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Communication with a chaotic traveling wave tube microwave generator

Vasily Dronov,? Matthew R. Hendrey, Thomas M. Antonsen, Jr.,” and Edward Ott®
Institute for Research in Electronics and Applied Physics, and Department of Electrical
and Computer Engineering, University of Maryland, College Park, Maryland 20742

(Received 12 January 2003; accepted 6 September 2003; published online 23 October 2003

Traveling wave tube§TWTs) are vacuum electronic amplifie(see Beck, Gittins, and Piercthat

are commonly used for communication in the centimeter wavelength range. Increasing demand for
high data flow in wireless communication systefsatellite communication systems are a good
example raises needs for making TWT’s more compact and efficient. Motivated by this we suggest
a scheme in which a TWT with feedback is operated in a highly nonlinear regime where the device
behaves chaotically. The chaos is controlled using small controls. Then, at the receiving end a
receiving TWT synchronizes to the chaotic transmitter and amplifies the received signal with nearly
no distortion. Results on numerical simulations of the proposed scheme are reported and used to
evaluate its effectiveness. @004 American Institute of Physic§DOI: 10.1063/1.1622352

In this paper we consider a scheme for microwave com- possible because the original signal was produced by a cha-
munication where we are attempting to use an alternative  otic system. A notable feature of this scheme is that, in the
means of “modulation” for the encoding of binary infor- ideal case, the signal amplification is in principal distortion-
mation. Both the transmitter and receiver in our scheme less, even though the process is nonlinglae nature of dis-
use a traveling wave tube(TWT), a high power vacuum  tortionless amplification is explained in Sec).Vh applica-
electronic amplifier commonly used in communication tions where the benefits of receiver simplicity and
satellites, etc. In our scheme, however, TWT behaves cha- compactness are paramouetg., satellite-based communi-
otically and modulation is achieved by means of control- cation, our scheme may provide an advantage.

ling chaotic dynamics of the tube. The main advantage of In Sec. Il we describe a model for a TWT feedback
such a scheme is an increase in power efficiency of the oscillator. In Sec. Ill we investigate this model through nu-
transmitting amplifier. We believe that this work may be  merical simulations, display its chaotic behavior and charac-
relevant in applications where the key requirements for terize this behavior. In Sec. IV we discuss how, following the
communication system design are compactness and scheme of Refs. 4 and 5, information can be encoded in the
power efficiency. We present a model for the proposed TWT oscillator output through control of the symbolic dy-
communication scheme as well as results of numerical namics of the chaos. In Sec. V we discuss the possibility of
simulations of the model equations. using the phenomenon of synchronization of chaotic systems
for the purpose of efficiently amplifying and retransmitting a
chaotic signal of the type discussed in Sec. IV. A noise analy-
I. INTRODUCTION sis of such a chaos-based communication system is given in
Sec. VI. In Sec. VIl we present further discussion and sum-
marize our conclusions.

In the system we envision, the signal sent by the trans
mitter is generated by a traveling wave tUH@WT) Finally, we wish to emphasize that our motivation for

. _3 . . . . .
oscillator* operating in the chaotic regime. That is, under ¢onsidering TWT oscillator operation in the chaotic regime

the supposed operating conditions, the TWT naturally pros the possibility of attaining improved power efficiency and

duces a narrow band microwave signal with temporally chageyice compactness. In particular, unlike some other work

otic phase and amplitude variations. We show that, if suitabl%sing chaos in communicatioh€ secrecy is not one of our
small perturbations are applied to the TWT, the symbolic ’

dynamics of the chaotic TWT can be controlled. Following goals.
the idea of Hayest al,*®the information being transmitted || 1\ MODEL
is encoded in the controlled symbolic dynamics of the chaos.

The detection of the signal at the receiver can be accom- In this section we review a model for the nonlinear op-
plished by use of a replica of the transmitter’s chaotic TWTeration of a TWT which can be made to oscillate by adding
oscillator. The small received signal is amplified by the rep-feedback. We model the TWT in the following way. Assume
lica receiver system through the phenomenon of synchronithat the signal at the input i8j,e'“c" where Ai;(t) is the
zation of chao$.This provides a potentially simple, cheap, complex envelope of the signal aag is the carrier or ref-
and compact amplifier for the detector system, which is onlyerence frequency. The linear behavior of the tube is modeled

as a first-order bandpass filter with the bandwidtw2 cen-
dpresent address: Comsat Labs, Division of ViaSat, 22300 Comsat Dr:[,ered near the Ca‘_rrier frequency. The linear gain _Of the filter
Clarksburg, Maryland 20871. is G, . Nonlinearity arises due to power saturation as the
YAlso at the Department of Physics. electron beam bunches toward the output end of the TWT. A
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Ain(t)z pR(1-1) ; R(t)
Input o A Output

~Ao 0 Ao @ Saturation nonlinearity
Low pass filter with FIG. 1. Schematic of the free-running
linear gain Gy, PR(®) chaotic oscillator.
Delay <
small fractionp of the output is then fed back into the input dA(t) el AC-7)?
through a feedback line with delay time Performing a fre- —+At)=kA(t—7 2

{ryvrem—
guency shifto— o — w; we translate the analysis to low fre- dt 1+]A(t=7)|
quency(i.e., Aj,e' “'—A;,) so that the time variation of the wherek is the loop gaink=pG, , and the bandwidtiAw
complex variableA;, represents the slow amplitude and has been normalized to unity by means of a rescaling of the
phase modulation of RA,e'“c']. A schematic diagram of time variables, i.et—tAw and7— A w.
the model in this low-frequency representation is shown in  Note that our modeling of a TWT as consisting of linear

Fig. 1. and nonlinear stagdss illustrated in Fig. lLis only an ap-
The inputh(w) and the outpuK(w) of the first-order  proximation and that such a sharp decomposition does not
low-pass filter with the bandwidth/2» are related by truly exist. Nevertheless, it has been fotifRithat Eq.(2) is
very effective at modeling real TWT experiments. Also note
_ GLKin(w) that the model variablé&(t), the output of the fictious linear
Alw)= THio/rAe’ stage, is not a measurable physical quantity, but R(a},
given in Eqg.(1) in terms ofA(t), does represent a measur-
and, therefore, able physical quantity.
It is also important to mention that, while a wide variety
_ A(w)(1+io/Aw) of TWT models exist®°with varying complexity:*~*3the
Ain(w)= G , unigue property of our model is that it is perhaps the simplest
- that is able to describe the behavior of a TWT oscillator with
in the frequency domain, and feedback.
A(b) Ill. CHAOTIC BEHAVIOR

G, ' The right-hand side of Eq2) contains a delayed argu-
mentA(t— 7). Thus(2) is an infinite dimensional dynamical

in the time domain. In general the frequency dependence afystem[to evolveA(t) forward fromt= 7, we must specify

the linear transfer function for a TWT is more complicatedthe function A't) in O<t<7]. The dynamics of the system

than a simple first-order bandpass filter. We adopt the firstean, however, be finite dimensional or even low dimensional.

order bandpass filter here because that is the simplest model particular, the system state may asymptote to a low dimen-

giving a nonzero memory time. Since TWT amplifiers aresional subset of the infinite dimensional state space. This

broadband, our model can be realized by inserting a narrowubset is called an attractor. We are interested in the case

band first-order filter in the signal path. The TWT output where the system motion on the attractor is chaotic. In the

Apn(t)= (Aw)_1%+1

(Fig. D is case of low dimensional chaotic dynamics, it is often feasible
to find a phase space partition and the corresponding sym-

el A bolic dynamics for the chaotic attractor. However, there is no
R(t):A(t)m' oy common recipe for finding a parameter set that makes the

dynamics chaotic and low dimensional. A powerful tool that
where the ternfiexp(7]At)|?) 1+ |A®)[?]"* models the non-  can be helpful in this situation is the set of Lyapunov expo-
linearity of the TWT with# being a parameter characterizing nents for the system. Our goal is to arrive at a situation
the quadratic phase nonlinearity, and the coefficient ofwhere the largest Lyapunov exponent is positiyeelding
|A(t)|? in the denominator of1) can be set to 1 using a chao$ while others are either zero or negatigie order to
suitable normalization of\(t). This model of the nonlinear- provide contraction of the flow in the directions normal to
ity is one of a class of models due to S&lethich have been the expansion direction
used in the community to simulate communications sys- In order to compute the Lyapunov exponents we con-
tems with TWT's. SinceA;,(t)=pR(t— 7), the equation for sider an infinitesimal variation from(t), denotedsA(t).
A(t) becomes Equation(2) yields the following linearized equation f&A:
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FIG. 3. (@) Uncontrolled attractor fok=7.142, 7=0.530 andz=1.0. (b)
Return map for the same attractor using the surface of section

1
. B . e
X:”’ 1+|A(t—7-)|7] {Alt=7)oA% (t=7) |R(t—77/4)| =0.425.

+A*(t—7)SA(t— 1)}, 3

phase ofA [i.e., A—Aexplig), where ¢ is a constant In
Fig. 3@ we show |R(t)| versus |R(t—77/4)| for k
=7.1427=0.530,=1.0. Figure 8b) shows the return map
IRm+1|=f(|Rm|), where|R,| is the value of|R(t)| at the
m’th passage ofR(t,,—77/4)| through the value 0.425 go-
ing from left to right[i.e., d|R(t—77/4)|/dt>0 att=t].

where SA* is the complex conjugate ofA. In order to
compute the firsiN exponents, we start with unit norm
orthogonal functionsSA;=u; on the interval0,7], i.e.,

1 (7
(ui(t),ui(t)):||ui(t)||2:—J {R u;(t)Rq u;(t)] We note that the return map is nearly one dimensional, indi-
TJo cating that the dimension of the attractor in Figa)3s near
A , _ (but slightly bigger thaptwo.
+Im{u;(t)]Im[u;(t)]}dt=1,
1 IV. ENCODING INFORMATION VIA CONTROLLING
(Ui(t),uj(t)):;fO{Re[Ui(t)]RG[Uj(t)] CHAOS

A. Choosing a partition and an appropriate

+Imlu;(t) JIm[u;(t)]}dt=0, for i#j. set of symbols

Following the procedure described, for example, in Ref. 14,  Partitions give a rule which assigns a symbol whenever
p. 148, we integratd3) with these initial conditions and the state is in a certain portion of the phase space. For the
periodically use a Gram—Schmidt algorithm to renormalizereturn map in Fig. &), a natural way to choose the partition
the functionsdA,; , keeping them orthogonal as we integrateis to divide the map at its maximum, so that the left side
the flow forward in time. Theth Lyapunov exponenk; is  corresponds to “0” and the right-hand side to “1.” Such a
computed as the average rate of exponential growth of thpartition rule is often called dawo-level quantizer Note,

norm of the function JSA(t), i.e., \=lim_, however, that this partition rule is not robust with respect to
X (1M)log[ | oA/ 94(0)|[], where the subscript labélis  assigning correct symbols near the maximum of the curve;
chosen so that;=\,=\gz=- . i.e., noise or a small error in measurifig},| will result in an

Figure 2 shows results of a computation of the first fourincorrect symbol assignment. To make our communication
Lyapunov exponents for and 7 fixed andk varied. Only the  system robust to noise, we will introduce a “noise-resisting
positive and least negative exponents are plotted. Two othegap” (Sec. IV Q. That is, we restrict the dynamics so that the
exponents are identically zero by virtue of the invariance oforbit never falls within an interval of width 2R centered at
Eqg. (2) under time translation and under a change of thehe maximum of the curve in Fig.(B) (e.g., Ref. 15
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Binary ¢ Bernulli Shift at t=t
Input
= TTTITIT ... =
123456 Controller
p=d@Iso-R(t, 1 | Rt \
Poincare surface
5 54 of section at times t |
where X2 [R(t — 77/4)|=0.425
TN FIG. 4. Schematic of the controller.
l+p, m
o A(t) R()
X Ao 0 Ao ® ) o Output
Low pass filter with Saturation nonlinearity of TWT
PR(t-7) linear gain G,
Delay =
PR()

B. Learning the grammar of the symbolic dynamics
of the system (which symbol sequences are
allowed )

Starting off with a particular value dR,,| and iterating

Thus, if we can sefR| to s(n), the orbit will follow the bit

sequencen on the surface of section. For example, in the
case when we are willing to increase immunity to noise by
means of using a “noise-resisting gap,” we only consider bit

the mapN—1 times forward, one obtains a binary string of _strings of a Iengt_m\l that never enter the.gap. This, of course,
lengthN; examining many such strings originating from dif- introduces additional grammar restrictions. For example, in
ferent initial conditions gives the collection of binary strings the case where the gap width iA\R=0.01, the sequence
of length N allowed by the dynamics. Such a collection ‘00000” must be ruled out when message coding is done.

forms the symbolic grammar of the system. In what follows,

to transmit a message consisting of an arbitrary sequence ¢f [ earn the dynamics of the perturbed system

bits, we code the message in such a way that in can be

represented as a different bit stringossibly of length

greater than its original lengttsuch that any substring of

length N (with N suitably chosenwithin this new string

does not violate the grammar restrictions of the free runnin

system.

C. Encoding information by means of controlling
the symbolic dynamics

We now apply a small reference perturbation of ampli-
tude p,¢f to the system after eveny crossings of the surface

of section. Following an orbit for a long time, we record the
values of|R,,| just before the perturbation and note the bit

%tring n that they lead to. Averaging such values we obtain a

second tablew(n). Thus the quantityv(n) is simply a per-
turbed version ofs(n). In our numerical experiments the
reference perturbation is a small pulse of fixed duration and
amplitude applied to the input of the TWT. Having found

For dynamics as in Fig. 3, techniques for encoding bi-s(n) and w(n) and assuming that the effect of the small
nary data by controlling chaos have been described in a nunperturbation is linear, we now make the orbit follow a de-
ber of paperé:>*>®The main idea is to utilize the exponen- sired sequenca, by applying a perturbation of amplitude,

tial divergence of the flow by applying tiny perturbations to
the system in such a way as to cause a prescribed symbolic

sequence to be followed.
The method can be split into two paftz1®1°

1. Learn the dynamics of the free-running system

Letting the flow for our systent2) evolve in time, we
record|R,| along with the bit string of lengtiN following
this |Ry|. (In our numerical examples we udk=5.) A con-
venient way to represent this bit string is to assighRg| an
integer numben between 0 and "— 1. For our system all
the |R,|'s leading to the same bit sequencefall within a
narrow interval. Taking the averags@) of the |R,| values
in the interval corresponding to, we obtain a tables(n).

p=[|Ri|—s(ng)]d(ny),
where

Pret

A=W —sn)

An overall view of the encoding scheme is represented pic-
torically in Fig. 4. The controlled attractor is shown in Fig. 5.
Note that by construction, any segment of the controlled or-
bit of a lengthN (and, therefore, the whole orpivoids the
noise-resisting gap of width 2R indicated in Fig. &).
Therefore, the controlled orbit will also avoid all the post

images of that gap. Thus, as compared to the attractor in Fig.

3, the controlled attractdiFig. 5) is permeated by gaps.
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complishes distortionless amplification to high power even
though it is operating in a fully nonlinear regiméThis
scheme may be regarded as a variant on ideas related to the
synchronization of chaotic systei<)

Note that this type of synchronism-based system is only
possible because our information-bearing controlled signal is
one of the naturally occurring chaotic orbits of the original
transmitting TWT. We have also tested the robustness of our
amplification scheme to noigsee Fig. 6.

We believe that such a system offers potential advan-
tages with respect to compactness, an important consider-
ation for a satellite system where weight is a prime concern.
Also, there is some indication that TWT'’s operated in the
chaotic regime may have enhanced power efficiency as com-
pared to TWT’s operating in their stable linear rafigehis
again may be advantageous since the need for the expulsion

035 04 045 05 of waste heat from the satellite is lessened.
[R(t-7/4)|

0.48-

0.44}

(R

0.4

0.36

FIG. 5. Controlled attractor fo=5 and gap size RR=0.01. A random

sequence of bits was used for generating the message. VI. NOISE ANALYSIS

We consider three issuegt) bandwidth efficiency(2)
bit error rate (BER) dependence on signal-to-noise ratio
(SNR), and(3) the effect of synchronization on SNR.

TWT’s are commonly used in satellite communication (1) Bandwidth efficiencyBandwidth efficiency is de-
systems. As an example, we imagine that the encoded chéined as the ratio of the bit rate to the signal bandwidth. The
otic signal generator described in Sec. IV is transmittingbit rate is determined by the number of crossings of the Poin-
from a ground-based station to a satellite. We wish to receiveare plane per unit time and is approximately 0.5 bits per
a signal on the satellite, amplify it, and retransmit it back tounit of our normalized time variable; the bandwidth can be
the ground. estimated as the portion of the power spectrum of the signal

In our communication system we attempt to use anothefsee Fig. 7 containing 99% of total power, which is approxi-
TWT that is an identicalor nearly identical replica of the mately 1. Therefore, the bandwidth efficiency is approxi-
original TWT to amplify and retransmit the received signal. mately 0.5. For comparison, the bandwidth efficiency of a
Using a low power pre-amplifier, we envision restoring thebinary PSK (phase shift keying’ or FSK (frequency shift
signal from the receiving antenna to tkgmal) amplitude  keying!’ modulated signal is 0.5. Thus, our scheme uses
pR at the input of the transmitting TWT. Ideallyn the ab-  bandwidth at least as efficiently as some traditionally used
sence of noise and channel distordidhe input to the TWT  modulation techniques(Detailed information on different
on the groundfrom the feedbackand the TWT on the sat- types of modulation techniques and their properties can be
ellite (from the preamplifier will be identical. Thus they found in Ref. 17).
produce identical outputs, and the TWT on the satellite ac- (2) BER dependence on SN&n upper bound for BER

V. SYNCHRONIZATION AND RETRANSMISSION

N A

Q(m) R(t,) \
-<—— Two-level quantizer

. Poincare surface
Binary

of section at times t_,
|R(t57‘t/4)|=0.425

Input m
PR(t-1) . At R

+ -Aw 0 Ao o ) o Output
+ Low pass filter with Saturation nonlinearity of TWT
linear gain G,

output

FIG. 6. Schematic of the receiver.

Noise
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FIG. 7. Normalized power spectral density of the transmitted signal. 266 267 268 269 270 271 272 273 274
Normalized time

FIG. 8. Time series of ata) noisy chaotic signalb) chaotic signal prior to
. - - . . adding noise, an(t) the signal filtered by means of chaotic synchronization
(assuming that “0™s and “1"s are equally likely to occuiis (c). One can clearly see that time series and (b) look almost indistin-

derived in the Appendix and is given by guishable, even though time seri@ is quite different.
1 AR e~ (AR)¥Nofg
P.< - erfc < ,
2 VNofg 2 An important issue relevant to the overall performance

of our communication scheme concerns the optimal gap size

where fg is the bandwidth of the signaAR is a noise- AR. As we have shown earliedR can be viewed as a

reS|_st|ng gap of the received ChaOt'.C attrao(tsugnab_, anpl variable that allows one to optimize a given chaotic commu-
Ny is the noise power spectral density at the receiver input,

- nication system for a particular application, or meet certain
Thus the BER becomes very small fakRR)“>Nofg. NOt€  gegign constraints. One such constraint could be a given

that Nofg represents the effective power of the interfering, eshold for BER. Another constraint could be to maximize
signal (noise, whereas 4R)? is determined by the relative information throughputdata with no errorsof the TWT-
size of the noise-resisting gap as well as the overall size dhased chaotic communication system. Unfortunately, there is
the chaotic attracto(signal strength or power, speaking in no clear relation between information throughput and the
practical termp at the receiver input. Therefore, there exist size of AR. Although increasingAR greatly improves ro-
two ways of improving BER performance: boosting the sig-pustness to noise, the entropy of the map describing dynam-
nal power, and increasing the relative size of the noisejcs of the TWT decreases, and the effective data rate in the
resisting gap. A bigger gap requires a more restricted symcommunication system also decreases. On the other hand,
bolic dynamics; therefore, less data can be sent. While thghe channel coding theoréfrstates that there exists an error
output power of TWT is limited by its physical design, the control coding algorithm such that the probability of an error
gap size can be controlled by altering the symboliccan be made smaller than aey-0 provided that the code
dynamic$® of the TWT, and therefore, offers a rather flexible rate is smaller then channel capaciy In other words, the
means of tuning a chaotic TWT for either better BER perfor-channel capacityC determines an upper bound on the
mance or a higher data rate. amount of error-free information that can be sent through the
(3) Effect of synchronization on SNR our numerical  channel. So the answer can be found by looking at the gap
tests we added to the chaotic signal a filtered low-frequencyize, bit rate, and SNR in a more general way: the optimum
Gaussian noise component with a frequency bandwidth ofjap size in this case would simply maximize the channel

approximately 1. In this case, the cutoff frequency of thecapacityC for a given value of the noise power density at the
linear component in our TWT moddkee Fig. 1 will lie receiver input.

beyond the bandwidth of the noise Component, and therefore, To summarize the results of this section, we addressed
the linear |OW-paSS portion of our TWT model will not filter two key Components of communication System design’ band-
incoming noise. In this scenario, any improvement in BERwidth efficiency and performance in a noisy environment.

performance must be attributed to the effect of synchronizawe also identified a mechanism that can be used to optimize

tion. Numerical simulations show that the SNR after SYN-the performance of the proposed communication system.
chronization(SNR at the output of the receiving TWT vs

SNR at the receiving antenniancreases by approximately
11.3 dB, R VIl. FUTURE WORK

Another set of numerical simulations showed that the
BER at the output of the synchronized TWT was an order of ~ Summarizing our work, we have developed a model of a
magnitude less than that at the input of the receiving TWTproposed chaotic communication system where controlling
for an input SNR equal to 32 dB. The time series that illus-chaos is used as an alternative means of “modulation” for
trates the effect of synchronization are shown in Fig. 8.  the encoding of binary information. We have shown using

00:21:L1 €20Z AInF G1.



36 Chaos, Vol. 14, No. 1, 2004 Dronov et al.

numerical simulations that, while the proposed communica- f (y)
tion system in some aspects behaves as well as convention R+
ones, it also offers potentially new benefits.

We believe that our work may be relevant in situations !
where the main concern is increase of the compactness an [
power efficiency of the amplifigias, for example, in the case :
where the amplifier is on a space satellite E

1
1

While traditional modulation techniques, such as PSK B Z
(phase shift keying and QAM (quadrature amplitude
modulation,!” allow the avoidance of unmodulated spectral A A +aR ﬁ++y
components and, therefore, achieve high power efficiency f (y)
these techniques can only be used with linear TWTs. On the R

other hand, TWT’s in general are known to be more power
efficient when operating in the nonlinear regime, when cha-
otic modulation can be utilized. |
A gualitative analysis of the chaotic attractor in Fig. 5 |
reveals that the chaotic flow produced by our model can be |
1
1
1

characterized by small relative amplitude variation and the
absence of rapid transitions in phase. As a result, a large
fraction of spectral power is being contained in the periodic '
. AR Ry

(unmodulategispectral component. In contrast, conventional -
modulation techniques, such as QAM and PSK, are charagg, 9. pistribution of the signal sampled at the output of the low-pass filter
terized by fast transitions in phase, which allows utilizationwith the cutoff frequencyw,,.
of the transmitted energy in a very efficient manner.

We note, however, that the large unmodulated compo-

nent in our numerical example is a characteristic of our par-

ticular example and not of the general proposed methooWith the power spectral density, /2 is added to the signal at

Thus it remains a problem for future study to find and char-fhe receiver input. We model the effect of the slow wave

acterize chaotic TWT operation that yields chaotic signal tructure of the receiving TWT as afirst-or-d_e ' Iow—pa_ss filter.

that have a smaller unmodulated comportént. hat WeAsampIe at the output of the receiving TWT is a true
Thus, it is not yet clear whether thwerall performance ~ Signal [R(tn)|  plus y(ty), where y(t)=J h(7)w(t

of the chaotic satellite communication system that we pro-—7)d7. For the first-order low-pass filter with cutoff fre-

pose is better than that of traditionally used ones. A cleafluencymo, h(t)=wou(t)e” """, whereu(t) is a step func-

answer to this question awaits experimental implementatio§On- Now we make another assumption; we assume that, in

and test of our proposed systéfn. the absence of noisgR(t,)|=R.=\+AR. In other words,
we assume that the signal is always measured at the edge of
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This research was supported by the Naval Researclikely to occur. Therefore, we are going to estimate an upper
Laboratory, by ONR(physicg, and by the NSHPHYS-  pound for the BER. Since errors occur dug/{t), and since
0098632 y(t) is a Gaussian process, we would like to find the vari-
ance ofy(t):
APPENDIX: DERIVATION OF THE UPPER BOUND
FOR BER o2 =E[y?]

Let R be a “modulated” chaotic signdR(t) received by
the second TWT. Clearly} will be considerably attenuated.
Therefore, the new attractor obtained frof will be a o
scaled—gown version of the one in Fig. 5. Sampling the val- =w§f f e~ 0T “02E[W(t— 7 )W(t— 75)]d, d 7,
ues of|R(t,)| at the surface of section of the new attractor 0 Jo

ZwéEf f e~ “oTie” “on2w(t— 7 )W(t—7m)d7 dr,
0Jo

obtained from the received signal and comparing them to the w o
value ofR at the middle of its noise resisting gap, one inter- =w§f f e~ “one” “oR (t—71,t—75)d7 d7y.
prets|R(t,)| as either a “0” or a “1.” Due to noise in the 070

channel, some of the bits in the receiver will be read incor-_l_he autocorrelation function ofw(t) is Ry(7y,7)
rectly. We are going now to estimate the fraction of incor-:N 126(7,— the int | ab b Wil t2
rectly transmitted bits or BER. 0/28(71= ), so the integral above becomes

For convenience, in the following, we regard the receiv-
ing TWT as acting like a linear amplifigr.e., we neglect the 2 ZJmefkoorl dri= Nowo.

nonlinearity in(2)]. Suppose that white Gaussian nois) 4
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. BWe have also obtained preliminary results of numerical modeling for a
—(y+A=£ AR)Z) second order model in which the linear part of the TWT is modeled with

1 +

= —f eX[{ N a second order maximally flat filtéwhich would be a more precise de-
VNowg /A 0®@o scription of a real TWT. With the second order filter, EqR) is modified

L . . . by the addition of a ternd?A(t)/dt? on the left-hand side. For a certain

Performlng mtegratlon one gets a rather S|mple answer:
[(AR)?

Pe=Pe-= erf Nowg radically. This results in a much smaller carrier pow&t% of the total
signal power as compared to 70% for the first order moated, therefore,

set of model parameters we observe again a low-dimensional chaotic flow
which can be controlled using the technique described above for a first-
Equation(Al) gives an upper bound for BER. higher power efficiency.

(A1) order model. Now, however, the phase of the signal changes more spo-
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