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We discuss the existence and properties of strange nonchaotic attractors of quasiperiodically forced nonlinear dynamical 
systems. We do this by examining a particular model differential equation, ~ = c o s f f +  ecos24~+f(t) ,  where f is a 
two-frequency quasiperiodic function of t. When e = 0 the analysis of the equation is facilitated since then it can be related to 
the Schr6dinger equation with quasiperiodic potential. We show that the equation does indeed exhibit strange nonchaotic 
attractors, and we consider the important question of whether these attractors are typical in the sense that they exist on a set 
of positive Lebesgue measure in parameter space. (The equation also exhibits two- and three-frequency quasiperiodic 
behavior.) We also show that the strange nonchaotic attractors have distinctive frequency spectrum; this property might make 
them experimentally observable. 

1. Introduction 

Recently attention has been given to a class of 
dissipative dynamical systems that typically ex- 
hibit a class of attractors that may be described as 
strange and nonchaotic (Grebogi et al. [1]). 

Here the word strange refers to the geometrical 
structure of the attractor: a strange attractor is an 
attractor which is neither a finite set of points nor 
is it piecewise differentiable (that is, either a piece- 
wise differentiable curve or surface, or a volume 
bounded by a piecewise differentiable closed 
surface). 

The word chaotic refers to the dynamics of the 
orbits on the attractor: a chaotic attractor is one 
for which typical orbits have a positive Lyapunov 
exponent. This implies that nearby orbits diverge 
exponentially from one another with time and that 
the orbit depends sensitively on its initial condi- 
tions. 

By a strange nonchaotic attractor we therefore 
mean an attractor which seems to be geometrically 

strange but  for which typical nearby orbits do not 
diverge exponentially with time. 

An example of a strange nonchaotic attractor is 
exhibited by the one-dimensional quadratic map, 
xn+ x = C - x  2, at the point of accumulation of 
period doublings. The attractor is a Cantor set of 
dimension = 0.538 and the Lyapunov exponent 
for a typical orbit is zero (Grassberger [2]). Attrac- 
tors of the same type occur at the infinite number 
of C values representing points of accumulation 
of period doublings of orbits of period 2Np corre- 
sponding to the infinite number of periodic 
windows occurring as C is varied. Nevertheless 
these strange nonchaotic attractors only occupy a 
set of C values of zero Lebesgue measure. That is, 
if we were to pick a C value at random, the 
probabili ty of that value yielding a strange non- 
chaotic attractor would be zero. In this sense we 
say that this type of attractor is not typical of the 
quadratic map. 

As another example, consider the circle-map, 
O,+ x = D + 0~ + k sin0, [mod 2vr], for parameter 
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values k = 1 (the critical case) and ~2 chosen to 
give irrational winding number. In this case the 
Lyapunov exponent is zero, and the density of 
orbit points p(O) is zero on a dense set of 0 
[0,2~r]. Due to this behavior of p(0) one might 
call this nonchaotic attractor strange. Again, how- 
ever, the measure in parameter space (k, ~2) where 
this occurs is zero, and hence this type of attractor 
is not typical for the circle map*. 

On the other hand, examples of systems where 
strange nonchaotic attractors are typical, in the 
sense of occupying a set of positive Lebesgue 
measure in the parameter space, were given by 
Grebogi et al. [1]. They examined a particular 
class of maps of the general form 

x.+ 1 = g ( x . ,  0.),  ( la)  

0.+ 1 = 0. + 2vno[mod2~r], ( lb )  

where g is a 2~r-periodic function of its second 
argument and ~ is an irrational number**. In the 
paper of Grebogi et al. 0. was always taken to be 
a scalar while two cases were considered for x . ,  g: 
in case (1) x . ,  g were scalars and eq. (la) was 
taken to be of the form 

x.+ 1 = 2~ (tanh x . )  cos 0.; 

in case (ii) x .  = (u. ,  v.) and g = (gl, g2) were 
two-dimensional vectors, and eq. ( la) was taken to 
be of the form 

0] 
[ Un+l 1 + Un v. 

× - s inO.  cosO. v. " 

In case (i) it was shown that the map exhibits a 
strange nonchaotic attractor with one negative 

*For a third example, also with zero measure in parameter 
space, occurring for a system of the form of eqs. ( la ,  b), below, 
see fig. 6 of Sethna and Siggia [3]. 

**Equations of this form have also been investigated from 
other points of view by Sethna and Siggia [3] and by Kaneko 
[4]. 

Lyapunov exponent (the other, corresponding to 
eq. (lb),  is trivially zero) for all X in the range 
IX[ > 1. In case (ii) it was shown that the attractor 
is also strange with two negative Lyapunov expo- 
nents (again the third is trivially zero) for all X 
above some critical value Xc(V ). The important 
result is the existence of strange nonchaotic attrac- 
tors on a set of positive measure in parameter 
space. 

Maps of the form (1) may be obtained from 
two-frequency quasiperiodically forced nonlinear 
systems (see section 2). It might therefore be sus- 
pected that such nonlinear systems can exhibit 
strange nonchaotic attractors for a positive mea- 
sure of the parameter space. Off hand, however, it 
is not at all clear that this suspicion will be 
fulfilled, since the functions g(x , ,  0,) (eq. (la)) 
used by Grebogi et al. [1] are highly artificial and 
were specifically constructed to demonstrate the 
possibility of strange nonchaotic attractors with 
positive measure in parameter space. Thus we 
cannot decide, on the basis of the work by Grebogi 
et al. [1], what the situation will be for quasiperi- 
odically forced systems that are likely to arise in 
applications. 

It is the aim of the present paper to discuss the 
existence and the properties of strange nonchaotic 
attractors of dynamical systems forced at two 
incommensurate frequencies by examining a 
specific model given by the non-autonomous first 
order differential equation 

dq~ 
- cos ¢ + ecos2¢  + f ( t ) ,  (2a) dt  

where f is two-frequency quasiperiodic (that is, 
f ( t )  =f(~oxt, ¢02t), where f is 2~r-periodic in both 
its arguments and o~l/w 2 is irrational) and e is a 
variable parameter. In our study f was actually 
taken to be of the form 

f ( t )  = K +  V(cos w,t + cos wzt),  (28) 

where w 1 = ½(v~- - 1) and w 2 = 1 were kept fixed 
while K, V were allowed to vary. Equations of this 
type are perhaps the simplest ordinary differential 
equations yielding a strange attractor. 
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Specifically we are primarily interested in (i) the 
question of parameter  space measure (typicality), 
posed above, and (ii) in elucidating possible power 
spectral signatures of these attractors. (We believe 
that the signature we shall discuss may be a useful 

diagnostic in experiments.) 

In the special case e = 0, eq. (2) can be regarded 
as a simplified form of the well-known equation of 
the damped forced pendulum 

d2tib + dq, i2 2 
d t :  v --dt- + sin~? = f ( t ) ,  (3) 

corresponding to strong damping and forcing (so 
that the inertial term d2ep/dt 2 can be neglected). 

Eq. (3) has also been extensively used as a model 

of the current driven Josephson junction (see 
Gwinn and Westervelt [5], Kautz and MacFarlane 
[6], and references therein). The existence of 

strange nonchaotic attractors for eq. (3) will be 
considered in a separate publication (Romeiras 
and Ott [7]). 

Again in the case e = 0, eq. (2) can be related by 
the so-called Priifer transformation of the depen- 

dent variable q~(t) ~ ~k(x), defined by 

ei , t  , _ ~ ' / t ~  + ic 
+ ' / ~ b  - i c '  

(see Johnson and Moser [8]) with the change of 
independent  variable t ~ x, defined by 

J0"( ] x =  ~ t +  E ) d E  , 

to the linear " t ime independent" Schrrdinger 
equation 

~ b " + k 2 ( x ) ~ b = O ,  with k :  = c2f/--~+ 1 
1" 

understanding the behavior of the solutions of eq. 
(2). This has been done by Bondeson et al. [11] 
where some of the results presented in this paper 
were first briefly described. 

The fact that the case e = 0 allows a reduction 

to the Schrrdinger equation, although convenient 
for analysis, also means that we are dealing with a 
special case whose properties might differ qualita- 
tively from those typical of equations of the gen- 

eral form 

d e  
d-7 = gn (~ '  t ) ,  (4) 

where gn(0, t)  is periodic in ~ and two-frequency 

quasiperiodic in t, and , / =  (*/1, ~2, . . . ,  */N) de- 
notes the parameters  of the system. Thus we also 
investigate the e 4= 0 case, since the Priifer trans- 
formation does not apply, and hence more gener- 

ally applicable qualitative behavior should occur*. 
Indeed, as shown in sections 3 and 4, the e #: 0 

case has many  more resonances than the e = 0 

case**. 
The plan of this paper is as follows. In section 2 

we present the detailed results of the numerical 
study of eq. (2) in the case e = 0. In sections 3 and 
4 we discuss the case e ~ 0. Finally in section 5 we 
summarize the main conclusions of the study. For 
e = 0 we find that there are indeed strange non- 
chaotic attractors for a positive measure of param- 
eters. Thus such attractors are typical for this 
system. There is, however, an important difference 
as compared  to the situations occurring in Grebogi 
et al. [1]). Namely,  parameter values correspond- 
ing to strange nonchaotic attractors of eq. (2) with 
e = 0 do not occur on an interval, but rather lie on 

a Cantor  set of positive measure. In the case e 4: 0, 
our  numerical results strongly suggest that the 

Here  the prime denotes differentiation with re- 
spect to x and c is an arbitrary constant. Since f 
is quasiperiodic in t, k 2 will be quasiperiodic in 
x. Thus the theory of the Schr/Sdinger equation 
with quasiperiodic potential (see the reviews by 
Simon [9] and Souillard [10]) can be used to aid in 

*In the e term, in place of cos(2q~) we could have used some 
other smooth 2~r-periodic [unction of ~,. 

**For e = 0 we shall see that the winding number plateaus 
(resonances) occur at W= l% + m%, whereas for e 4:0 they 
occur at W= ( / / / n )~o  1 + (m/n)oa2, where W is the winding 
numbers and /, m, n are integers. The latter case is to be 
expected in the general context of equations of the form (4), 
while the former case is specific to eq. (2) with e = 0. 
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same situation also applies, although we have no 
direct analytical support (the SchrSdinger equa- 
tion correspondence only applies for e = 0). Thus 
we believe that strange nonchaotic attractors are 
typical for quasiperiodically forced systems of the 
form (4), where by "typical" we mean that they 
occur on a set of positive measure in parameter 
space. 

The winding number, W, is defined by 

W =  lim O ( T ) - O ( 0 )  
T ~ o ¢  T 

It represents the mean angular frequency of the 
solution. 

The surface of section plot is obtained by strob- 
ing the solution of eq. (4) at times 

2. The  case e = 0 
2"/7" 

t .  = - - n  + t o , (6) 
09 2 

2.1. Characterization of attractors 

Before starting with the presentation and dis- 
cussion of the numerical results we introduce the 
main quantities used to characterize the attractors, 
namely, the Lyapunov characteristic exponent, the 
winding number, the surface of section plot and 
the frequency spectrum. 

The Lyapunov characteristic exponent, A, for an 
orbit q,(t) of eq. (4) is defined by [12] 

1 I~(~)(T)I A = lim -~ In 
r - ~  Iq,°)(0)l 

where q,o) denotes the solution of the equation of 
first variation 

dOO) agn 
dt  ---A(t)th(1)' A ( t )  = - - ~ ( ~ ( t ) ,  t) .  (5) 

By using the explicit form of the solution of eq. (5) 
we can also write 

1/0T A =  lim ~ A ( t ) d t .  
T ~ o o  

The Lyapunov exponent represents the mean ex- 
ponential rate of divergence of two initially close 
trajectories*. 

*The nonautonomous eq. (4) can be written as an autono- 
mous system of three first order equations of the form dq~/dt 
= gn(q', qq, +z), d f f l / d t  = wl, dff: /dt  = o~ 2. In this case there 
are three Lyapunov exponents. However, two of them, corre- 
sponding to the second and third equations, are zero; the third 
is A given above. 

where n is an integer, and plotting 

ft. = O(t . ) [mod2~r] ,  (7) 

versus 

On = 09at, [mod 2~r ]. (8) 

The solution of eq. (4) thus generates a discrete 
time map 

d n+ l = G(  t n, On), 

0,,+1 = On + 2 r09[mod2 r], 

(9a) 

(9b) 

where 09 = 0 9 1 / 0 9 2 -  The function G must be invert- 
ible for q, since eq. (4) can also be solved going 
backward in time. 

The frequency spectrum was obtained in the 
following way: (1) From the sequence { q,. }.=0, M- 1 
obtain the new sequence (S.}.~0. M-1- S . =  
h.P(ep.), where P is some smooth 2~r-periodic 
function (which was actually taken to be P ( ~ ) =  
cosq0 and h. = ½(1-  cos2~rn/M); the multi- 
plication by h.  corresponds to the so-called 
Hanning's method of leakage reduction and is a 
means of smoothing out spurious spectral features 
introduced by the finite duration of the time series. 
(ii) Calculate the discrete Fourier transform 
{Sk)k=O,M_ 1 of the sequence (S,},=O,M_ 1 de- 
fined by 

S k=  ~_, s ,  exp - i - ~ - k n  , k = O , M - 1 ,  
n = O  

(10) 



F.J. Romeiras et aL / Quasiperiodically forced dynamical systems 281 

o e  " ' 

o. L 
o., 

0.0 - 

0.8 1.0 1.2 1.4 1.6 1.8 
K 

Fig. 1. Diagram of the K-V-plane showing regions where 
A < 0 (hatched) or A = 0 (blank). The curve denoted by (C) is 
the critical curve. The curve denoted by (W) is the curve of 
constant winding number W = 0.9277... along which the orbits 
of fig. 8 and the corresponding spectra of fig. 9 were calculated 
[~ = o . o ] .  

by using a Fast Fourier Transform algorithm. (See 
Brigham [13] as a general reference on these topics 
and Powell and Percival [14].) 

The differential system (4)-(5) was integrated 
by using a 4th order Runge-Kutta method with 32 
time steps per period of the cost  driver. The 
number  of driver periods, N, was taken between 
2 x 103 and 4 x 105, depending on the cir- 
cumstances. For  the FFT algorithm M = 216 points 
were used. The computations were carried out on 
a CRAY X-MP machine; by using the vector 
mode operation (see Petersen [15]), when possible, 
a 15 fold increase in speed was achieved. 

In the remainder of this section we present and 
discuss the numerical results for eq. (2) with e = 0. 

2.2. Lyapunov exponents and winding numbers 

Fig. 1 shows a diagram of the K-V-plane giving 
regions where A is negative (hatched) or zero 
(blank). The criterion for negative Lyapunov ex- 
ponent  used in this figure is A < - 1 0  -4. The 
diagram was obtained by taking a grid with 201 
values of K and 66 values of V; the integration of 
the differential system was taken over a variable 
number  of driver periods going from N = 2 X 103 
for most cases up to N = 16 X 103 for the more 
slowly converging ones. The diagram exhibits a 
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Fig. 2. Curves of the Lyapunov exponent (A) and the winding 
number (W) versus K at V= 0.55 [e = 0.0]. 

structure similar to the Arnold tongues of the 
circle map (see, for example, Devaney [16], 
p. 111). 

Fig. 2 shows curves of the Lyapunov exponent 
(A)  and the winding number (W) as functions of 
K at a fixed value of V ( V =  0.55). It was obtained 
by taking 241 values of K and integrating over 
N---- 10 4 driver periods. The curve of W versus K 
is a "devil's staircase": a continuous non-decreas- 
ing curve with a dense set of open intervals on 
which W is constant and given by 

W = lw i + row2, (11) 

where l, m are integers. Between these plateaus 
there is a Cantor set, generally of positive mea- 
sure, on which W increases with K. These results 
follow from the general character of fig. 2 and the 
correspondence with the Schrtdinger equation 
with quasiperiodic potential [11]. For small K in 
fig. 2 (i.e., above curve (C) in fig. 1), A is negative 
on both the Cantor set and the plateaus, while for 
large K, A is zero on the Cantor set and negative 
on the plateaus. The regions where eq. (11) holds 
appear in fig. 1 as the narrow tongues emerging at 
small V. The set of points where the tongues touch 
each other appear to lie on a smooth (but non- 
unique) critical curve which separates the region 
where A is always negative from the region where 
A is either negative or zero. An approximation to 
such a critical curve is indicated as curve (C) in 
fig. 1. 
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Table 1 

Analogy with 
Lyapunov solutions of 

Case Winding number  exponent Type of attractor SchrSdinger eq. Fig. 

A W4: lw 1 + m w  2 A = 0 3-freq. quasiperiodic extended 3a 
B W =  l~o 1 + rn,% A < 0 2-freq. quasiperiodic stop band 3b 
C W =g lto I + rn~02 A < 0 strange nonchaotic localized 3c 

2.3. Surface of section characterization 

The three distinct combinations of winding 
numbers (either satisfying eq. (11) or not) and 
Lyapunov exponents (either negative or zero) give 
rise to surface of section plots with qualitatively 
different characteristics- see table I. In terms of 

the analogy with the SchriSdinger equation [11], 
cases A, B, and C correspond to extended, stop 
band and Anderson localized solutions, respec- 
tively (see Aubry and Andre [17], as well as refs. 
[9, 10], for a discussion of Anderson localization 
in incommensurate lattices). 

In case A, the three frequencies W, ~01 and ~0 2 
are typically irrationally related, and eq. (2) will 
exhibit three-frequency quasiperiodic behavior. A 
typical orbit apparently generates a smooth den- 

sity of points densely filling the surface of section. 
This is illustrated in fig. 3a (V=  0.55, K =  1.54, 
N = 2 × 105). 

In case B, the frequency W is rationally related 
to ~o I and ~02 and eq. (2) will exhibit two-frequency 
quasiperiodic behavior. The attracting orbit in the 
surface of section lies on a smooth single-valued 
curve, ~ = F(0), which wraps l times around the 
torus in ~ for each time it wraps once around in 0. 
This is illustrated in fig. 3b (V= 0.55, K =  1.39, 
N =  105). Note that in this example eq. (11) is 
satisfied with / = 0 ,  m =  1, hence W =  1; as is 
clear from the figure the curve does not wrap 
around the torus in the ~ direction. 

The behavior of the attractors in cases A and B 
can be explained by the following argument. Let 
us suppose that ~ is a three-frequency quasiperi- 

~n 
2"rr 

. . . . . . . .  3 0.0 0.2 0.4 0.6 O.B 1.0 0.0 0.2 0.4. 0.6 0.8 1.0 

a en b en c en 
2"rr 2"tr 2"tr 

: VI ' i  ' '  I] 1 

! 
I 

L 

Fig. 3. Surface of section plot of a) a three-frequency quasiperiodic attractor (V = 0.55, K = 1.54); b) a two-frequency quasiperiodic 
attractor ( V =  0.55, K = 1.39); c) a strange nonchaotic attractor ( V =  0.55, K = 1.34) [~ = 0.0]. 
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odic function of t, 

~ ( t )  = q ~ ( t ~ l t  , 6~2t , Wt), (12) 

where ~ is 2~r-periodic in each of its arguments 
and o~1, ~2, W are irrationally related. By strobing 
4' at times t .  given by (6) we obtain 

~n ~ ~ (  tn) = @ ( t O l t n ,  td2tn, Wt,), 

or, using the periodicity of ~ in its second argu- 
ment 

+. =  Jo, wt . ) .  (13) 

the existence of the relationship q, = F(O) we ini- 
tialize a large number of points at a single initial O 
value but with different initial q~ values and find 
that after a large number of iterates N, say, all the 
orbits are attracted to a single value q'N; (ii) that 
q~ = F(8) cannot be a continuous curve follows 
from the fact that the winding number is irration- 
ally related to ~1, 0~2; (iii) finally, that q, = F(8) is 
discontinuous everywhere follows from the fact 
that the 8 map is ergodic. An example of a 
strange nonchaotic attractor is given in fig. 3c 
(V = 0.55, K = 1.34, N = 2 x 105; the correspond- 
ing Lyapunov exponent is A = -0.07167). 

If we now introduce the variable 0, defined by (8) 
this expression can be written in the form 

W o 

2 
where ~ is a new function which is 27r-periodic in 
both arguments. As the 0-map (eq. (9b)) is ergodic 
and W/oo~ is irrational this expression will gener- 
ate an orbit that will densely fill up the whole 
surface of section. In the particular case of two- 
frequency quasiperiodic behavior we have W = 10~ x 
+ mto 2 and therefore by substituting into (13) and 
using the periodicity of ¢~ in its third argument we 
obtain 

~n = ~ (  O~ltn, 602t0 '  lO)ltn + m~%to), 

o r  

+.= F(0.), 

where F is a new function which is 2~r-periodic. 
Hence, in this case the orbit will generate a single 
curve in the surface of section. Note that, since the 
original function ~ is smooth, F is also smooth. 
(For a detailed discussion of quasiperiodicity and 
attractors on a N-torus see Grebogi et al. [18].) 

In case C the attractor is geometrically strange: 
there still is a functional relationship q~ = F(O) but 
the function F is discontinuous everywhere. This 
can be verified in the following way: (i) to verify 

2.4. Frequency spectra 

In figs. 4(a, b, c) we have plotted the frequency 
spectra of the orbits which correspond to the 
surface of section plots of figs. 3(a, b, c), respec- 
tively. We have plotted [S~/maXa=o.M_~(SDI, 
k = 0, M/2, versus k/M; the remaining compo- 
nents of the discrete Fourier transform satisfy the 
symmetry relation, S k = S*M_k, k = M/2 + 1, 
M -  1, where * denotes the complex conjugate. 
The figures show that the spectrum of the two- 
frequency quasiperiodic attractor (fig. 4b) is con- 
centrated at a discrete set of frequencies while the 
spectra of both the three-frequency quasiperiodic 
(fig. 4a) and the strange attractor (fig. 4c) have a 
much richer harmonic content. 

In order to explain the behavior of the spectra it 
is convenient to consider separately two compari- 
sons: (i) two-frequency quasiperiodic versus 
three-frequency quasiperiodic; and (ii) two- 
frequency quasiperiodic versus strange. The com- 
parisons (i) and (ii) correspond to below and 
above the critical line, respectively (cf. fig. 1). 

In the first comparison we start by assuming 
that q> is a three-frequency quasiperiodic function 
of t of the form 

+( t )  = 6( 1t,  2t, wt) ,  (12) 

where ~ is smooth and 2or-periodic in its three 
arguments. Then the function s defined by s(t) = 
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Fig. 4. Frequency spectrum of the attractors of a) fig. 3a; b) fig. 3b; c) fig. 3c. 

0.2 0.3 
__k 
M 

0.4 

P (~( t ) ) ,  where P is smooth and 2~r-periodic, can 
be expanded in the multiple Fourier series 

+ o o  

s ( t )  = E 
p , q , r =  - c o  

Cpq~exp [i( po~ 1 + q(a 2 + rW)t] .  

By strobing 
obtain 

Sn 

s at times t.  given by (6) we now 

= S ( t  n 

= ~ Cpq, exp[i(P~ol+qoo2+rW)to 
p , q , r  

+i(Po°x + qW) ~o 2 1' 

or, formally performing the r sum, 

s , =  Y'. Cpqexp i(po01 + qW) (02 
P,q  

(14) 

The discrete Fourier transform of the sequence 
{ s,  } is given by 

S k=  Y'~Cpq ~ exp i2~'n Pwl + q W  k 
p, q .=o ~0 2 M " 

Thus, as expected, the spectrum of the three- 
frequency quasiperiodic attractor will be peaked 

at the frequencies that satisfy k / M =  (po~ 1 + 
qW)/~%, modulo 1, where W is irrationally re- 
lated to both ~o I and ~0 2. In the particular case of 
two-frequency quasiperiodic behavior we have 
W = Ro 1 + m6o 2 and (14) can be simplified to 

s,, = ~ Cp exp ( i2,rrnp ~l l . 
\ 092 ] 

P 

The corresponding discrete Fourier transform is 

S , = E C p  E exp i2~rn 
p n=O 

k)] 
P to 2 M " 

The spectrum is therefore peaked at the frequen- 
cies k / M  = p~oa/o~ 2, modulo 1. 

Moving now to the second comparison (two- 
frequency quasiperiodic versus strange) we start 
by recalling that for both types of attractors there 
is a functional relationship q, = F(O) which defines 
either a smooth or a strange curve. The same 
applies to the curve defined by g ( 0 ) =  P(F(O)), 
where P is 2~r-periodic. The function ~ can be 
expanded in a Fourier series 

g ( 0 ) =  • Cpexp(ipO). (15) 
p =  - - c ~  

From here we obtain the sequence ( f . = f ( 0 . ) )  
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and  the corresponding discrete Fourier  t ransform 

Sk = E (Spexp(ip~lto) 
p 

.-i [ (oi 
× ~ exp i2,rn p w 2 

n = O  

For  bo th  types of  attractors the spectra are peaked 

at the frequencies k / M = p ~ o l / t O 2 ,  modulo  1. The 
difference between the two comes f rom the very 

different smoothness  of  the function @ = F ( 8 )  and 
hence  of  the asymptot ic  behavior as [p[ ~ oo of  

the Four ier  coefficients. For  the smooth  F we 

expect that  C p -  e x p ( - v l p [ ) ,  as Ipl --' oo(v is a 
constant) .  Fo r  the strange F we expect a much 

slower decay of  the Fourier coefficients; if we 

assume that  the discontinuities are of  the form 

IO- Ool -a, as O--,O o, with O < f l <  1, then C p -  

IPl ~-1, as [pl --' oo. 
In order to obtain a more quantitative 

character izat ion of  the spectra of  the three types 

of  at tractors  we introduce a spectral distribution 

X ( o )  defined as the number  of  spectral compo-  

nents  larger than some value o. F rom the behavior 

of  the Fourier  coefficients of the series (15) we 

expect that  this function will behave like 

1 
,W ' (o )  -log o 

for the two-frequency quasiperiodic at tractor and 

like 

J V ' ( o )  - o - a ,  ( 1 6 )  

for  the strange attractor, with a - 1  = 1 - fl (these 
results can be obtained by solving o - e - " X  and 
o -  .A ~-1/~ for  X ,  respectively). In the case of  

the three-frequency quasiperiodic at tractor the 

funct ion @ introduced in (12) is smooth and there- 
fore the Fourier coefficients Cpq which appear in 
(14) should behave l i k e  ~ q  - exp[ - v( p2 + q2)1/2] 
as p 2 + q 2 ___, oo; hence 

for  the three-frequency quasiperiodic attractor. In 
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Fig. 5. Spectral distributions of the attractors of (A) fig. 3a; 
(B) fig. 3b; (C) fig. 3c. 
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Fig. 6. Variation of the spectral distribution across the transi- 
tion from two-frequency quasiperiodic to strange behavior. 
The curves are for V = 0.55 and the following values of K: (A) 
1.346; (B) 1.347; (C) 1.35; (D) 1.39 [~ = 0.0]. 
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Fig. 7. Variation of the spectral distribution across the transi- 
tion from two-frequency quasi-periodic to three-frequency 
quasiperiodic behavior. The curves are for V= 0.55 and the 
following values of K: (A) 1.49; (B) 1.536; (C) 1.537; (D) 1.54 
[~ = 0.0]. 
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Fig. 8. Surface of section plots of attractors for points situated along a curve of constant winding number  W = 0.9277... on the 
K-V-plane;  a) V=0.30 ,  K=1.331752;  b) V=0.40,  K=1.329461;  c) V=0.44,  K=1.331199;  d) V=0.45,  K=1.331790;  e) 
V = 0.55, K = 1.34. Figs. 8a, 8b correspond to three-frequency quasiperiodic attractors while figs. 8c, 8d, 8e correspond to strange 

attractors [e = 0.0]. 

fig. 5 we have plotted the spectral distributions for 
the three attractors of fig. 3. The results seem to 
confirm the above asymptotic predictions. In the 
case of the strange nonchaotic attractors this and 
other plots of JV(O) indicate that 1 < a < 2. Two 
remarks are in order at this point: (i) the levelling 
out shown by the curves (A) and (C) for small o is 
due to the use of a finite number of points in the 
calculation of the transform; increasing M causes 
the levelling out to occur at smaller o; (ii) the use 
of the previously mentioned Hanning smoothing 

is quite important in obtaining meaningful results 
for jlP(o) with time series of reasonable length. 

The spectral distribution ~4/'(o) should vary 
continuously with the parameters. In order to 
illustrate this we have plotted ~AP(o) for a con- 
stant value of V (V = 0.55) and different values of 
K located near the edges of a plateau ( W =  1.0). 
Fig. 6 illustrates the transition from two-frequency 
quasiperiodic (curves (D), (C), (B)) to strange be- 
havior (curve (A)). We see that the change of 
J4/'(o) across the transition point (from (B) to (A)) 
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is much greater than the change of .A/'(o) for 
points on the plateau (for example (B) and (D)) 
even though the change from (B) to (A) corre- 
sponds to a much smaller variation in K (1 part in 
1346 for the first case; 43 parts in 1347 for the 
second). Fig. 7 illustrates the transition from two- 
frequency quasiperiodic (curves (A), (B)) to three- 
frequency quasiperiodic behavior (curves (C), (D)). 
Again the change of ,Af(o) across the transition 
point (from (B) to (C)) is much greater and more 
rapid than the change corresponding to variations 
of K within the plateau (cf. figure caption for K 
values). 

In order to illustrate the important transition 
from three-frequency quasiperiodic to strange be- 
havior we have followed the evolution of the at- 
tractors along a curve of constant winding number 
in the KV-plane (the curve used, W = 0.9277 . . . .  is 
plotted as curve (W) in fig. 1). As V is increased 
the three-frequency quasiperiodic attractor under- 
goes a transition to a strange attractor at some 
critical value V =  V¢ (W). From the evidence of 
the numerical results (both the surface of section 
plots and the spectra) the transition seems to 
occur somewhere in the interval 0.42 < V < 0.44. 
[Note that the Lyapunov exponent does not help 
much in finding the transition very accurately as it 
is always very small over the interval 0.42 < V < 
0.44 (IAI < 10-5).] 

In figs. 8(a, b, c, d, e) we have plotted the 
surface of section plots of the attractors for several 
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Fig. 9. Spectral distributions of the attractors of (A) fig. 3a; 
(B) fig. 3b; (C) fig. 3c; (E) fig. 3e. 

pairs of (K,  V) values along the constant winding 
number curve. In fig. 9 we have plotted the spec- 
tral distributions of some of these attractors. One 
point that is worth emphasizing is that the expo- 
nent introduced in eq. (16) has a value close to 2 
near the transition point which then rapidly de- 
creases to 1 as one moves away from this point. A 
heuristic argument for why ct approaches 1 is 
given in ref. 11. 

3. The case e =/: 0 

Eq. (2) with e = 0 is special in the sense that it is 
related to the linear Schr~Sdinger equation with 
quasiperiodic potential by Priifer's transforma- 
tion. An interesting question to be asked is to 
what extent do equations of the more general form 
(4) exhibit behavior similar to that of eq. (2) with 
e = 0. In order to answer this question we have 
considered eq. (2) with e 4= 0. In all the numerical 
experiments reported here we have taken e = 0.2. 

Fig. 10 shows a diagram of the KV-plane giving 
regions where A is negative (hatched) or zero 
(blank): the criterion for negative Lyapunov expo- 
nent is A < - 1 0  -4. Fig. 11 shows A and W 
versus K at a fixed value of V. The numerical 
procedure used to obtain these results for e = 0.2 
is the same as used for the e -- 0 case, except that 
the grid in the K-V-plane was taken with 241 
values of K. 

These figures are qualitatively similar to those 
found in the case e = 0. An important difference is 
the more detailed structure corresponding to the 
appearance of a larger number of tongues and 
plateaus where the winding number is fixed. This 
is due to the fact that for e 4= 0 the plateaus occur 
at winding numbers 

l m 
W =  n~01 + -~--¢02, (17) 

where l, m, and n are integers, whereas for e = 0 
the plateaus occur at W =  ho t + m~o 2, cf. eq. (11). 
This will be demonstrated analytically using per- 
turbation theory in section 4. 
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Fig. 10. Diagram of the K-V-plane showing regions where 
A < 0 (hatched) or A = 0.0 (blank) [~ = 0.2]. 

0.0 , A 

-0.2 ~ /  
J 

-0.4 ~ 

'0.6 [ w o.a 

-0.8 i /  0.4 
- I . 0  . . . . . .  0.0 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 
K 

2.0 

1.6 

1.2 W 

Fig. 11. Curves of the Lyapunov exponent (A) and the wind- 
ing number (W) versus K at V= 0.55 [e = 0.2]. 
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Fig. 13. Curves giving the width of several resonances as a 
function of V: a) n = 1; b) n = 2, 3 [e = 0.2]. 

In  order  to better illustrate the appearance of 

these resonances for n #= 1 we have plotted in fig. 

12 a d iagram of the K-V-p lane  showing the posi- 
t ion of  the most  prominent  resonances for n = 1, 2, 

identified by  the triplets (n, l, m), One interesting 

feature of  some of the n = 2 resonances is that  

their width reaches a maximum at an intermediate 

value of  V and then decreases. Actually this be- 
havior  is also exhibited by the other resonances, 
a l though for larger values of V. This can be seen 
in fig. 13(a, b) where we have plotted the width of 
several resonances as a function of  V. This figure 
also shows that  at least one of  the resonances, 

(1, 0,1), reappears  again for larger values of V. 
Again  the system exhibits three different types 

of  at tractors:  three-frequency quasiperiodic, two- 
f requency quasiperiodic and strange nonchaotic.  
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Fig. 14. Surface of section plots of a) a three-frequency quasiperiodic attractor ( V =  0.55. K = 1.53); b) a two-frequency quasi-peri- 
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Fig. 15. Spectral distributions of the attractors of (A) fig. 14a; 
(B) fig. 14b; (C) fig. 14c. 

Table I, giving the correspondence between the 
different types of attractors, the Lyapunov expo- 
nent and the winding number for eq. (2) with 
e = 0, is valid in the more general case, except that 
eq. (11) has to be replaced by eq. (17) and the 
analogy to the Schr'6dinger equation does not 
apply. In figs. 14(a, b, c) we have plotted surface 
of section plots for each type of attractor. 

In fig. 15 we have plotted the spectral distribu- 
tions of the attractors to which refer the plots of 
fig. 14. These distributions seem to follow the 
same laws of variation obtained in the e = 0 case. 

One direct consequence of eq. (17) is that the 
two-frequency quasiperiodic attractor is now mul- 
tivalued in the surface of section; the degree of 
multiplicity is given by n, provided that l, n and 
m, n are taken to be relatively prime integers• An 
example of a two-frequency quasiperiodic attrac- 
tor with n = 1 was given in fig. 14b. An example 
of an attractor with n = 2 is given in fig. 16. 

Figs. 10 and 11 seem to indicate that the mea- 
sure of the Cantor set where strange nonchaotic 
attractors occur is reduced in relation to the case 
e = 0. Is this measure still positive or is it zero? In 
order to obtain relevant evidence on this question 
we have performed the following numerical ex- 
periment. For  e---0.2 we have taken the set of K 
values 

{ K ( ' ) = 0 . 6 8 5 + 0 . 0 0 1 ( i - 1 ) ,  i = 1 , 1 4 6 } ,  

which lie between the two widest plateaus W = 0.0 
and W =  ~o (the points K =  0.684 and K =  0.831 
are already on these plateaus, respectively), and 
for each of these values we calculated the winding 
numbers of the orbits with parameters 

K ( i ) -  A ,  K ( i ) ,  K(o + A, 

by integrating eq. (2) over N = 105 driver periods, 
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Fig. 16. Surface of section plot of a multivalued (n = 2) two- 
frequency quasiperiodic attractor (V= 0.55, K= 1.225) [~ = 
0.21. 

with A = 10 -5. When  at least two of  these three 

winding numbers  are equal we say that K is on a 

p la teau  while if they are different we say that K is 

on  the Can to r  set. By proceeding in this way we 
found  that  36/146---24.7% of points are on the 

Can to r  set. Repeat ing this study for other small A 

values yields similar results; in particular for A = 
4 X 1 0 - 5  and 1 6 × 1 0 - 5  we obtain 3 6 / 1 4 6 =  

24.7% and 38 /146  = 26.0%, respectively. Thus we 

believe that  --- 25% of the measure of  the interval 

K ~ [0.685,0.830] is on the Cantor  set where eq. 

(17) is not  satisfied. This result seems to indicate 

that,  a l though the measure of  the Cantor  set is 

reduced as e becomes different f rom zero, it re- 
mains  positive. Two observations are in order. The 

first has to do with what  we mean by equal and 

different winding numbers;  we found that the 

dist inct ion between the two cases is always very 

sharp;  for points  on the plateaus the difference 
between the calculated winding numbers  is always 
less than 10 8 while for points on the Cantor  set 

it is always larger than 5 × 10 -5. The second 
observat ion is related to the necessity of integrat- 

ing the differential equation over a large number  
of  driver periods;  if this number  is not  large 
enough,  spurious plateaus, at a distance in W of 
approximate ly  1 / N  from each other, tend to ap- 
pear;  this numerical  phenomenon  is illustrated in 
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Fig. 17. Curves of the Lyapunov exponent (A) and the wind- 
ing number (W) versus K at V= 1.0 [e = 0.2]. 
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Fig. 18. Curves of W vs. K in the neighborhood of K= 0.75 
for V = 0.55 and the following values of N: (A) 105; (B) 104; 
(C) 103. Note that the curves (B) and (C) were shifted by 
+ 0.0005 in the vertical direction for clarity [e = 0.2]. 

fig. 18 where we have plotted W versus K in the 

ne ighborhood  of  K = 0.75 (which is a point  on the 

Can to r  set) for different values of  N. 
Our  conclusions regarding the measure of the 

Can to r  set where strange nonchaot ic  attractors 
occur  are based on the results obtained at V = 0.55. 
If  we increase V then this measure also seems to 
increase; that  is, it is easier to find strange non- 

chaot ic  at tractors for larger values of  V. This can 
be seen by compar ing  fig. 17, which shows curves 
of  A and W versus K at V = 1.0, with fig. 11 (note 
that  the horizontal  scale is the same in both figures, 
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although the K values are taken to be different so 
that the interval between the two plateaus at W = 0 
and W = ~0 is included in both figures). 

Towards the end of the paper by Bondeson 
et al. [11] some preliminary calculations on the 
e 4:0 case were mentioned and, on their basis, it 
was speculated that " the  measure of the Cantor 
set with strange attractors seems to be zero or at 
least is very small". As indicated by our discussion 
above, we now believe that this is not so; the 
previous statement may have been due to the 
presence of apparent, but not real, plateaus which 
occur as a result of the finite-length-orbit-effect 
illustrated in fig. 18. Nevertheless, while our 
present numerical results are strongly suggestive, 
in the absence of rigorous analytical results, there 
is room for uncertainty concerning this issue. 

To conclude this section, we reiterate the main 
conclusions implied by our e 4:0 numerical experi- 
ment: (i) the strange nonchaotic attractors are 
characterized by .# ' (o )  - o-a;  and (ii) the strange 
nonchaotic attractors apparently exist on a Cantor 
set of positive measure in parameter space. These 
conclusions are the same as those for ~ = 0 (sec- 
tion 2). There are, however, other aspects, namely 
the greater profusion of resonances for e :# 0, for 
which the cases e = 0 and e 4:0 are fundamentally 
different from each other. In the next section this 
will be demonstrated analytically using perturba- 

tion theory. 

In order to solve (18) for small g we assume 
that 

= ~0 + tL~bl, K = g o + gK1,  

and introduce a new independent variable 

1" = t - to (g t  ), 

where t o is a slowly varying function of t. Sub- 
stituting this ansatz into (18) and equating the 
coefficients of equal powers of g we obtain, to 
O(~°), 

d,/,o 
d~" = h(q~°) + K° '  (19) 

and to 0(~1), 

dqhd'r h'(ePo)epl=to(gt)dd~ + K l + v ( ~ + t ° ) "  

(20) 

The solution of (19) is given implicitly by 

f *o(,) d~ 
"o h ( ¢ )  + K  o 

assuming that h (¢ )  + K o > 0. This solution can be 
expressed in the form 

= + 

where q~Ol is 2¢r-periodic and W o = 2¢r/T o with 

4. Perturbation theory 

In this section we use perturbation theory to 
study the phase-locked solutions of eq. (2) for 
small values of the parameter V. Actually our 
perturbation analysis is slightly more general and 
applies to differential equations of the form 

d4, 
d-7 = h( ep) + K + gv(t) ,  (18) 

To( Ko) = fo2~, dep 
h(¢)  + K  o " 

The function t o will be chosen in such way that 
the solution of (20) is not secular. With this choice 
the winding number W of the solution q,(t) of (18) 
is given by 

W= lim e P ( t ) = w ° ( 1 -  lim t°(~tt) ) t t-,o~ (21) 

where h is 2~'-periodic and v is two-frequency 
quasiperiodic with incommensurate frequencies wl 
and ~2. /z is an ordering parameter. 

The locked solutions will therefore occur if it is 
further possible to choose to(l~t ) such that 
lira t ~ ~to( gt ) / t  = O. 
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Eq. (20) can be rewritten in the form 

d 
d-~ [~l I ( ' r ) ]  = tlo(~t) + I(~')[ K1 + v(~" + to)], 

(22) 

where 

I(~') = [h(~o(~-)) + Ko1-1. 

In order to proceed let us assume that the 
integrating factor I has the Fourier series expan- 
sion 

+oo 

I ( ~ ' ) =  E I ,  ei"w°', (23) 

where too is a constant. If this condition is satisfied 
the solution of (25) will have the form 

01( ) = ¢11(Wo ) + ,o2,), 

where q'n and qh2 are 2~r-periodic functions of 
their arguments. Putting these results together we 
see that the solution of (18) is, except for the 
secular term Wo( t - to) , three-frequency quasiperi- 
odic. The corresponding winding number is 

W = Wo(1 + IIKllo).  

Noting that I o, the average value of the in- 
tegrating factor, can be expressed in terms of W 0 
by 

while the forcing function v has the double Four- 
ier series expansion 

I 0 = - -  
1 dWo(Ko) 

Wo( Ko)  dKo 

+o¢ 

v ( t )  = E Vl, m ei(lwl+m~°2)t (24) 
[, m ~  -- oo 

Without loss of generality we take V0, o = 0 (any 
non-zero Vo, o can always be included in K0). 
Substituting (23) and (24) into (22) we obtain, 
after some slight rearrangement, 

[thff(¢)] = tO(M) + K t I o  + Kt E [n einW°~" 

nn¢O °° 

+ 
q-o¢ 
~_, I V e i(l~l+m~°2)t° e i (nW°+l~x +mm2)~" 

n l , m  
r t , [ , m ~  --o~ 

(25) 

From now on two cases have to be considered 
separately. 

As the first case we assume that nWo+ i~ 1 + 
m~02 :~ 0, for all n, 1, m. Then the condition for the 
solution of (25) not to have a secular term is 

+ I q I o  = o, 

which, on integration, gives 

this expression simply indicates that for small 
variations/~K 1 around K 0 the winding number is 
given by the first two terms of a Taylor expansion. 

As the second case we assume there are integer 
triplets (h, f, th) for which the resonance condition 

/~W0 '~ l ~ l  d - / ~ o 9  2 ~-- 0 ,  (26) 

is satisfied. Then the condition for the solution of 
(25) not to have a secular term is 

t ; ( r - )  + KxIo + R(Woto) = o, (27) 

where 

R ( Woto ) = 
+oo 
Y'. I V~ e -i~w°t° 

h l ,&  
h, [~ ,h= -o¢ 

hWo + lWl + tho:2=O 

is the resonant part of I('r)v('r + to). Eq. (27) is a 
first order differential equation for to; as R is 
2~'r-periodic its solution will satisfy l imt~ ooto(l~t) 
= L < oo provided 

to(/~t) = -K l lo l~ t+ too  , m i n R ( W o t o ) <  - K l l o < m a x R ( W o t o )  , (28) 
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where L is such that 5. Conclusions 

IoK 1 + R ( W o L  ) = 0 .  

From these results we conclude that in this second 
case (18) will have two-frequency quasiperiodic 
solutions with winding number W = W0, where W 0 
satisfies (26), provided that the parameter K re- 
mains sufficiently close to K 0 so that (28) is 
satisfied. Note that condition (28) implies that the 
width (in K space) of the phase locked regions 
scales as the magnitude of R(Woto). 

The perturbation results that we have just de- 
scribed are valid for (18) with arbitrary 2~r-peri- 
odic h and two-frequency quasiperiodic v. Let us 
now analyse the two special cases (i) h(~) = cos q~, 
for which (18) can be reduced to the SchrSdinger 
equation, and (ii) v(t)  = K(cos O~zt + cos ~2t), as 
considered in the numerical work described in the 
present paper. 

In case (i) it can be shown that the integrating 
factor for (20) has the form 

= - 0 12 [r0 + sin (Wo  + 

where Wo(Ko) = (K~ - 1) 1/2 and cp is a constant. 
That is, I is monochromatic with frequency W 0. If 
we follow through the perturbation analysis we 
verify that in this special case the resonance condi- 
tion (26) takes the form 

Wo .-[-/"~ 1 q-/~/~2 = 0, 

in agreement with our results of section 2. 
In case (ii), if we again follow through the 

analysis, we verify that the resonance condition 
can only take one of the two particular forms 

/~Wo--~-tOl ~--0 , / ~ W o - - [ - o ) 2 = 0 .  

That is, to O(/xz), only resonances of one of these 
two forms can occur. Note, however, that reso- 
nances of the general form (26) can still be found 
in this case by taking the perturbation theory to ^ 
d~(#/+'~). 

We have discussed the existence and properties 
of strange nonchaotic attractors exhibited by the 
first order ordinary differential equation with 
two-frequency quasiperiodic forcing, eq. (2). The 
following are the most important conclusions of 
our study: 

i) For a fixed value of V the curve giving the 
winding number W as a function of K is a "devil's 
staircase": a continuous, non-decreasing curve 
with a dense set of open intervals on which the 
winding number is constant; between these inter- 
vals there is a Cantor set of apparently positive 
Lebesgue measure on which the winding number 
increases with K. 

ii) On the intervals the Lyapunov exponent is 
always negative while on the Cantor set it is either 
negative (above the critical curve) or zero (below 
the critical curve). 

iii) On the intervals the equation exhibits two- 
frequency quasi-periodic attractors. On the Cantor 
set the equation exhibits either three-frequency 
quasiperiodic attractors (when A = 0) or strange 
nonchaotic attractors (when A < 0). 

iv) The frequency spectra of the three types of 
attractors have in general clearly distinctive char- 
acteristics. If we introduce a spectral distribution 
,W'(o) giving the number of spectral components 
larger than some value a, then we have: ,/V(a) - 
o -~, 1 < a < 2, for strange nonchaotic attractors; 
~ r ( o ) - l o g ( 1 / a ) ,  for two-frequency quasiperi- 
odic attractors; ,AP(o) - log2(1 /o) ,  for three- 
frequency quasiperiodic attractors. 

v) The equation we have studied can be consid- 
ered as a strong damping model of the driven 
pendulum and Josephson junction. Our present 
results, namely those related to the form of the 
frequency spectrum of the attractors, indicate that 
it should be possible in experiments with these 
physical devices to identify the strange nonchaotic 
attractors via an ~ ( a )  diagnostic. This is even 
made more plausible by the fact that these attrac- 
tors seem to exist on a set of positive measure. 

Finally we note that the qualitative conclusions 
numerically obtained for eq. (2) are expected to 
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hold for general first order quasiperiodically forced 
equat ions  of  the form d c p / d t  = gn(ep, t ) ,  where ~/ 

represents parameters  and the explicit t depen- 

dence  of  gn is quasiperiodic. In  particular, our 

results suggest that  the existence of  strange non-  

chaot ic  at tractors  on a positive measure in param-  

eter space should apply. [We emphasize, however, 

that  for e ~ 0 our  evidence for the existence of  

strange nonchao t ic  attractors on a set of positive 
measure  is purely numerical. A rigorous proof  

confirming (or refuting) the numerical  evidence 

remains  a challenging problem for future study.] 
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