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We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally
distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto
proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by
means of a local center manifold calculation. Nevertheless, many questions have remained open, especially
about the possibility of global bifurcations. Here we derive the system’s stability diagram for the special case
where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discov-
ered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow
in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one
of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macro-
scopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state,
where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the
bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal
distribution is given by the sum of two Gaussians.
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I. INTRODUCTION

A. Background

Large systems consisting of many coupled oscillatory
units occur in a wide variety of situations �1�. Thus the study
of the behaviors that such systems exhibit has been an active
and continuing area of research. An important early contri-
bution in this field was the introduction in 1975 by Kuramoto
�2,3� of a simple model which illustrates striking features of
such systems. Kuramoto employed two key simplifications
in arriving at his model: �i� the coupling between units was
chosen to be homogeneous and all-to-all �i.e., “global”�, so
that each oscillator would have an equal effect on all other
oscillators; and �ii� the oscillator states were solely described
by a phase angle ��t�, so that their uncoupled dynamics
obeyed the simple equation d�i /dt=�i, where �i is the in-
trinsic natural frequency of oscillator i, N�1 is the number
of oscillators, and i=1,2 , . . . ,N. The natural frequencies �i
are, in general, different for each oscillator and are assumed
to be drawn from some prescribed distribution function g���.

Much of the research on the Kuramoto model has focused
on the case where g��� is unimodal �for reviews of this
literature, see �4–6��. Specifically, g is usually assumed to be
symmetric about a maximum at frequency �=�0 and to de-
crease monotonically and continuously to zero as ��−�0�
increases. In that case, it was found that, as the coupling
strength K between the oscillators increases from zero in the
large-N limit, there is a continuous transition at a critical
coupling strength Kc=2 /�g��0�. For K below Kc, the aver-
age macroscopic, time-asymptotic behavior of the system is
such that the oscillators in the system behave incoherently
with respect to each other, and an order parameter �defined in
Sec. II� is correspondingly zero. As K increases past Kc, the

oscillators begin to influence each other in such a way that
there is collective global organization in the phases of the
oscillators, and the time-asymptotic order parameter assumes
a nonzero constant value that increases continuously for
K�Kc �3–7�.

It is natural to ask how these results change if other forms
of g��� are considered. In this paper we will address this
question for what is perhaps the simplest choice of a nonuni-
modal frequency distribution: we consider a distribution
g��� that has two peaks �8,9� and is the sum of two identical
unimodal distributions ĝ, such that g���= 1

2 �ĝ��̄−�0�+ ĝ��̄
+�0��. We find that this modification to the original problem
introduces qualitatively new behaviors. As might be ex-
pected, this problem has been previously addressed �3,10�.
However, due to its difficulty, the problem was not fully
solved, and, as we shall show, notable features of the behav-
ior were missed.

B. Reduction method

The development that makes our analysis possible is the
recent paper of Ott and Antonsen �11�. Using the method
proposed in Ref. �11�, we reduce the original problem for-
mulation from an integro–partial-differential equation �4,5,7�
for the oscillator distribution function �a function of �, �,
and t� to a system of just a few ordinary differential equa-
tions �ODEs�. Furthermore, we analyze the reduced ODE
system to obtain its attractors and the bifurcations they ex-
perience with variation of system parameters.

The reduced ODE system, however, represents a special
restricted class of all the possible solutions of the original
full system �11�. Thus a concern is that the reduced system
might miss some of the actual system behavior. In order to
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check this, we have done numerical solutions of the full sys-
tem. The result is that, in all cases tested, the time-
asymptotic attracting behavior of the full system and the ob-
served attractor bifurcations are all contained in, and are
quantitatively described by, our ODE formulation. Indeed a
similar result applies for the application of the method of
Ref. �11� to the original Kuramoto model with unimodally
distributed frequencies �2,3� and to the problem of the forced
Kuramoto model with periodic drive �12�.

On the other hand, the reduction method has not been
mathematically proven to capture all the attractors, for any of
the systems to which it has been applied �11,12�. Throughout
this paper we operate under the assumption �based on our
numerical evidence� that the reduction method is reliable for
the bimodal Kuramoto model. But we caution the reader that
in general the situation is likely to be subtle and system
dependent; see Sec. VI D 1 for further discussion of the
scope and limits of the reduction method.

C. Outline of the paper

The organization of this paper is as follows. In Sec. II we
formulate the problem and reduce it to the above-mentioned
ODE description for the case where g��� is a sum of
Cauchy-Lorentz distributions.

Section III provides an analysis of the ODE system. The
main results of Sec. III are a delineation of the different types
of attractors that can exist, the regions of parameter space
that they occupy �including the possibility of bistability and
hysteresis�, and the types of bifurcations that the attractors
undergo.

In Sec. IV, we establish that the attractors of the ODEs
obtained in Sec. III under certain symmetry assumptions are
attractors of the full ODE system. In Sec. V, we confirm that
these attractors and bifurcations are also present in the origi-
nal system. In addition, we investigate the case where g��� is
a sum of Gaussians, rather than Cauchy-Lorentz distribu-
tions. We find that the attractors and bifurcations in the
Lorentzian case and in the Gaussian case are of the same
type, and that parameter space maps of the different behav-
iors are qualitatively similar for the two distributions.

Finally, in Sec. VI we compare our results to the earlier
work of Kuramoto �3� and Crawford �10�. Then we discuss
the scope and limits of the reduction method used here, and
offer suggestions for future research.

II. GOVERNING EQUATIONS

A. Problem definition

We study the Kuramoto problem of N oscillators with
natural frequencies �i,

d�i�t�
dt

= �i +
K

N
�
j=1

N

sin�� j�t� − �i�t�� , �1�

where �i are the phases of each individual oscillator and K is
the coupling strength. We study this system in the limit N
→� for the case in which the distribution of natural frequen-
cies is given by the sum of two Lorentzian distributions:

g��� =
�

2�
� 1

�� − �0�2 + �2 +
1

�� + �0�2 + �2� . �2�

Here � is the width parameter �half width at half maximum�
of each Lorentzian and ��0 are their center frequencies, as
displayed in Fig. 1. A more physically relevant interpretation
of �0 is as the detuning in the system �proportional to the
separation between the two center frequencies�.

Note that we have written the distribution g��� so that it
is symmetric about zero; this can be achieved without loss of
generality by going into a suitable rotating frame. Another
point to observe is that g��� is bimodal if and only if the
peaks are sufficiently far apart compared to their widths.
Specifically, one needs �0�� /	3. Otherwise the distribu-
tion is unimodal and the classical results of �2–5� still apply.

B. Derivation

In the limit where N→�, Eq. �1� can be written in a
continuous formulation �3–5� in terms of a probability den-
sity f�� ,� , t�. Here f is defined such that at time t the frac-
tion of oscillators with phases between � and �+d� and natu-
ral frequencies between � and �+d� is given by
f�� ,� , t�d� d�. Thus



−�

� 

0

2�

f��,�,t�d� d� = 1 �3�

and



0

2�

f��,�,t�d� = g��� , �4�

by definition of g���.
The evolution of f is given by the continuity equation

describing the conservation of oscillators:

�f

�t
+

�

��
�fv� = 0, �5�

where v�� ,� , t� is the angular velocity of the oscillators.
From Eq. �1�, we have

v��,�,t� = � + K

0

2�

f���,�,t�sin��� − ��d��. �6�

Following Kuramoto, we define a complex order parameter

2 � 2 �

�Ω0 Ω0
Ω

g�Ω�

FIG. 1. �Color online� Bimodal distribution of natural frequen-
cies, g���, consisting of the sum of two Lorentzians.
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z�t� = 

−�

� 

0

2�

ei�f��,�,t�d� d� �7�

whose magnitude �z�t��	1 characterizes the degree to which
the oscillators are bunched in phase, and arg�z� describes the
average phase angle of the oscillators. Expressing the veloc-
ity �6� in terms of z we obtain

v��,�,t� = � + K Im�ze−i�� �8�

=� +
K

2i
�ze−i� − z*ei�� , �9�

where the asterisk denotes complex conjugate.
Following Ott and Antonsen �11�, we now restrict atten-

tion to a special class of density functions. By substituting a
Fourier series of the form

f��,�,t� =
g���
2�

�1 + �
n=1

�

�fn��,t�ein� + c.c.�� , �10�

where c.c. stands for the complex conjugate of the preceding
term, and imposing the ansatz that

fn��,t� = 
��,t�n, �11�

we obtain

�


�t
+

K

2
�z
2 − z*� + i�
 = 0, �12�

where

z* = 

−�

�


�t,��g���d� . �13�

We now consider solutions of �12� and �13� for initial
conditions 
�� ,0� that satisfy the following additional con-
ditions: �i� �
�� , t��	1; �ii� 
�� ,0� is analytically continu-
able into the lower half plane Im����0; and �iii� �
�� , t��
→0 as Im���→−�. If these conditions are satisfied for

�� ,0�, then, as shown in �11�, they continue to be satisfied
by 
�� , t� as it evolves under Eqs. �12� and �13�. Expanding
g��� in partial fractions as

g��� =
1

4�i
� 1

�� − �0� − i�
−

1

�� − �0� + i�
+

1

�� + �0� − i�

−
1

�� + �0� + i�
� ,

we find it has four simple poles at �= ��0� i�. Evaluating
�13� by deforming the integration path from the real � axis to
Im���→−�, the order parameter becomes

z�t� =
1

2
�z1�t� + z2�t�� , �14�

where

z1,2�t� = 
*���0 − i�,t� . �15�

Substitution of this expression into �12� yields two
coupled complex ODEs, describing the evolution of two sub-
order parameters,

ż1 = − �� + i�0�z1 +
K

4
�z1 + z2 − �z1

* + z2
*�z1

2� , �16�

ż2 = − �� − i�0�z2 +
K

4
�z1 + z2 − �z1

* + z2
*�z2

2� , �17�

where we use overdots to represent the time derivative from
now on. �This system agrees with the results of �11� for the
case of two equal groups of oscillators with uniform cou-
pling strength and average frequencies �0 and −�0.�

C. Reductions of the system

The system derived so far is four dimensional. If we in-
troduce polar coordinates zj =� je

ij and define the phase dif-
ference �=2−1, the dimensionality can be reduced to
three:

�̇1 = − ��1 +
K

4
�1 − �1

2���1 + �2 cos �� , �18�

�̇2 = − ��2 +
K

4
�1 − �2

2���1 cos � + �2� , �19�

�̇ = 2�0 −
K

4

�1
2 + �2

2 + 2�1
2�2

2

�1�2
sin � . �20�

To facilitate our analysis, we now look for solutions of
Eqs. �18�–�20� that satisfy the symmetry condition

�1�t� = �2�t� � ��t� . �21�

In Sec. IV we will verify that these symmetric solutions are
stable to perturbations away from the symmetry manifold
and that the attractors of Eqs. �16� and �17� lie within this
manifold. Our analysis of the problem thus reduces to a
study in the phase plane:

�̇ =
K

4
��1 −

4�

K
− �2 + �1 − �2�cos �� , �22�

�̇ = 2�0 −
K

2
�1 + �2�sin � . �23�

III. BIFURCATION ANALYSIS

Figure 2 summarizes the results of our analysis of Eqs.
�22� and �23�. We find that three types of attractor occur: the
well-known incoherent and partially synchronized states
�2–6� corresponding to fixed points of �22� and �23�, as well
as a standing wave state �10� corresponding to limit-cycle
solutions. In addition, we show that the transitions between
these states are mediated by transcritical, saddle-node, Hopf,
and homoclinic bifurcations, as well as by three points of
higher codimension.
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A. Scaling

To ease the notation we begin by scaling Eqs. �22� and
�23�. If we define q=�2 and nondimensionalize the param-
eters and time such that

t̃ =
K

2
t ,

�̃ =
4�

K
,

�̃0 =
4�0

K
, �24�

we obtain the dimensionless system

q̇ = q�1 − � − q + �1 − q�cos �� , �25�

�̇ = �0 − �1 + q�sin � . �26�

Here the overdot now means differentiation with respect to
dimensionless time, and we have dropped all the tildes for
convenience. For the rest of this section, all parameters will
be assumed to be dimensionless �so there are implicitly tildes
over them� unless stated otherwise.

B. Bifurcations of the incoherent state

The incoherent state is defined by �1=�2=0, or by q=0 in
the phase plane formulation. The linearization of the incoher-
ent state, however, is most easily performed in Cartesian

coordinates using the formulation in Eqs. �16� and �17�. We
find the degenerate eigenvalues

�1 = �2 = 1 − � − 	1 − �0
2, �27�

�3 = �4 = 1 − � + 	1 − �0
2. �28�

This degeneracy is expected because the origin is always a
fixed point and because of the rotational invariance of that
state. It follows that the incoherent state is stable if and only
if the real parts of the eigenvalues are less than or equal to
zero.

The boundary of stable incoherence therefore occurs
when the following conditions are met:

� = 1 + 	1 − �0
2 for �0 	 1,

� = 1 for �0 � 1.

These equations define the semicircle and the half line shown
in Fig. 2, labeled TC �for transcritical� and HB �for Hopf
bifurcation�, respectively. �Independent confirmation of these
results can be obtained from the continuous formulation of
Eq. �1� directly, as shown in the Appendix.� More precisely,
we find that crossing the semicircle corresponds to a degen-
erate transcritical bifurcation, while crossing the half line
corresponds to a degenerate supercritical Hopf bifurcation.

In the latter case, the associated limit-cycle oscillation
indicates that the angle � increases without bound; this re-
flects an increasing difference between the phases of the two
suborder parameters of Eqs. �16� and �17�. In terms of the
original model, this means that the oscillator population

4∆
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FIG. 2. �Color online� Bifurcation diagram for the Kuramoto system with a bimodal frequency distribution consisting of two equally
weighted Lorentzians. The various bifurcation curves are denoted as follows: TC, transcritical; SN, saddle node; HB, �degenerate� Hopf; HC,
homoclinic; and SNIPER, saddle node infinite period. The insets, labeled �a�–�g�, show �q ,�� phase portraits �where q=�2� in polar
coordinates corresponding to the regions where the insets are located �see arrows for the boxed insets�. Solid �red� dots and loops denote
stable fixed point and limit cycles, respectively; open dots are saddle �green� or repelling �gray� fixed points. All parameters refer to their
original �unscaled� versions.
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splits into two counter-rotating groups, each consisting of a
macroscopic number of oscillators with natural frequencies
close to one of the two peaks of g���. Within each group the
oscillators are frequency locked. Outside the groups the os-
cillators remain desynchronized, drifting relative to one an-
other and to the locked groups. This is the state Crawford
�10� called a standing wave. Intuitively speaking, it occurs
when the two humps in the frequency distribution are suffi-
ciently far apart relative to their widths. In Kuramoto’s vivid
terminology �3�, the population has spontaneously condensed
into “a coupled pair of giant oscillators.”

C. Fixed point solutions and saddle-node bifurcations

Along with the trivial incoherent state q=0, the other
fixed points of Eqs. �25� and �26� satisfy 1−�−q= �q
−1�cos � and �0= �q+1�sin �. Using trigonometric identi-
ties, we obtain

1 = � �0

q + 1
�2

+ �1 − � − q

q − 1
�2

, �29�

or equivalently

�0 = �
1 + q

1 − q
	��2 − 2q − �� . �30�

Thus, the fixed point surface q=q��0 ,�� is defined implic-
itly. It can be single or double valued as a function of �0 for
fixed �. To see this, consider how �0 behaves as q→0+. We
find that

�0 � 	��2 − ���1 +
3 − 2�

2 − �
q + O�q2�� , �31�

from which we observe that the behavior changes qualita-
tively at �=3 /2, as shown in Fig. 3.

The surface defined by �=���0 ,�� can be plotted para-
metrically using � and �, as is seen in Fig. 4. The fold in the
surface corresponds to a saddle-node bifurcation. Plots of the
phase portrait of �q ,�� reveal that the upper branch of the

double-valued surface in Fig. 3 corresponds to sinks, and the
lower branch to saddle points; see Figs. 2�c�, 2�d�, and 2�g�.

In physical terms, the sink represents a stable partially
synchronized state, which is familiar from the classic Kura-
moto model with a unimodal distribution �3–6�. The oscilla-
tors whose natural frequencies are closest to the center of the
frequency distribution g��� become rigidly locked, and
maintain constant phase relationships among themselves—in
this sense, they act collectively like a “single giant oscilla-
tor,” as Kuramoto �3� put it. Meanwhile the oscillators in the
tails of the distribution drift relative to the locked group,
which is why one describes the synchronization as being
only partial.

The saddle points also represent partially synchronized
states, though of course they are unstable. Nevertheless, they
play an important role in the dynamics because they can
annihilate the stable partially synchronized states; this hap-
pens in a saddle-node bifurcation along the fold mentioned
above. To calculate its location analytically, we use �30� and
impose the condition for a turning point, ��0 /�q=0, which
yields

q2 − 4q + 3 − 2� = 0. �32�

Eliminating q from this equation using �30�, we obtain the
equation for the saddle-node bifurcation curve,

�0 = 	2 − 10� − �2 + 2�1 + 2��3/2. �33�

This curve is labeled SN in Fig. 2. Its intersection with the
semicircle TC occurs at ��0 ,��= �	3 /2,3 /2�, and is labeled
B in the figure. Note also that point C in the figure is not a
Takens-Bagdanov point, as the saddle-node and Hopf bifur-
cations occur at different locations in the state space; see
Figs. 2�a� and 2�g�.

D. Bistability, homoclinic bifurcations, and the saddle-node
infinite-period bifurcation

An examination of the dynamics corresponding to the ap-
proximately triangular parameter space region ABC in Fig. 2
shows bistability. More specifically, we find that the stable
incoherent fixed point coexists with the stable partially syn-
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FIG. 3. �Color online� Saddle-node bifurcation: at �=3 /2, q
becomes double valued.
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Ω0
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�

FIG. 4. �Color online� Fixed point surface. Bifurcation curves at
the origin and the saddle-node curve are emphasized in black.
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chronized state produced by the saddle-node bifurcation de-
scribed above, as shown in the state-space plot in Fig. 2�c�.

Further study of these state-space plots led us to the ho-
moclinic bifurcation curve marked HC, which was obtained
numerically. The coexistence of states continues into region
ACD, where we found that the stable partially synchronized
state now coexists with the stable limit cycle created at the
Hopf curve. �See Fig. 2�g�.� This limit cycle is then de-
stroyed by crossing the homoclinic curve, which is bounded
by point A on one side and by point D on the other.

At point D, the homoclinic curve merges with the saddle-
node curve. This codimension-two bifurcation, occurring at
approximately �1.3589, 0.7483�, is known as a saddle-node
loop �13�. Below D, however, the saddle-node curve exhibits
an interesting feature: the saddle-node bifurcation occurs on
an invariant closed curve. This bifurcation scenario is known
as a saddle-node infinite-period bifurcation �SNIPER�. If we
traverse the SNIPER curve from left to right, the sink and
saddle �the stable and unstable partially synchronized states�
coalesce, creating a loop with infinite period. Beyond that, a
stable limit cycle then appears—see Figs. 2�d�–2�f�.

In conclusion, we have identified six distinct regions in
parameter space and have identified the bifurcations that oc-
cur at the boundaries.

IV. TRANSVERSE STABILITY

Our analysis so far has been based on several simplifying
assumptions. First, we restricted attention to a special family
of oscillator distribution functions f�� ,� , t� and a bimodal
Lorentzian form for g���, which enabled us to reduce the
original infinite-dimensional system to a three-dimensional
system of ODEs, Eqs. �18�–�20�. Second, we considered
only symmetric solutions of these ODEs, by assuming �1
=�2; this further decreased the dimensionality from three to
two.

The next two sections test the validity of these assump-
tions. We begin here by showing that the nonzero fixed point
attractor �the stable partially synchronized state� and the
limit cycle attractor �the standing wave state� for Eqs. �25�
and �26� are transversely stable to small symmetry-breaking
perturbations, i.e., perturbations off the invariant manifold
defined by �1=�2. This does not rule out the possible exis-
tence of attractors off this manifold, but it does mean that the
attractors in the two-dimensional symmetric manifold are
guaranteed to constitute attractors in the three-dimensional
ODE system �18�–�20�.

Let �=K /4 and consider the reduced governing equations
�18�–�20� without symmetry. Introducing the longitudinal
and transversal variables

� =
1

2
��1 + �2� ,

�� =
1

2
��1 − �2� , �34�

and substituting these into �18�–�20�, we derive the equation
for the transversal component,

�̇� = ����� − �� − ��3�
2 + ��

2 � − � cos ��1 + �
2 − ��

2 �� ,

which describes the order parameter dynamics off the sym-
metric manifold.

To simplify the notation, let q =�
2 and q�=��

2 and scale
the system using Eqs. �24�, as before. Linearization and
evaluation at the asymptotic solution denoted by �q0 ,�0�,
which may be either a fixed point or a limit cycle, yields the
variational equation

�q̇� = ���q�, �35�

where

�� = 1 − � − 3q0 − �1 + q0�cos �0. �36�

Observe that �q and �� do not appear in linear order on the
right-hand side of �35�. This decoupling implies that �� is
the eigenvalue associated with the transverse perturbation
�q�, in the case where q0 is a fixed point. Similarly, if q0 is
a limit cycle, the Floquet exponent associated with �q� is
simply ����, where the brackets denote a time average over
one period. Hence the fixed point will be transversely stable
if ���0. The analogous condition for the limit cycle is
�����0.

A. Fixed point stability

To test the transverse stability of sinks for the two-
dimensional flow, we solve Eq. �25� for fixed points and
obtain

0 = 1 − � − q0 + �1 − q0�cos �0. �37�

Subtracting this from �36�, we find

�� = − 2�q0 + cos �0� . �38�

Hence cos �0�0 is a sufficient condition for transverse sta-
bility. But at a nontrivial fixed point,

cos �0 =
1 − �� + q0�

q0 − 1
, �39�

so the transverse stability condition is equivalent to
q0+��1.

We claim that this inequality holds everywhere on the
upper branch of the fixed point surface �30�. Obviously the
inequality is satisfied at all points where ��1. For all other
cases, consider the turning point from Fig. 3 defined by qsn

=2�	1+2�. Since the function of interest, Q����qsn+�,
has a global minimum with Q�0�=1, and qsn is independent
of �0 �at fixed ��, it is a lower bound for all q��0� on the
upper sheet of the fixed point surface, provided that q��0� is
monotonically decreasing on the interval of �0,�sn�. In fact,
it is easier to establish that 0���0 /�q=� /D�q2−4q+3
−2�� with D= �q−1�2	2�−2q�−�2; the latter expression is
positive, and q2−4q+3−2��0 whenever 1�q�qsn. Thus
transverse stability for the nodes on the fixed point surface
follows.

B. Limit cycle stability

To examine the transverse linear stability of the limit
cycle, we calculate the transverse Floquet exponent by aver-
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aging the eigenvalue over the period of one oscillation:

���� = 1 − � − 3�q0� − ��cos �0� + �q0 cos �0�� . �40�

In order to render this expression definite, we rewrite Eq.
�25� in terms of the limit cycle solution �q0 ,�0�:

d

dt
�ln q0� = 1 − � − q0 + �1 − q0�cos �0. �41�

Periodicity on the limit cycle guarantees ��d /dt�ln q0�=0,
and so we have

0 = 1 − � − �q0� + ��1 − q0�cos �0� , �42�

which we subtract from the averaged eigenvalue to yield

���� = − 2��q0� + �cos �0�� . �43�

Although we are not able to analytically demonstrate that
���� in �43� is negative, we have calculated �q0� and �cos �0�
numerically for the limit cycle attractors of Eqs. �18�–�20�.
This was done for 2500 parameter values corresponding to a
grid in dimensionless parameter space, by sampling 50
evenly spaced values �� �0.01,2.5� and �� �0.01,2.1�. The
simulations were run with N=1024 oscillators. In all the
cases that we tested, we found that �����0.

V. NUMERICAL EXPERIMENTS

All of the results described above were obtained using the
reduced ODE models derived in Secs. II B and II C, and are
therefore subject to the restrictions described therein. It is
therefore reasonable to ask if these results agree with the
dynamics of the original system given in Eq. �1�. To check
this, a series of direct simulations of Eq. �1� using N
=10 000 oscillators and fourth-order Runge-Kutta numerical
integration were performed.

First, we compared solutions of Eq. �1� with those of our
reduced system Eqs. �22� and �23� in the region where we
predicted the coexistence of attractors. For example, we
show in Fig. 5 a bifurcation diagram computed along the line
4�0 /K=1.092 that traverses the region ABCD in Fig. 2.
�Note that here and for the rest of the paper, we revert to
using the original, dimensional form of the variables.� The
vertical lines in Fig. 5 indicate the locations of the bifurca-
tions that were identified using the ODE models. For each
point plotted, the simulation was run until the order param-
eter exhibited its time-asymptotic behavior; this was then
averaged over the subsequent 5000 time steps. Error bars
denote standard deviation. Note in particular the hysteresis,
as well as the point with the large error bar, indicating the
predicted limit cycle behavior.

Next, we examined the behavior of Eq. �1� at 121 param-
eter values corresponding to an 11�11 regular grid super-
imposed on Fig. 2, ranging from 0.1 to 2.1 at intervals of 0.2
on each axis. �In all cases, K was set to 1, and � and �0 were
varied.� An additional series was run using a smaller grid
�from 0.6 to 1.6 at intervals of 0.1 on each axis�, to focus on
the vicinity of region ABCD in Fig. 2. Initial conditions were
chosen systematically in 13 different ways, as follows:

�1� The oscillator phases were uniformly distributed
around the circle, so that the overall order parameter had
magnitude r=0.

�2� The oscillators were all placed in phase at the same
randomly chosen angle in �0,2��, so that r=1.

�3� The remaining 11 initial conditions were chosen by
regarding the system as composed of two subpopulations,
one for each Lorentzian in the bimodal distribution of fre-
quencies, as in �8�. In one of the subpopulations, the initial
phases of the oscillators were chosen to be randomly spaced
within the angular sector �c+d ,c−d�, where c was chosen
randomly in �0,2�� and d was chosen at random such that
the suborder parameter magnitude r1=0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, or 0.9 �all approximately�. The result was that
r1 had one of these magnitudes and its phase was random in
�0,2��. The same procedure was followed for the other sub-
population, subject to the constraint that r1�r2. Our idea
here was to deliberately break the symmetry of the system
initially, to test whether it would be attracted back to the
symmetric subspace defined by Eq. �21�.

In all the cases we examined, no discrepancies were found
between the simulations and the predicted behavior. Al-
though these tests were not exhaustive, and certainly do not
constitute a mathematical proof, they are consistent with the
conjecture that no additional attractors beyond those de-
scribed in Sec. III exist.

We then investigated the generality of our results by re-
placing the bimodal Lorentzian natural frequency distribu-
tion, Eq. �2�, with a sum of two Gaussians:

g��� =
1

�	2�
�e−�� − �0�2/2�2

+ e−�� + �0�2/2�2
� , �44�

FIG. 5. Hysteresis loop as observed when traversing the bistable
regions shown in Fig. 2 in the directions shown �arrows� along the
line at 4�0 /K=1.092. The data were obtained from a simulation of
Eq. �1� with N=10 000 and K=1. Vertical lines indicate where the
reduced ODE models of Sec. II predict homoclinic �HC�, degener-
ate Hopf �HB�, and saddle-node �SN� bifurcations. Note that the
point marked “limit cycle” has a large error bar, reflecting the os-
cillations in the order parameter.
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and computing the corresponding bifurcation diagram analo-
gous to Fig. 2. The results are shown in Fig. 6. The transcriti-
cal �TC� and degenerate Hopf bifurcation �HB� curves were
obtained using the continuous formulation of Eq. �1�; see the
Appendix for details. In addition, saddle-node, homoclinic,
and SNIPER bifurcations were numerically observed at sev-
eral parameter values, and, based on these data, we estimated
the location of the corresponding curves �dashed lines�. All
the features of Fig. 2 are preserved, but the curves are some-
what distorted.

VI. DISCUSSION

We conclude by relating our work to three previous stud-
ies, and then offer suggestions for further research, both the-
oretical and experimental.

A. Kuramoto’s conjectures

In his book on coupled oscillators, Kuramoto �3� specu-
lated about how the transition from incoherence to mutual
synchronization might be modified if the oscillators’ natural
frequencies were bimodally distributed across the popula-
tion. On pp. 75-76 of Ref. �3�, he wrote “So far, the nucle-
ation has been supposed to be initiated at the center of sym-
metry of g. This does not seem to be true, however, when g
is concave there.” His reasoning was that for a bimodal sys-
tem synchrony would be more likely to start at the peaks of
g. If that were true, it would mean that a system with two
equal peaks would go directly from incoherence to having
two synchronized clusters of oscillators, or what we have
called the standing wave state, as the coupling K is in-
creased. The critical coupling at which this transition would
occur, he argued, should be Kc=2 /�g��max�, analogous to
his earlier result for the unimodal case. According to this
scenario, the synchronized clusters would be tiny at onset,
comprised only of oscillators with natural frequencies near
the peaks of g���. Because of their small size, Kuramoto
claimed these clusters “will behave almost independently of

each other.” With further increases in K, however, the clus-
ters “will come to behave like a coupled pair of giant oscil-
lators, and for even stronger coupling they will eventually be
entrained to each other to form a single giant oscillator.”
�This is what we have called the partially synchronized
state.�

Let us now reexamine Kuramoto’s conjectures in light of
our analytical and numerical results, as summarized in Fig.
7�a�. For a fair comparison, we must assume that g is con-
cave at its center frequency �=0; for the bimodal Lorentzian
�Eq. �2��, this is equivalent to �0 /��1 /	3. �Otherwise g is
unimodal and incoherence bifurcates to partial synchroniza-
tion as K is increased, consistent with Kuramoto’s classic
result as well as the lowest portion of Fig. 7�a�.�

So, restricting our attention from now on to the upper part
of Fig. 7�a�, where �0 /��1 /	3, what actually happens as K
increases? Was Kuramoto right that the bifurcation sequence
is always incoherence→standing wave→partial synchroni-
zation?

No. For �0 /� between 1 /	3 and 1 �meaning the distribu-
tion is just barely bimodal�, incoherence bifurcates directly
to partial synchronization—the “single giant oscillator”
state—without ever passing through an intermediate standing
wave state. In effect, the system still behaves as if it were
unimodal. But there is one new wrinkle: we now see hyster-
esis in the transition between incoherence and partial syn-
chronization, as reflected by the lower bistable region in Fig.
7�a�.

Is there any part of Fig. 7�a� where Kuramoto’s scenario
really does occur? Yes—but it requires that the peaks of g be
sufficiently well separated. Specifically, suppose �0 /�
�1.81. . ., the value at the codimension-2 saddle-node-loop
point where the homoclinic and SNIPER curves meet �i.e.,
point D in Fig. 2�. In this regime everything behaves as
Kuramoto predicted.

An additional subtlety occurs in the intermediate regime
where the peaks of g are neither too far apart nor too close
together. Suppose that 1��0 /��1.81. . .. Here the system
shows a different form of hysteresis. The bifurcations occur

FIG. 6. �a� Bifurcation diagram for the Kuramoto system with a bimodal frequency distribution consisting of two equally weighted
Gaussians. All the features in Fig. 2 are present, but are somewhat distorted. The transcritical �TC� and �degenerate� Hopf curves �HB� were
obtained as described in the Appendix. The dotted lines represent conjectured saddle-node, homoclinic, and SNIPER curves. These are based
on the numerically observed bifurcations shown in �b�, which is a magnification of the central region of �a�. The symbols represent
saddle-node �circles�, homoclinic �triangles�, and SNIPER �squares� bifurcations.
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in the sequence that Kuramoto guessed as K increases, but
not on the return path. Instead, the system skips the standing
wave state and dissolves directly from partial synchroniza-
tion to incoherence as K is decreased.

Finally we note that Kuramoto’s conjectured formula Kc
=2 /�g��max� is incorrect, although it becomes asymptoti-
cally valid in the limit of widely separated peaks. Specifi-
cally, his prediction is equivalent to Kc=8� / �1
+	1+ �� /�0�2��4��1− 1

4 �� /�0�2�, which approaches the
correct result Kc=4� as �0 /�→�.

B. Crawford’s center manifold analysis

Crawford �10� obtained the first mathematical results for
the system studied in this paper. Using center manifold
theory, he calculated the weakly nonlinear behavior of the
infinite-dimensional system in the neighborhood of the inco-
herent state. From this he derived the stability boundary of
incoherence. His analysis also included the effects of white
noise in the governing equations.

Figure 7�b�, reproduced from Fig. 4 in Ref. �10�, summa-
rizes Crawford’s findings. Here D is the noise strength �note:
our analysis is limited to D=0�, � is the width of the Lorent-
zians �equivalent to � in our notation�, and ��0 are the
center frequencies of the Lorentzians �as here�. The dashed
line in Fig. 7�b� shows Crawford’s schematic depiction of the
unknown stability boundary between the standing waves and
the partially synchronized state. He suggested a strategy for
calculating this boundary, and highlighted it as an open prob-
lem, writing in the figure caption, “the precise nature and

location of this boundary have not been determined.” Our
results, summarized in Figs. 2 and Fig. 7�a�, now fill in the
parts that were missing from Crawford’s analysis.

C. Stochastic model of Bonilla et al.

In a series of papers �see �6� for a review�, Bonilla and his
colleagues have explored what happens if one replaces the
Lorentzians in the frequency distribution with � functions,
and adds white noise to the governing equations. The result-
ing system can be viewed as a stochastic counterpart of the
model studied here; in effect, the noise blurs the � functions
into bell-shaped distributions analogous to Lorentzians or
Guassians. And indeed, the system shows much of the same
phenomenology as seen here: incoherence, partially synchro-
nized states, standing waves, and bistability �6�.

However, a complete bifurcation diagram analogous to
Fig. 2 has not yet been worked out for this model. The dif-
ficulty is that no counterpart of the ansatz �11� has been
found; the stochastic problem is governed by a second-order
Fokker-Planck equation, not a first-order continuity equation,
and the Ott-Antonsen ansatz �11� no longer works in this
case. Perhaps there is some way to generalize the ansatz
appropriately so as to reduce the stochastic model to a low-
dimensional system, but for now this remains an open prob-
lem.

D. Directions for future research

There are several other questions suggested by the work
described here.

FIG. 7. Stability diagram. �a� Results from our analysis, showing the long-term behavior in each region of parameter space. White,
incoherence; dark gray, partial synchronization; light gray, standing wave �limit cycles�; vertical lines, coexistence of incoherent and partially
synchronized states; horizontal lines, coexistence of partial synchronization and standing waves. �b� Crawford’s bifurcation diagram in �10�.
In our study there is no noise, and so the diffusion is D=0. Crawford’s � corresponds to our �. I, Incoherent states, PS, partially
synchronized; SW, standing wave; equivalent to what we describe as two counter-rotating groups of oscillators. �Reprinted from �10� with
permission of Springer-Verlag.�
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1. Validity of reduction method

The most important open problem is to clarify the scope
and limits of the Ott-Antonsen method used in Sec. II B.
Under what conditions is it valid to assume that the infinite-
dimensional Kuramoto model can be replaced by the low-
dimensional dynamical system implied by the Ott-Antonsen
ansatz? Or to ask it another way, when do all the attractors of
the infinite-dimensional system lie in the low-dimensional
invariant manifold corresponding to this ansatz?

This question has now become particularly pressing, be-
cause two counterexamples have recently come to light in
which the Ott-Antonsen method �11� gives an incomplete
account of the full system’s dynamics. When the method was
applied to the problem of chimera states for two interacting
populations of identical phase oscillators, it predicted only
stationary and periodic chimeras �14�, whereas subsequent
numerical experiments revealed that quasiperiodic chimeras
can also exist and be stable �15�. Likewise, chaotic states are
known to emerge from a wide class of initial conditions for
series arrays of identical overdamped Josephson junctions
coupled through a resistive load �16,17�. Yet the Ott-
Antonsen ansatz cannot account for these chaotic states, be-
cause the reduced ODE system turns out to be only two
dimensional �18,19�.

What makes this all the more puzzling is that the method
works so well in other cases. It seems to give a full inventory
of the attractors for the bimodal Kuramoto model studied
here, as well as for the unimodal Kuramoto model in its
original form �2,3,11� or with external periodic forcing
�11,12�.

So we are left in the unsatisfying position of not knowing
when the method works, or why. In some cases it �appar-
ently� captures all the attractors, while in other cases it does
not. How does one make sense of all this?

A possible clue is that in all the cases where the method
has so far been successful, the individual oscillators were
chosen to have randomly distributed frequencies; whereas in
the cases where it failed, the oscillators were identical. Per-
haps the mixing induced by frequency dispersion is some-
how relevant here?

A resolution of these issues may come from a new ana-
lytical approach. Pikovsky and Rosenblum �15� and Mirollo,
Marvel, and Strogatz �18� have independently shown how to
place the Ott-Antonsen ansatz �11� in a more general math-
ematical framework by relating it to the group of Mobius
transformations �18,20� or, equivalently, to a trigonometric
transformation �15� originally introduced in the study of Jo-
sephson arrays �17�. This approach includes the Ott-
Antonsen ansatz as a special case, but is more powerful in
the sense that it provably captures all the dynamics of the
full system, and it works for any N, not just in the infinite-N
limit. The drawback is that the analysis becomes more com-
plicated. It remains to be seen what conclusions can be
drawn—and, perhaps, what long-standing problems can be
solved—when this new approach is unleashed on the Kura-
moto model and its many relatives.

Even in those instances where the Ott-Antonsen ansatz
does not account for all the attractors of the full system, it
can still provide useful information, for instance by giving at

least some of the attractors and by easing the calculation of
them. Moreover, the transient evolution from initial condi-
tions off the Ott-Antonsen invariant manifold can yield in-
teresting phenomena not captured by the ansatz, as discussed
in Appendix C of �21�.

2. Asymmetric bimodal distributions

Now we return to the specific problem of the bimodal
Kuramoto model: What happens if the humps in the bimodal
distribution have unequal weights? The analysis could pro-
ceed as in this paper, up to the point where we assumed
symmetry between the two subpopulations. One would ex-
pect new phenomena such as traveling waves to arise be-
cause of the broken symmetry.

3. Finite-size effects

We have focused here exclusively on the infinite-N limit
of the Kuramoto model. What happens when the number of
oscillators is reduced? How do finite-size effects influence
the bifurcation diagram? An analysis along the lines of
�22,23� could be fruitful for investigating these questions.

4. Comparison with experiment

Finally, it would be interesting to test some of these the-
oretical ideas in real systems. One promising candidate is the
electrochemical oscillator system studied by Hudson and col-
leagues �24�, in which the frequency distribution can be bi-
modal or even multimodal �25�.
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APPENDIX: ALTERNATIVE CALCULATION OF THE
BOUNDARY OF STABILITY FOR THE INCOHERENT

STATE

The system in Eq. �1�, together with the bimodal natural
frequency distribution given in Eq. �2�, can be expressed
using the formulation in �8� as two interacting populations of
oscillators. In this case, each population has a separate
Lorenzian frequency distribution of width � and center fre-
quency at �0 or −�0, and the 2�2 matrix describing the
relative coupling weights �i.e., Eq. �1� in �8�� has 1 /2 in each
entry. By postulating that a small perturbation to the incoher-
ent state grows exponentially as est, and setting s= i� for the
marginally stable state, Eq. �9� of Ref. �8� gives the follow-
ing expression for the critical coupling value K:

K =
2��2 − �2 + �0

2� + i�4���
� + i�

. �A1�

The boundary of stability of the incoherent state is obtained
by requiring that this expression be strictly real. One solution
is obtained for �=0, resulting in K=2��2+�0

2� /�, which is
equivalent to
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�4�

K
− 1�2

+ �4�0
2

K
�2

= 1. �A2�

This is the equation for the semicircle in Fig. 2, correspond-
ing to a transcritical bifurcation of the incoherent state. An-
other solution, obtained by assuming that ��0 in Eq. �A1�
and requiring �0��, is K=4�. This is the equation for the
half line in Fig. 2 corresponding to the degenerate Hopf bi-
furcation of the incoherent state.

If the bimodal natural frequency distribution is given by a
sum of Gaussians of standard deviation � and centers at
��0, then the two-population approach outlined above leads
to the following equation:

K = �	32

�
�F��0 − �

	2�
� − F�− �0 − �

	2�
��−1

, �A3�

where

F�z� =
i

�



−�

� e−t2

z − t
dt �A4�

is known as the Faddeeva function and can be computed
numerically �26�. Once again requiring that K be real, two
branches corresponding to � being equal and not equal to
zero can be obtained. These are the boundaries of stability of
the incoherent state shown in Fig. 6.
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