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Long time evolution of phase oscillator systems
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It is shown, under weak conditions, that the dynamical evolution of large systems of globally
coupled phase oscillators with Lorentzian distributed oscillation frequencies is, in an appropriate
physical sense, time-asymptotically attracted toward a reduced manifold of the system states. This
manifold was previously known and used to facilitate the discovery of attractors and bifurcations of
such systems. The result of this paper establishes that attractors for the order parameter dynamics
obtained by restriction to this reduced manifold are, in fact, the only such attractors of the full
system. Thus all long time dynamical behaviors of the order parameters of these systems can be
obtained by restriction to the reduced manifold. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3136851]

Systems consisting of many coupled phase oscillators
have been used to model diverse situations ranging from
Josephson junction circuits, to circadian rhythms, and to
synchronization of cardiac pacemaker cells. In our previ-
ous work, it was shown that a large class of such models
possess solutions on an invariant manifold M. It has since
proved possible to simply obtain various attractors of the
dynamics on M. A remaining open question is that of
whether such attractors for the dynamics on M are also
attractors for the dynamics of the full system and, if so,
whether all of the attractors of the full system lie on M. In
this paper, we prove, under very general conditions, that,
in an appropriate sense, the answer to these questions is
yes. This result establishes that restriction of consider-
ation to the manifold M can be used as an effective com-
putational and analysis method for obtaining all the typi-
cal, long time dynamical behaviors of these systems.

I. INTRODUCTION

Large systems of coupled phase oscillators with hetero-
geneous frequency distributions are of general interest and
are the essential modeling tools in past analyses of a variety
of interesting situations in physics, chemistry, biology, etc.
Perhaps the simplest and best known such system is the
Kuramoto model,' which treats the synchronization of glo-
bally (all-to-all) coupled phase oscillators for which the cou-
pling between pairs of oscillators appears as the sine of the
phase difference between the oscillators. Examples where
this basic framework has been extended to more complex
situations include Josephson junction circuits,” pedestrian in-
duced oscillation of footbridges,3 “ systems with time-
dependent coupling,5 driven systems describing circadian
rhythm in mammals,®’ the effect of time delay in oscillator
intelractions,&9 the effect of nonunimodal distribution of the
natural frequencies of the phase oscillators,'™"" “communi-
ties” of phase oscillators interacting with multiple other
phase oscillator communities,lz’13 the “chimera” model of
certain mammals that experience sleep with only one of their
two brain hemispheres at a time,l" etc.
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The large number of interesting applications of phase
oscillator models motivates the attempt to find general analy-
sis tools applicable to these models. In this vein, it has re-
cently been shown that, in the continuum limit (i.e., the num-
ber of oscillators approaches infinity), such models possess
solutions on a reduced manifold of system states.” Further-
more, for the case of a Lorentzian distribution of oscillator
frequencies, the dynamics on the reduced manifold is typi-
cally describable by a finite number of ordinary differential
equations. This finding has been utilized to determine attrac-
tors and their bifurcations on the reduced manifold for all the
applications previously mentioned (see Refs. 2, 3, 5,7, 9, 11,
13, and 14). Two basic questions remain: (i) are attractors for
the dynamics restricted to the reduced manifold also attrac-
tors of the full system and (ii) are there attractors of the full
system that do not lie on the reduced manifold? Indications
of results so far are mixed. On the one hand, numerical re-
sults from Refs. 6 and 9, and especially Ref. 11, are consis-
tent with the supposition that all attractors of the full system
lie on the reduced manifold. On the other hand, Pikovsky
and Rosenblum'” and Watanabe and Strogatz16 found long-
time asymptotic behavior that is not on the reduced mani-
fold. The result of our paper is that, in an appropriate sense
(that we specify later in this paper), the reduced manifold is
globally attracting provided that the spread A in the distribu-
tion of oscillator frequencies is nonzero. In particular, for
A>0, all attractors of the full system lie on the reduced
manifold, and all attractors of the dynamics on the reduced
manifold are attractors of the full system. This greatly facili-
tates the task of finding the attractors of the full system since
they now can be sought using the reduced system. The result
also resolves the puzzle posed by the previous results since
the finding of Pikovsky and Rosenblum'® and Watanabe and
Strogatz16 of long time motion not on the reduced manifold
was for the case of A=0, while the opposite indication from
the numerical results in Refs. 6, 9, and 11 treated situations
in which A>0.

© 2009 American Institute of Physics
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Il. FORMULATION

We begin by noting that the models in the class of prob-
lems in which we are interested all involve the determination
of a distribution function F(6,w,t), where 6 is the phase of
an oscillator and o is the natural frequency an oscillator
would have in isolation from the outside world (e.g., from
other oscillators); Fd@dw is the fraction of oscillators at time
t whose phases and natural frequencies lie in the ranges of
[0,0+d0] and [w, w+dw]. Since the natural frequency w of
an oscillator is assumed not to change with time, the mar-
ginal frequency distribution,

2
g(w):f F(0,0,t)d0 (1)
0

is time independent. The key quantity characterizing the
macroscopic behavior of the distribution function F is the
“order parameter” r(r) originally introduced by Kuramoto'
and is defined by

o 21
r(f) = f f F(6,w,0)e”%dbdw. (2)
—» J 0

Since the number of oscillators is conserved, F obeys an
oscillator continuity equation,

o 2 o) =0, 3)

at a0
and for all of the problems previously mentioned (Refs.
2-14), v4(6,1) is expressible in the form,’

1 . , .
vy(0,w,1)=w+ 2—i[H(t)e_“9— H(1)e']. (4)

Equations (3) and (4) constitute an w-dependent partial dif-
ferential equation in the two real variables (6,7) to be solved
subject to an initial condition F(6, ,0). The problem is os-
tensibly complicated by the fact that the time dependence of
the quantity H may, in general (Refs. 1-15), depend on F
through the complex order parameter 7(¢) defined by Eq. (2),
as well as through other nonphase oscillator variables obey-
ing auxiliary dynamical equations, which themselves may2’3
depend on r(z) or (as in Ref. 5) through explicit external time
dependence of system parameters. Here are some examples:
for the classical Kuramoto' problem, H=kr(t), where k is the
strength of the coupling between oscillators; for the circadian
rhythm problem,”’ H=kr(r)+A, where A is a constant re-
flecting the strength of the diurnal drive of the day-night
sunlight cycle, and A might be given an explicit time depen-
dence, A=A(r), to model variation between sunny and
cloudy days; for the case of time delay in the response
of oscillators to other oscillators in the system,&9
H=k[;p(7)r(t—7)dT, where p(7) is the distribution function’
of delays along the links between oscillators; in the cases
treated in Refs. 12 and 13 (communities of oscillators),
Ref. 11 [nonunimodal frequency distribution g(w)], and
Refs. 13 and 14 (the chimera model), there are several dis-
tribution functions, i.e., F and H in Egs. (3) and (4) are
replaced by F,and H, (o=1,2,...,s, where s is the number
of distributions) and each H, is a function of all the order
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parameters ry,r,, ..., in the case of pedestrian induced
oscillation of footbridges,3’4 H=ky(z), where y(z) is the side-
to-side acceleration of the bridge, which obeys a damped
oscillator equation driven by r(z), where r(¢) represents the
effects of the pedestrians.

For a general problem of the type described above, as
the system evolves, H(r) will change self-consistently with z.
We will show in what follows that whatever is the evolution
of H(?), in the long time limit, solutions for the order param-
eter evolution r(¢) [or r,(r)] obey the differential equation
that applies for evolution on the reduced manifold of Ref. 15.
Because the precise time dependence of H(r) will not matter
in the derivation of our result, it suffices to consider H(¢) as
some general function of time without regard to how this
time dependence is determined.

Expanding the distribution F as a Fourier series in 6, we
write F in the form,

g(w)

F(0,w,t)=—"—
(0 0,1) ="

[1+F.(6,0,0)+F_(6,0,0], (5)

F.(8,0,0)= 2 F(w,0e"",

n=1

()

oo

F_(,0,t)= >, Fi(w,0)e™"?.

n=1

We note that [ %”F +df=0 and that, assuming absolute con-
vergence of the Fourier series, the analytic continuation of
F.(F_) into Im(6) > 0(Im(6) <0) has no singularities and de-
cays exponentially to zero as Im(6) — +oo(Im(6) — —). As
will soon become evident, the decomposition of F given by
Eq. (5) is a key step. We note that since F_=F for real
(0, w), it suffices to consider only F,. Substituting Eq. (5)
into Egs. (3) and (4) and projecting the result onto the func-
tion space spanned by the basis functions, e'?,e%? ¢%%, ..
we obtain

OF, d 1 A ‘ 1.
+— +—(He = H* ) |F, p =—H"?. (7
ot ae{[“’ 2 eo)} *} et

As previously noted, our result will not depend on the pre-
cise time dependence of H(t). Thus, whatever is the depen-
dence of H(r), we can formally regard it as given. Adopting
this viewpoint, Eq. (7) is linear in F, with an inhomogeneous
driving term on the right-hand side [namely, %H* exp(i6)].
As such, we can write F, as

F,=F,+F,, (8)

where F, is a homogeneous solution to Eq. (7) and I:"+’ is an
inhomogeneous solution. An inhomogeneous solution is
given by taking the Fourier coefficients of F .’ to be given by
ﬁ/(w,t):[a(w,t)]”, as proposed in Ref. 15. When this an-
satz is used in Eq. (7), it is found that Eq. (7) is indeed
satisfied if a(w,?) satisfies
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023117-3 Long time evolution
da 1
— t+iwa+—(Ha?-H") =0, 9)
Jat 2

which, for each value of w, is an ordinary differential equa-
tion in time f. We note further that, as shown in Ref. 15
|a(w,t)| <1 so that the summation of the Fourier series for

F,’ converges and yields

i0
A, e
F, . (10)

1 - aé'

This form of F .| specifies the reduced manifold found in
Ref. 15. Thus, at long time, F, would tend to ﬁ+' (ie., F
would tend to the reduced manifold) if lim,_., ﬁ+=0.
However, a simple counterexample shows that this cannot

always be true. In particular, if H=0, Eq. (7) has homoge-
neous solutions,

F+ — 2 Anein(ﬁ—wt) (1 1)

for any set {A,} for which this series converges. Since the
magnitude of each term of the summation in Eq. (11) is time
independent (w is real), I:"+ does not go to zero at t— . On
the other hand, we note that, as ¢ increases, the individual
terms, e”(®=“) oscillate more and more rapidly in w. Thus
for any such term

I,= f g(w)Anei”(o_“”)dw

decays exponentially in time for sufficiently smooth g(w).
For example, our subsequent considerations will be for the
case of a Lorentzian frequency distribution,

o=t Ao L L)

Tw*+ A’ 2mi\w—iA w+iA

for which
In:Aneim‘}—nAt’ (13)

which decays exponentially to zero as t— provided that
A >0 [the case A=0 corresponds to g(w) being a delta func-
tion in w]. [We remark that the mean value of w has been
taken to be zero in Eq. (12), but that no generality is lost by
this, as a mean value can be restored by the change in vari-
ables, 0'=0-Qt, o'=w+.] Thus, while we cannot expect

to show that I:“+—>0 as t— oo, Eq. (13) suggests that this may
not be necessary to obtain order parameter dynamics that
tend to the order parameter dynamics that applies on the
reduced manifold. In particular, noting from Egs. (2), (5),
and (6) that

I .
r(t) = —J f F.ge%dbdw, (14)
27T —xJo

what we require is that

lim £,(6,1) =0, (15)

[—0

where
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o0
A

fi6.)=| F 6018 wdo. (16)

—00

In what follows, we will demonstrate that Eq. (15) indeed
holds under very general conditions.

Ill. DEMONSTRATION OF THE MAIN RESULT

To show that Eq. (15) applies, we now assume that the

analytic continuation of F (0, w,1) into Im(w) <0 has no sin-
gularities in Im(w) <0 and approaches zero as Im(w)— —.
To show that this last assumption is a consistent one, let |o|
be very large, |w|> H. Then the homogeneous version of Eq.

(7) for F, is approximately

oF,  OF,
+w =0,
ot a0
which has solutions for its Fourier 6#-components

A

F,~explin(6—- wt)] which go to zero as Im(w) — —c°. [It was
to achieve this that we have introduced the decomposition of
F given by Egs. (5) and (6).] We will further discuss this
analyticity assumption at the end of this paper.

We now specialize to the case of Lorentzian g(w) [Eq.
(12)]. We multiply the homogeneous version of Eq. (7) by
g(w)dw, integrate the result from w=-R to w=+R, analyti-
cally continue into the complex w-plane, close the integra-
tion path with a semicircle of radius R in the lower half

w-plane, and let R — <. Using our assumption that 7, (6, w,?)
is analytic in the lower half w-plane and decays to zero as
Im(w) — -, the integral along the large semicircle ap-
proaches zero as R—, and the integrals from w=-% to
w=+% along the real w-axis may thus be evaluated as the
residue of the enclosed pole of g(w) at w=—iA [see Eq.
(12)]. This yields

YLD g0 =0, (17)
v(6,0) =— i[ A + 2 H(1) - ¢°H* (1)) ], (18)

where f+(0,t)=f7+(0,—iA,t).

We now introduce a conformal transformation of the up-
per half complex #-plane into the unit disk, z=e'’. Equations
(17) and (18) then become

ﬂ%ﬁ+£Wmﬁ@mﬂl (19)
where

0(z,1) = Az + 3(H(1) — 22H* (1)), (20)

Fozn =f(0,0/e". (1)

Noting that Eq. (19) can be written as
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023117-4 E. Ott and T. M. Antonsen

av(z, t)

L) *(Z ) Fen & g, (22)

where d/dt=09/dt+0d/Jz, we can integrate Eq. (22) along
the characteristics of this equation to obtain

folz.1) = £,(Z(2,0),0)exp[ - 7(z,1)], (23)

where

13 =~ ! !
ao(z' 1) ,
n(z,t)=f (—, ) dr',
0 9z 2'=Z(z.t")

and the characteristics are given by the orbit equation,

dZ(z,t")
dt’

=0(Z(z,t'),t") (24)

with the final condition Z(z,f)=z. Thus Z(z,t') for t' <t
represents the location Z of the orbit (z’,’) that winds
up at point z at time #. It is useful to rewrite Eq. (24) by
introducing

Z=pe'®, H=he?

with &, B, p, and ¢ real. The real and imaginary parts of
Eq. (24) then give

d h

d_tp’ =U,=pA+ 5(1 - p’)cos(¢p— B), (25)
d

d—;{)z =——(1+p2)sm(¢ B). (26)

We note from Eq. (25) that when p=1, we have dp/dt'=A
> (). Thus for final conditions on p=1, the orbits backward in
time move into p<1. Thus |Z(z,#')|<1 for |z|=1 and
t' <t [i.e., Z(z,t') is in the unit disk]. We wish to show that

f.(z,1)—0 as t— +%. From Eq. (23) we see that this will be
the case if

lim Re[ 7(z,1)] = + .

(00
In order to show this, we first note that the real part of
ov(z',t")/ 97" is simply one half the divergence of the two
dimensional flow V=0,(p,$)py+04(p,P)dy [Where 7, and
0, are given by Egs. (25) and (26), and p, and ¢, are unit
vectors in the p and ¢ directions], i.e.,

a7t
Re(—v(z,’ )>
Jz

Equation (27) is most easily demonstrated in rectangular co-
ordinates: z'=x+iy, 0(z",t")=0,(x,y,t")+i0,(x,y,t"), where
Uy, Dy x, and y are real. Then Eq. (27) immediately follows
by setting V=0,X9+0,yy, and using the Cauchy-Riemann
condition, &17x/8x=(917y/3y, in the expression for the diver-
gence in rectangular coordinates, V-V=40,/dx+d0,/ dy. Now
evaluating V-¥ in polar coordinates (p, ¢), we have

1
==V .v. (27)
2'=Z(z.t") 2

Chaos 19, 023117 (2009)

V.v= ;;@ w~;j 2AA—hpcos(d-B)]. (28)

Solving Eq. (28)for i cos(¢—B) in terms of V-¥ and insert-
ing the result in Eq. (25) for dp/dt’, we obtain after some
rearrangement

ao(z',t'
Re(—U(Z, )>
Jz

~ 1+p%zt") d
_A—l_ pET 1n[1— p2(z,1t))]. (29)

Inserting Eq. (29) into the integral for 7(z,f) and choosing a
fixed reference time 7 satisfying 0 <7 <t, we have

Re[7(z,1)] = J (_&v s ,t )) dr'
72'=Z(z,t")

ol [1—p2(z,t—T)}
L= G0

t—Tl 2 ,t'
+A f Lpar) (30)

o 1 —PZ(Z,Z')

2'=Z(z,t")

We are interested in final (¢ =¢) conditions on the unit circle,
Z(z,f)=z=¢'? for 6 real, and their continuation into the unit
disk |z| =1, corresponding to p=1 at the final time ¢’ =¢. For
p sufficiently near one, Eq. (25) shows that dp/dt’ = A. Thus
by the continuity of the right-hand side of Eq. (25), there is
an annulus in the Z-plane, 1=p=p,, in which dp/dt' >0,
implying that as ¢’ is reduced from ¢ (i.e., t—t' is increased),
p moves uniformly from p=1 at time ¢ to smaller values.
Thus any final point in the annulus eventually enters the disk
p<po<1 and never leaves it."” We can therefore choose the
time 7 such that for all final conditions |Z(z,#)|=|z| =1, we
have

p(Z,t,)<p(Z,t—T)<p0<l, (31)

where the first inequality applies for 0=t <r-T. We
consider T to be held fixed, and we ask how 7(z,f) behaves
as t— +o. By Eq. (28) the integrand in the first of the
three terms of Eq. (30)) is bounded, and, since the inte-
gration range in ' (namely, 7) for this term is fixed, we
conclude that the first term is bounded. By Eq. (31) the sec-
ond term in Eq. (30) is also bounded. Again by Eq. (31) the
integrand of the third term of Eq. (30) is positive and is
greater than 1. Thus the third term exceeds (r—T)A. Hence
Re[ 7(z,t)]— +o for t— +o0, if A>0, thus demonstrating
that the exponential factor in Eq. (23) goes to O for large
time."® We therefore conclude from Egs. (30) and (23) that
Eq. (15) is satisfied if A>0, which is the desired result.

In particular, at large ¢ the order parameter will approach
the quantity [~ a(w,?)g(w)dw, where a(w,t) evolves by
Eq. (9). This implies that r(¢) will satisfy the differential
equation,

dr(r)

o T+ [H(r)rz(r) H'(1)]=0, (32)

which follows from multiplying Eq. (9) by g(w)dw, integrat-
ing from w=-% to w=+2 and, as done previously, using the
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023117-5 Long time evolution

residue method to evaluate the integrals. Hence, for A>0,
the long time dynamics of the order parameter r(f) is gov-
erned by the ordinary differential equation [Eq. (32) and Ref.
15] that describes its dynamics for distribution functions F
on the reduced manifold. This is our main result.

IV. DISCUSSION

The principal conditions for the applicability of our re-
sult are that the initial condition is such that, when F,(6, w,1)
is continued into the complex w-plane, it is analytic in
Im(w) <0 and decays to zero as Im(w)——. As discussed
in Ref. 15, if these conditions are satisfied initially, then they
are also satisfied for all #>0. What happens if the condition
at Im(w) —— is not satisfied initially? Here, a simple
examplelg may be instructive. Say the initial condition on F,
has a component exp(inf+iyw) with y real and positive.
This initial condition violates our assumption of decay to
zero as Im(w) — —o. However, use of this initial condition in
Egs. (3) and (4) with |w|>|H| yields the solution exp(inf
+i(y-1f)w), and, for large enough time, 7> v, the result sat-
isfies the required condition that it approaches zero as
Im(w)—-»."" Thus, even if our desired condition at
Im(w) — —°° is not satisfied initially, in many cases, the result
that the long time dynamics of r(f) is described by Eq. (32)
still applies.

We now connect our result with the concept of an iner-
tial manifold. An inertial manifold M with respect to a dis-
tance metric p satisfies the condition that, for any initial
condition in the state space, the subsequent system evolution
is such that the distance between the evolved orbit and the
manifold M as measured by the metric p approaches zero as
t— +o. What we have shown in this paper is that, in the
space of distribution functions F(6,w,), our reduced mani-
fold [Eq. (10)] is inertial with respect to the proper distance
metric u. In particular, this is so if we take the distance
between two distribution functions F(6, w,?) and F,(60,w,?)
to be defined by

o - 2 172

w(Fy,F) = j (F\ - Fy)glw)dw | do . (33)

0 —o0

[For F; not on the reduced manifold M, the distance from F,
to M is u(F,,F,) minimized over all F, on M.] Note that, by
this choice of distance metric, the problem associated with
the example of Eq. (11) is avoided.

Finally, we remark that, while our result is for the special
case of a Lorentzian distribution of oscillator frequencies
[Eq. (12)], we believe that this restriction does not greatly
limit the usefulness of the resulting formulations for discov-
ering typical system behavior. Indeed, past numerical
experiments  comparing results obtained using Lorentzian
g(w) and using Gaussian g(w) were found to yield qualita-
tively identical bifurcation structures.
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