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Lévy Flights in Fluid Flows with no Kolmogorov-Arnold-Moser Surfaces
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We investigate the Lévy flights observed experimentally in the transport of tracers in a temporally
irregular flow that has no Kolmogorov-Arnold-Moser surfaces, and show that the Lévy flights are due
to the sticking of the tracers near the walls. The tracer is found to spread superdiffusively with an
exponentr = 3/2, in reasonable agreement with the experiments. [S0031-9007(97)03229-8]

PACS numbers: 47.52.+j, 05.40.+], 05.45.+b, 05.60.+w

A random walk where the distribution of the individual explanation for the superdiffusion is the mechanism of
step sizes has a power law tail and an infinite variance isticking to KAM surfaces [4]. In the other regime,
called aLévy flight In contrast to ordinary diffusive pro- the flow is temporally irregular but spatially smooth.
cesses, the growth of the variangé(r) of an ensemble of As discussed subsequently, in a temporally irregular
random walkers that undergo Lévy flights cands®ma- flow, there can be no KAM surfaces. Nevertheless,
lous, so thato?(r) ~ t¥, with v # 1. The caser < 1is  superdiffusion is still observed with an exponent=
called subdiffusiveand the case > 1 is calledsuperdif- 1.55 = 0.25 [8]. In this regime, the distribution of
fusive A question of considerable interest is the extentresidence times in the jets decays algebraically with an
to which the Lévy flights have a role in the description of exponentu = 2.6, demonstrating that the tracers undergo
physical phenomena [1,2]. Lévy flights. Since there are no KAM surfaces in this

One setting in which Lévy flights occur is the anoma-flow, the mechanism leading to Lévy flights remains to be
lous diffusion seen in transport by two dimensional (2D)resolved. Our purpose in this Letter is to analyze a model
area preserving maps and Hamiltonian systems. In thes# the experimental flow and show that the superdiffusive
systems, it is observed that chaotic orbits stick near theehavior can be due to the “sticking” of the tracers near
KAM (Kolmogorov-Arnold-Moser) boundary between the the walls of the flow where the flow satisfies a no-slip
chaotic and regular regions, and the probability distributiorboundary condition.
of the sticking times has a power law tail [3]. This power We model the experimental flow by an incompres-
law sticking can lead to superdiffusive behavior [4]. Pas=sible, temporally irregular, and spatially smooth flow
sive particle advection by an incompressible 2D fluid flowin a straight channel<{~ < x < o« and |y| = a) with
is Hamiltonian and it is therefore expected that 2D flowsstationary walls ay = *=a. In terms of the experiment,
with coexisting regular (KAM) regions and chaotic regionsx is analogous to the azimuthal coordinate ands
will lead to anomalous transport of passive tracers [5]. analogous to the radial coordinate. The flow is given by a

The transport of a passive tracer in various fluid flowtime dependent velocity field = (v, (x,y,1),v,(x,y,1))
regimes has been studied in a recent series of experimerits the frame in which the walls are stationary. The
[6—9]. In these experiments, fluid is pumped through artemporal variations have a correlation timg which is
annular tank which is rotated. This sets up an essentiallthe coherence time of the spatial structures in the flow.
2D flow with vortices in the interior of the tank. As The time averaged flow) at each point is longitudinal
observed in this frame, the flow exhibits jets in the regiongalong the x direction) so that(v(x,y,?)) = (v(y),0)
near the (moving) walls. The trajectories of neutrally[10]. The time averaged velocity is assumed to have
buoyant tracers immersed in the fluid are tracked byionzero shear, so thai(y) is not a constant across
a video camera corotating with the average speed dhe channel. The mixing transverse to the average flow
the vortices. The variance of the azimuthal coordinatdy direction) is entirely due to the temporally irregular
of the tracers and the distribution of the times that avariations in the velocity fieldv. Dispersion in thex
tracer spends in the jets and the vortices are measureatirection results from the interplay between the mixing
experimentally. in the y direction and the advection in thedirection by

Depending on external parameters of the experimenthe spatially inhomogenous mean flow. This problem is
various flow regimes can be accessed, two of whictanalogous to that of the longitudinal dispersion of a tracer
display superdiffusion of tracers. In the first such regimejn a steady shear flow originally studied by Taylor [11],
the flow is time periodic. In this case, a stroboscopicin which case the mixing across the streamlines is due to
map of the tracer positions at the temporal period of themicroscopic diffusion. In this latter case, the transport in
flow yields a 2D area preserving map, and an availabléhe longitudinal direction is normal diffusiom, = 1.
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The key feature of our model is the hypothesis thateq. (4) with these boundary conditions is carried out in
there is an appreciable region near the walls where thi2]. It is found thato?(r) ~ ¥ with the anomalous
longitudinal velocity goes to zero at the wall (no-slip) diffusion exponentr = 3/2. We also obtain that the
approximately linearly with distance from the wall, i.e., distribution of the times the tracers are in the central
neary = *a we have thaw, is approximately given by region of the channdl y| < b) decays exponentially and
the first term in its Taylor series aboly| = a, v, = the distribution of times when the tracers are near the
(a — |y f=(x,1), where f+(x,t) are spatially smooth walls (b < |y| < a) decays algebraically as # with
functions that vary on the time scate. Incompressibility w« = 5/2 (independent of the choice ).
implies As previously remarked, diffusion is a good model

5 for the transport near the boundaries but not in the
vy = [af=(x,1)/0x](a — |y]) (1) interior of the flow. In order to verify that the anomalous

near the walls so that the velocity transverse to the waffliffusion is due to the sticking of the tracers near the

goes to zero quadratically in the distance from the wallsWalls and that the results obtained from the diffusion

At a given positionx, v, is temporally irregular and for Model in Eq. (4) are valid, we numerically analyze a

time scales longer than., a particle near a wall executes model temporally irregular incompressible flow with the

a random walk in the transverse direction. Near the walls2PPropriate boundary conditions. o _
This can be done in a computationally efficient way if

we can model the transport in the transverse direction _ ) o P
by diffusion with a diffusion coefficientd = (v2)r,. W€ ¢an obtain mapg’,: (x,y) — (x',y’), where (x',y’)
Equation (1) implies are the coordinates 'at tinte= n + 1 of a fluid element
that was at(x, y) at timer = n, so that we do not have
D(y) ~ (a — | yD* (2) to numerically integrate the trajectories of all the tracer

o o particles in a flow. For the numerical simulation, we take
The diffusion coefficientD(y) approaches zero very , _ landr, < 1.

rapidly near the Wa_IIs. Co_nsequently, tracers that get ngte that since the flow(x, y, 1) is temporally irregu-
c_Iose to the Wa||S.WI|| remain near the walls .for a Iong lar (in particular, not periodic), the time dependencasof
time _before they diffuse away. We refer to this behaworin the intervaln = 1 < (n + 1) is different from that in
as sticking to the walls. _theinterval(n + 1) = ¢ < (n + 2). Therefore, the maps
We model the d_|str|but|on of the tracers by a densitysor the positions through the two intervals (i.€,, and
p(x,y,1) representing the number of tracer particles perr .y are different and this implies that KAM surfaces (or
unit area in a small area element containiagy) at  jndeed any invariant sets) are absent, since a set invariant
time . The tracer fluxI' is given byI" = pv, where  nqerr, will not be invariant undef, ;. Since we pre-
v is the time dependent flow velocity. The averageg me that the time dependencewds, y, 7) is chaotic, we
velocity is longitudinal and its contribution to the flux is ,qqel the sequence of mafi,} as varying with in a
v(y)p(x,y,t)é,. We model the mixing in the transverse g;chastic manner [13].
direc_tic_)n as diffusio_n ir_wy with a y dependent diffu;ior_1 The mapT, is generated by an incompressible flow
coefficient D(y) satisfying (2) near the walls. This iS it no-slip boundary conditions. Therefore, it is required
a good mpdel for the transport in the flow near theiy nave the following properties: (1) The map should
walls, but it dpes_not accurately reflect the transport'oiDe area preserving and (2) it should have no-slip, i.e., if
tracer in the interior of the flow (because the step size, _ 1 To(x,y) = (x,y)

— (212 i = falds S , ,
VD7, = ()7 can beO(a) in the central channel ~ e exploit the analogy between 2D incompressible
region). However, this should not matter for our SC<';1I|r_1gf_|OWS and Hamiltonian systems [14] to obtain the se-
results because the anomalous transport that we obtain &Rience of mapgT,}. A Hamiltonian flow generates a
due Fo thg sticking of the traceys near the Wa}lls (W'e returR s nonical transformatiomnd the mayT’, is consequently
to this point subsequently). With these considerations, Wg .anonical transformation. Canonical transformations
write the fluxI" as can be obtained using the techniquegeerating func-

A ap(x,y,1) . tions If F,(x',y) is an arbitrary function of the coordi-

I'=v(y)plx,y,t)é; — D(y) Ty o (3)  natex’ attimen + 1 and the coordinate at time n, the
_ o map7,(x,y) — (x’,y") defined implicitly by
The conservation of the total amount of tracer implies that , , , ,

x = aF,(x",y)/dy, ¥y = aF,(x",y)/ox" ()

d d d d
L v.r==- [D(Y)—p} ~v(»L. (4 is a canonical transformation and automatically area
ot ay ay dax : PR ' .

preserving. Herex’ is implicitly defined in terms of
The flow is confined by the walls to the regidm| < a x andy, and we need to invert the equation ferin
and we have no-flux in the direction as boundary terms ofx’ and y to obtain the map(x,y) — (x',y').
conditions aty = *a. We also impose the boundary The map T, for our model flow is the composition
conditions p(x,y,t) — 0 as x — *o. An analysis of of the maps obtained from the generating functions
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Fo(x',y) = x'y — My — y*/3) and Fy(x",y) = xy +
p/Qm)cod2m(x’ + r,)](1 — y?)?. The map generated
by F, gives the time averaged longitudinal flow,, =

x, + A(1 — y2) and the map generated b, gives a
temporally irregular velocity field modulated by the time
dependent quantities,. T, is defined implicitly by

Xp = Xp+1 — (1 — y%)
2p
XA+ —y,cof27(xp41 + )], (6)
T

=Yn — P(l - y;zz)z Sir{z’n-(xnﬁ-l + rn)]-

Note that ify, = *1, T, satisfies the no-slip condition
X,+1 = X,. Equations (6) constitute the numerical model
we use to study the transport of tracer in a bounde
temporally irregular flow. Our reason for using the form
of the generating function in (5) is that it allows us
to impose the boundary conditions exactly (albeit at th
expense of making the map implicit).

In our simulations, we set = 1, p = 0.3 and choose
r, on each time step to be a random sample uniforml
distributed in[0, 1). With this choice the correlation time
of the flow is of the order of one time step. We invert the
equation forx, in terms ofx,+; andy, using Newton's
method. We follow 22 000 tracer particles that are initially
uniformly distributed in the region-0.5 < x < 0.5 and
—1 <y < 1. The mean positiolx, is the average over
i of x,(i), wherex, (i) is thex coordinate of théth tracer
particle at the time step. The variancer? of the tracer
distribution is then calculated as

1 N
N —1 D [xai)

i=1

Yn+1

— XL 7)
Figure 1 is a log-log plot of the variance of the tracer
distribution at different time steps. The inset shows th
slope of the plot of the variance. The slope is initially
nearv = 2 but then crosses over to a plateau near
1.5 for large times. (Note the logarithmic time scale in
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FIG. 1. The variance of the tracer distribution for the numer-
ical model flow. The inset shows the slope of the plot of the
variance.
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the inset of Fig. 1 implying that is near 1.5 most of the
time.)

We have also tested the predictions that the distribution
of lifetimes in the central region is exponential and in the
region near the walls decays algebraically. We choose a
threshold velocityvy, = 2/3 (the average velocity of the
transverse flow) and a time intervB} = 10. We assign
a tracer to state 1 (the central region) in the time interval
nTy =t < (n + 1)T, if the average velocity ovefl,
steps[x((n + 1)Ty) — x(nTy)]/To > va, and to state 2
otherwise. (The basic result is independentgf)

Figure 2 shows a numerically obtained distribution
of the lifetimes in state 1. The solid line is a fit.
The distribution of lifetimes is exponential with a time

onstant which is given by the slope of the straight line in
he linear-log plot.

Figure 3 shows a numerically obtained distribution of
the lifetimes for the events that correspond to the sticking

hear the walls in the numerical model. The solid line has

the theoretically predicted long-time, power law slope of
—5/2 = —u. The data are roughly consistent with the

Xheoretical prediction in the long-time limit.

In Refs. [7,8], analysis of the data from the temporally
irregular flow regime yields a value of the anomalous diffu-
sion exponent o = 1.55 = 0.25 [8] in good agreement
with our theoretical result of = 3/2. Their experimen-
tal exponent for state 2 (motion near the wallsjis= 2.6
[8] in agreement with our theoretical resplt= 5/2 [15].

For state 1, our theoretical model has exponential decay of
the lifetime distribution. In Ref. [8] the authors comment
that the distribution is “perhaps power law at intermedi-
ate times with crossover to exponential behavior at longer
times but the data is inconclusive.”

In conclusion, we have studied the longitudinal dis-
ersion of a passive scalar in a bounded temporally ir-
egular shear flow with no KAM surfaces in this Letter.

We find that Lévy flights and superdiffusive behavior can
arise as a consequence of tracers sticking to the walls due
to the boundary conditions of the flow. We obtain an

F
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FIG. 2. The distribution of lifetimes when the tracers are not
stuck to the walls. The solid line is a fit.
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