 d Y,

2—; <
[ dx dy|¥| AT

|V, (0] . @n

The transmission line analogy for the preceding is the
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statement that the total energy stored in the system is
given by the derivative with respect to frequency of the
product of the square of the voltage at any port and the
reactive admittance.

Now, if we demand that the eigenfunction be normal-
ized to unity we have

gidYq
L dk?

—1

|V, (0)*= (22)

Thus knowledge of the derivative of the admittance with
respect to k” gives the value of ¥,(0).

To use this relation to determine ¥, we take the fol-
lowing steps. With the source, Eq. (14) now has on the
right-hand side iI8(x)3,,. Since the source is localized at
x =0 the solution still has the form of Eq. (15) for £>0.
For £ <0 the solution can be obtained by assuming even
symmetry. Letting p =q, we then have from (19)
¥ (k)= 2i Re{ U’ (A,,0)+ exp(i®,)U% (1,,0)}

? R Re{U, (A,0)+ exp(i®,)U% (1,,0)} ’

(23)
where
U’+(}»1,0)=8U’+(k,§)/8§f§=0 .

The condition for the eigenfunction (Y,=0) is that k2
should satisfy

1+ exp{i®,(k?)+id;[A(k?)]}=0, 24)
where
Q;(A)=—2arg[U’, (A,0)] .

Here, ®,(k?) represents the phase of the reflection
coefficient attributed to the outer region and ®;(A,) is the
phase attributed to the inner region near the periodic or-
bit. We note that the dependence of &, on k? is much
more rapid than that of ®;(A,(k?)). In particular, adja-
cent eigenfunctions (with even symmetry in x and y) have
a typical separations in k2 values of 167/ A4 ( 4 is the area
of the billiard) and correspond to separations of the total
phase ®,+®; of 27. Since ®; depends on k? through
ll—(kz—k L/[k(A—l)] it changes more slowly with
k? (by a factor of order k ~!) than ®, does. Thus the
separations in k2 values between adjacent eigenfunctions
are determined primarily by the phase of the reflection
cocfficient characterizing the outer region. A schematic
plot of this phase (mod2w) is shown in Fig. 11. The ei-
genvalues are determined by the intersections of the solid
and dashed curves. The spacings between adjacent eigen-
values can be expected to exhibit the characteristic
Wigner distribution associated with level repulsion.

Equation (23) provides an expression for the admit-
tance. Differentiation of this expression with respect to
k? and evaluating the derivative for k2 equal to an eigen-
value gives

dy, j
dk"2—=—%IU'+(M,o>lzﬂi_2[<l>o(k2)+<l>i(k1>], (25)

k? [arbitrary units]

FIG. 11. Schematic representation of the reflection phase
®,(k?) versus k2. The dashed curve represents 7—®; and the
intersection of the solid and dashed curves determine the eigen-
values.

where we have utilized the Wronskian relation
(ULU% —UtU, )=i. Since we expect the derivative of
the outer phase ®, to dominate that of the inner phase
@, in Eq. (25), we drop the derivative of the inner phase
from Eq. (25). Inserting the expression for d¥, /dk? lnto
Eq. (22) (with g set to p) results in Eq. (8), where V2 is
given by

-1

vi=

do,(k?)
dk?

We thus see that the variable sz can be expressed as
the product of a form factor G;(A,) which varies relative-
ly smoothly with k2 and a function v? which varies errati-
cally from eigenfunction to eigenfunction (and p value to
p value). We argue subsequently that the distribution of
v? should be universal.

The quantity v* can be interpreted as follows. The
outer region has a reflection coefficient exp(i®,). The
usual phase delay giving a measure of the time wave den-
sity spends in the outer region before returning to x =0
with  variation cos[pmy/L(0)] is T,=#d®,/dE
(E =#%k?/2m is the energy), which, in our normahzed
units is 7,=2d®, /dk?. Thus T, ~1/+%, and we see
from Eq. (8) that, as one might guess, V is smaller if the
wave takes longer to return (i.e., T, is larger)

If ka and ij are two successwe elgenvalues, then it
follows from Eq. (24) that ®,(k;,,)—®, (k )=27 for
large j. Thus 27(d®,/dk?) "' is of the order of the spac-
ing between (even) elgenvalues which in the Weyl ap-
proximation has an average of value 167/ 4. Hence v~ 2
can be viewed as a normalization of the erratically vary-
ing delay time T, to its typical value. In terms of Fig. 11
the values of v_g are determined by the slopes of the @,
versus k2 curve at the points of intersection with the
dashed line. We therefore conjecture that these values
when appropriately normalized should have a universal
distribution, just as the spacings have a universal distri-
bution. This conjecture is supported by our numerical
calculations and is reinforced by noting that if v is a
Gaussian random variable the statistical properties of V),

A
3 (26)
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match those for the random eigenfunction in the asymp-
totic regime |k —k,|L >>1. That is, if v is a Gaussian
random variable with the zero mean and unit variance
and we evaluate Eq. (8) in the asymptotic regime A;>>1,
we recover Eq. (4).

With respect to the numerical calculations shown in
Figs. 3, 6, and 8 we note that, to get sufficiently good
statistics for the distribution of v, it was necessary to con-
sider a range of k, values much larger than the cutoff
width. We are, however, primarily interested in the
statistics of v in the cutoff region. Since the phase
®,(k?) which determines v? characterizes the solution in
the outer region, it should not depend on the nearness of
k to kp. Thus the Gaussian result, indicated by Figs. 3, 6,
and 8, should apply in the cutoff region as well.

V. DISCUSSION AND CONCLUSIONS

Expressions (8) and (4) allow us to make predictions
about eigenfunctions which have scars. For example, one
might ask what is the wave density along the periodic or-
bit. Using Parseval’s theorem and the representation
(12a) we have

_ (L2 dy _ 2 2
p= [T SFlWx=0y) L2§|Vp| : 27)
According to our theory, each of the ¥, in Eq. (27) can
be modeled as an independent Gaussian random variable
according to Egs. (8) and (4) depending on the value of
A;. The variable P is then expected to be a Gaussian ran-
dom variable with a mean and variance given by

(PY=2L"23(|V,|*) (28a)
p

and

((P—(P)))y=4L* T [(|V,|H)—(|V,[2)?]
p

=8L* 3 (|V,[*)*. (28b)
P
We consider now the mean value of P in order to com-
pare it with the random plane wave prediction. Taking
the difference of the two predictions we have

(PY—=(P),=2L 23 [XIV,I))—(|V,1*),]. (28¢)
p

The expected value of P for the random plane wave case
can be obtained directly from Eq. (1), and inserting the
previously mentioned factors to account for symmetry
(P),=2/A. To evaluate Eq. (28c) we note that the ex-
pressions for {|V,|?>) and (|V,|*), are the same in the
asymptotic regime (k —k,)L >>1. Thus differences that
arise in the two predictions result from the cutoff region
where Egs. (8) and (5) apply. This gives

(P)—(P),=2(AVKL )" '3 [G1(r,)—G,(X,)], (29)
P
where the subscript p emphasizes the p dependence of the

A’s. As a function of k, this deviation is nearly periodic
with a period w/L. The deviation is positive (a scar) if

the eigenfunction has a k value that is close to quantizing
the orbit (i.e., k =k,) and is negative (an antiscar) if k is
midway between two k, values. The deviation is largest
for weakly unstable orbits and all but disappears as the
orbit becomes more unstable.

In Fig. 12 we have plotted a histogram of the averages
of the deviation VKL [{P)—{P),] for eigenfunctions
which are grouped into bins according to their values of
pu=(k —k,)L /2m, where k, is chosen to put u in the in-
terval |u| <0.5. This plot is for vertical periodic orbits in
billiard A. Also plotted is the predicted value
23,[G(A,)—G,(A,)]/ A according to Eq. (29). The
theoretical curve and numerical data follow roughly the
same shape and indicate the tendency for a scar to form if
k has a value close to quantizing the periodic orbit u=0.
The error bars show the standard deviation of the data in
each bin. The regions of scars and antiscars are clearly
seen in the data and conform generally to the theoretical
prediction.

It is interesting to compare the wavelength depen-
dences of the various characterizations of the scar
strength. First, we note that if one is evaluating the indi-
vidual values of ¥V, for a particular periodic orbit and
various eigenfunctions, the enhancement in the expected
size of those V), in the cutoff range (k —k,)L ~1 persists
even as the wave number goes to infinity. This is indicat-
ed in Eq. (11).

For a given orbit and eigenfunction, at most one or two
values of ¥, will fall in the cutoff range (k —k,)L ~1
where Eq. (11) appreciably exceeds unity. Any classical
observable, such as the orbit averaged density P defined
in Eq. (27), will involve a sum over a large number of the
V,’s. This dilutes the importance of the one or two in the
cutoff region and yields a quantity which approaches the
classical value as the wave number goes to infinity. For
example, the expected value of P averaged over a large
number of eigenfunctions approaches the classical value

V(kL)((P)=(P),)

-0.4

-0.2 0.0 0.2 0.4

FIG. 12. Deviation between the average wave density on the
vertical periodic orbit of billiard 4 and the corresponding value
based on the random eigenfunction hypothesis versus
u=(k —k,)L /2. The solid curve is the theoretical prediction
Eq. (29) and the data points with error bars are the numerical
results.
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as k 172 according to Eq. (29). The fluctuations in the
values of P for individual eigenfunctions are larger. Ac-
cording to Eq. (28b) and using Eq. (4) for ¥, we have

32 1
P—(P)P?)===
((P—(P))?) 1AL

In(kL) , (30)

which is larger than the fluctuation in the mean given by
Eq. (29).

In conclusion, we have obtained a fairly complete pic-
ture of the statistical properties of scars in a particular
billiard, and we believe that these results can serve as a
guide to what should be expected in general. The forma-
tion of a scar is controlled by the stability of the periodic
orbit in question and the eigenfunction to eigenfunction

variations in the time for wave density to return to the vi-
cinity of the periodic orbit after it has left. The latter
effect can be modeled as a Gaussian random variable,
while the former effect specifies the variance of the
Gaussian variable. We have developed an analytic model
and tested it by numerical simulation of the wave equa-
tion. Agreement between analysis and numerical results
is confirmed.
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