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The role of chaotic orbits in the determination of power spectra
of passive scalars

Thomas M. Antonsen, Jr., Zhencan Fan, Edward Ott, and E. Garcia-Lopez
University of Maryland, College Park, Maryland 20742

(Received 29 June 1995; accepted 23 May 1996

This paper relates properties of the power spectrum of a passive scalar convected by a chaotic fluid
flow to the distribution of finite time Lyapunov exponents. The properties considered include the
early time evolution of the power spectrum, the late time exponential decay of the scalar variance,
and the wave number dependence of the power spectrum in the presence of a source of scalar
variance. Theoretical predictions are tested by comparing full numerical solutions of the relevant
partial differential equation to solutions of a model system which includes diffusion and involves
integrations along the fluid orbits only. The model system is shown to give results in close
agreement with the numerical solutions of the full problem. This suggests the possible general utility
of the model equations for a broad range of problems involving passive scalar convection.
[S1070-663(196)01611-X] © 1996 American Institute of Physics.

I. INTRODUCTION Specifically, we will explore the relationship of the time
) . evolution of the power spectrum of the passive scalar to the
The properties of scalar quantitiés.g., temperature or giseripution of the finite time Lyapunov exponents of the

the concentration of an impuritythat are passively con- g4y previous work along these lines appears in Refs. 2 and
vected by an incompressible fluid flow have been of interesg |\ hich we discuss subsequently.

for many years. The evolution equation for the passive sca- The power spectrum of the passive scalar is the Fourier

lar is transform of the two point correlation function,
d
d_f:Dv2¢+s(x,t), 1 C(r, 0 =($(x+1,0B(x1), 3

where the average is taken over thelomain in which Eq.

where the time derivative i) is taken following the mo- (1) is solved. The power spectrufi(k,t) is then defined

tion of the fluid,

d"k’ —
F(k,t)=f S(k—|k')C(k’,1), 4

J J -
:_+V(X!t)5! (27T)n

dt ot
wherev(x,t) is the fluid velocity. The quantit{d represents
the microscopic diffusion coefficient for the scalar, and —
S(x,t) represents a source of the scalar. Here it is assumed C(k'vt):f drC(r,tyexd —ik’-r], ©)
that the fluid motion is incompressibl&,v(x,t)=0 and is
determined by external dynami¢such as stirring that the is the Fourier transform of the correlation function amds
sourceS(x,t) is prescribed, and that neither the source northe dimensionality of the domain. The present paper will
the fluid flow are affected by the scalér consider the two dimensional case exclusively.

In the absence of a source and diffusion, FY. states The chaotic orbits of the flow can be characterized by
that the value of the scalap is constant in a moving fluid their finite time Lyapunov exponents. These may be defined
element. The trajectory of the fluid element is given by the@s follows. Consider two trajectories which initially are sepa-

where

equation, rated by the vector, &x+r,t) and &x,t). Consideringr
dEx.t) to be a differential vector, the differential separation
X, _ B e ) k
o =V(£1) 7) S&(x,t) = &(x+r,t) — &(x,t) satisfies the linear equation,
d
with the initial condition g 05X =68 Vv(&(x.1),0), (6)
&x,t)=x.

with initial condition,
Thus, &(x,t) is the position at timd of the fluid element B
which is located atx at timet=0. The properties of the SE(x,t)=r.

trajectories of the fluid elements can be expected to affect theor chaotic flows the separatiaf typically diverges expo-

solutions for the scalag both when diffusion is negligible nentially in time, and the net rate of exponentiation over the
(D=0) and when it is not. The purpose of this paper is totime interval from 0 tot,

explore this relationship in the case in which the trajectories o8
given by Eq.(2) are chaotic in the sense that nearby fluid _ E 23
elements diverge exponentially from each othér. h(x.t) tlog [r| ™
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is the finite time Lyapunov exponent. Defined in this way, 0
the exponenth, depends on the orientation of the vector

and on the initial coordinateg, as well as on the time, In 2k

the limit t—oo almost every initial condition in a given cha-

otic region yields the same value lofwhich is the Lyapunov nClt) s
T

exponent and is denoted thy

h=lim h(x,t). 8+

t—oo

.. . . . . . . .100 16 2‘0 3]0 4’0 50
For finite times there is a distribution of values lofwhich /T

may be characterized by a probability distributiBh,t),
WhereP(h,t_)dh_ is the probability thajh(x’t)_ IS betweerh_ FIG. 1. A plot of InC(t) versust/T. The solid curve is the result of a full
andh+dh, if x is chosen randomly with uniform probability numerical solution(Fouried of Eq. (1). The diamonds correspond to the
in the relevant ergodic fluid region. Later in the paper weRKS model introduced in Sec. II.
shall relate various properties of the power spectrum to the
probability distributionP (h,t).

To verify our predictions we will compare them with

; ; i At . imU . .
Rgvn\:t\a/r(lzatl)'solunons of Ed1) for a specific realization of the bam(t)+ - {nf(t)[expify) dnm_1teXH—i61) Prmr1l

f 10 n—1m —i6 n+im
Vixt) = U[ef1(t)cos 2mmy/L+ 0y(1)) +mfy(t)[expi02) b 1m+ X —i62) ni1ml}

2 2
+e,f (t)cog 2mx/L+ 6,(1))], (8) =—<T7T) D(M?+n?) épmt Sams 9)

which is periodic inx andy with periodL. The time depen- Wwhere S,y is the Fourier coefficient of the sour& (Note
dent functionsf, and f, are defined as follows. Both are that(9) involves coupling of i,m) only to the neighboring

periodic with periodT, Fourier modesif,m=1) and (=1,m).) Equation(9) is in-
tegrated numerically for a finite set of values mfim. The
1 0<t<T/2 power spectrunt(k,t) can be related to the Fourier ampli-
= tudes b
fa(V [0 TIR<t<T udesdnm by
= 2 —
and F(k) =2 |dnnl® (k= kom), (10
where
00 [O 0<t<T/2
2(t)= 2
1 T/l2<t<T. knm:T”(n2+m2)1/2_

The flowv is in thex direction during the first half of each
period and in they direction during the second half. The
anglesf, and @, take on different values in each time period.
If all the angles#; and 6, are set to zero then the phase Ldxdy , , (=
space flow is periodic in time, and, depending on the initialC(t :f [z ¢ (x,y,t)=% | pnm(t)]*= fo F(k,t)dk,
value ofx, solutions of Eq.(2) yield either chaotic or non-
chaotic orbits. If the angles; and 6, are constant in each Versus time, normalized to the peridd The parameters for
periodnT<t<(M+1)T, but vary randomly from period to this run wereS,, = 0, e=UT/L=05,q = (27/L)°DT
period, then all the orbits are chaofice., h>0). Examples = 0.00000125|m|, |n|<500, andé;(t) and 6,(t) were se-
of each case will be shown. The evolution of a passive scaldected randomly in each time interval with uniform probabil-
in this flow has also been considered in Ref. 4. ity ~distributon between 0 and 2 Initially,

To solve Eq(7) with the given flow velocity we assume #(X,Y,0)=2{cog2m(x~y)/L]-cog2n(x+y)/L];. Figure 1
the scalar has the same spatial periodicity as the flow anshows that there is an initial period of time lasting about 8
express the scalap in terms of its Fourier series periods during which the scalar variance is constant, and

then a transition to a late time behavior where the scalar

The results of a sample run are shown in Fig. 1 where
we have plotted the log of the scalar variar@g),

o variance decays exponentially in time at a fixed rate. The rate
Tl . .
¢(x,y)=2 ¢,mn(t)ex;{—(nx+ my)}. of change of scalar variance can be derived from @&gor
mn - Eq. (9),
. . . . dC(t)
We then obtain the following evolution equation for _ _qu (N2+m2)| b 2. (11)
¢nm(t)a dt nm
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During the initial period of time the Fourier spectrum Now imagine that we initially divide the fluid into many
|#nml? is concentrated at sufficiently small wave numberssmall areas. We consider the case in which the initial condi-
such that, owing to the small value of diffusion tion is in the form of a modulated sinusoidal function»gf
(g=0.00000125), dissipation of the variance is negligible.that is, ¢(x,0)=A(x)sin(*k;(x)dx+ 8(x)) where k;(x),

We refer to this phase as the initial transient and we willA(x), and 8(x) vary on the scale of the flow which is much
discuss its properties in Sec. Il. Later, the variance dampkarger than|k;| ". To each area we can then assign a mean
exponentially as if the scalar has formed an eigenfunctionvave vectork. As the scalar is advected by the flow the
with a fixed rate of decay. This phase has been studied renean value of the scalar in each evolving fluid element is
cently by PierrehumbeftWe will relate the properties of the constant. Equatiofil3) then suggests that the wave number
scalar to the chaotic orbits during this late time phase in Se@volves according to

[ll. In particular, we show that the power spectrufik,t)

factorizes into the product exp@t)M(yDk) where the func- —8&-k=0. (14)

tion M and the decay rate depend only on the chaotic dt

dynamics. Section IV will discuss the modifications to our yUsing Eqs.(6) and (14) the evolution equation fok is

results that occur when the phase space has both chaotic and
integrable trajectories. Finally, Sec. V will relate the behav- Bl
ior of the power spectrum of the scalar during the initial dt
transient to that predicted by Batchelor’s fawhich applies

to cases in which a source is present.

Throughout we will present detailed comparison be-
tween the solutions of the full partial differential equation
(Eq. (1)), with a model systentEgs. (15) and(21)), which
includes diffusion and is based on integration along fluid
element orbits. Solution of the model system is much faster ¢
and more economical as compared to solution of the full  ;J=0. (16)
problem, yet the model system yields results in close agree-
ment with those for the full problem. This suggests the genGenerally, 5§; and 6§, can be chosen such that 8, is
eral utility of the model system for passive scalar problemsgrowing exponentially 6§, is decreasing exponentially.

=—(Vv)-k. (15

In two dimensions the differential separation equation,
Eq. (6), will have two linearly independent solutio@§; and
6&,. Due to the incompressible nature of the flow the area of
the parallelogram defined byg, and 6&, is constant
J=27-5& X 8&,,

(in addition, to those treated specifically in this paper Comparing(14) and(15) we note that the solution fde may
be written
II. INITIAL TRANSIENT k(t) =37 (K(0)- 6&(0))2X 5&(1)
During the first eight periods of the simulation in Fig. 1 —(k(0)- 5£,(0))ZX 8&,(1)]. (17)

the scalar variance is nearly constant implying that diffusion

may be neglected. We have considered this case in our prdlus,k(t), like the differential displacement, will consist of
vious work and have shown that the power spectrum@n exponentially growing and an exponentially decreasing
F(k,t) can be related to the distribution of finite time cOmponent. The amount of each component depends on the

Lyapunov exponents by orientation of the initial wave vectok(0), relative to the
initial displacementss,(0) and §&,(0). Theexponentially

(12) growing solution for the wave vectdi(t) is proportional to
the component of the initial wave vector in the contracting

direction, 6&,(0). This is represented by the first term in the

F(k,t)=(kt) P

. K
t™In ko’t}’
wherek, is the magnitude of the initial wave vector of the
scalar and®(h,t) is the probability density function for finite sum of Eq.(17).

time Lyapunov exponents discussed previously. We now re- . Under the present model, the power spectrum can be
derive, heuristically, this expression by introducing a modelV"1tteN

which we term the reducek spectrum mode{RKS). This

model follows very closely the previous analysis of both F(k,t)=2 w () 8(k— [k A(D)]), (18
Batchelor and KraichnahA more rigorous derivation of this '
model is contained in the Appendix. wherew ,(t) is the variance contained in théh initial area

In the absence of diffusion, the value of the scalar is(which does not vary in the absence of diffusiomnd
constant following a fluid trajectory. Thus, if we consider k ,(t) is the time evolving wave vector for the fluid trajectory

two infinitesimally separated trajectories we have followed by the/th element of area. To obtain EQL2) we
S(EX+T,1),0)— (&X,1),1) note that for large time

= SE(X,1)-Vp(&(x,1),t)=const, kA)~koexp(h,1),
This implies whereh, is the finite time Lyapunov exponent correspond-

ing to the/th initial condition. We then replace the weighted
£5§~V¢=0 (13) sum over initial conditions with an integration over the prob-
dt ' ability function for finite time Lyapunov exponents

3096 Phys. Fluids, Vol. 8, No. 11, November 1996 Antonsen, Jr. et al.
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t=2T b

RLP(k,t)

3 4
In(kL/2m)

FIG. 2. Power spectri(k,t) for three timesf=2T, 4T, and 6T, obtained
from the Fourier code.

t=4T
BLE(k,t) 1

F(k,t)= f dhP(h,t) S[k—keexp ht)],

0.5

where we have assumed for simplicity that the initial
weights,w, and wave numberik cog=k, are the same for
all elements. Performing the integral oueresults in(12).

To test this prediction for the power spectrum we com-
pare a numerically generated histogramrgk,t) obtained
from Eq. (10) and the numerical results of the Fourier am-
plitude code with one obtained from E@.8) by solving the
orbit and wave vector equations, Eq®) and (15 for an

(&)

ensemble of 208200 trajectories initially distributed uni- SRk i
formly on the simulation area. In this case, the initial condi-

tion is taken to be ¢(x,y,0)=2{cog4n(x—y)/L] 0.5 .
— cod4m(x+y)/L]}. For the particular realization of the flow o

under consideration, Ed8), the solutions of Eqs(2) and oo' : 6 d

(15) can be expressed as two dimensional maps, liL(kL/Z;)

FIG. 3. Comparison of results from the Fourier cddelid curve$ with the
’ results from the RKS mode{doty for (a) t=2T, (b) t=4T, and (c)
t=6T.

2

1 2
Xn+1=Xy,t+ zUTco Tyn~l— 01n

1 2
Yn+1=YnTt EUTCO Txn+l+ Oon

F(k,t) from the two codes are plotted on the same axes. As
can be seen both codes predict the same pulse-like behavior
of the power spectrum.

K Grey scale intensity plots of the scalar from the full nu-
merical solution at four different times are displayed in Fig.
4. Recent work by ourselves and otHet§ has focused on

Kynst- another quantity of interest, namely, the fractal dimension of
the measure of the gradient of the scalar. In particular, in

The results of the Fourier amplitude code are displayed?ef- 3 we defined a measugeof a region of space based
in Fig. 2 where a histogram d(k,t) is plotted versus k  On the distribution ofV¢|”,
for timest=2T, 4T, and 6. As can be seen, the power [V |7d"x
spectrum has the form of a pulse which moves to higher M(&L)’FW,
values of Ik and spreads out as time progresses. This is the Vo
behavior predicted previously based on ExR). The peak of  whereV, is a reference domain in whidh) is satisfied and
the pulse moves with a velocity equal to the Lyapunov ex=s is a subset of this domain. The situation was considered in
ponenth and the spreading of the pulse is due to the distri-which the flow was smooth on large scales, meaning that the
bution of finite time Lyapunov exponents. smallest flow scale is much larger than the scales which de-
A comparison with the results of the orbit codEgs. velop in the variation of the passive scad#(x,t). Moreover,
(15 and (18)) is shown in Fig. 3 where the histograms of the flow was assumed to be chaotic and ergodi¥jn

and

wUT (27
Kynr1=Kynt Tsm Ty”+ 01n

7wUT (27
Kgn+1=Kgnt Tsm TX”+ Oon

(19
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In<k®> 4

(a) (b) o e

FIG. 4. Grey scale intensity plot of the scalar fayt=1T, (b) t=5T. Here
the white indicates the highest values and black the lowest values.

FIG. 6. The logarithm of moments of the power spectrunfk’nversus
t/T for =2, 1.6, 1.2, 0.8, and 0.4.

For the initial-value problem it was fouAdhat in the
case of small diffusivity the measure exhibited fractal

. . . . . r previ heoretical work on th wer rum
properties over some time interval determined by the diffu- Our previous theoretical work on the power spectru

L o : redicted that th ran f the multifractal meagur
sivity and the flow. To understand this, first consider the casg edicted that the appearance ot the mutiiractal meaaure
. e . . Would be accompanied by the exponential growth of various
where there is no diffusio=0. Then, as time increases,

. . - moments of the power spectrum. In particular, during the
¢(x,t) develops finer and finer scale variations, and the re- P P P 9

g . “initial evolution of the scalar,
gions of largestV ¢| occupy a smaller and smaller fraction
of space. This fraction approaches zerd-ase, and in this (k%) ~exdT'(o)t],
limit, in an appropriate sense, the region of larggéip| where
approaches a fractal set. At any large finite time, the region
of largest|V ¢| will be approximately fractal in that, when
viewed with finite spatial resolutiofarger than some appro-
priate characteristic scale of the region of latde| (this

length scale decreases with timhehe region looks fractal. If 3 X
D+0, but is very small, then the preceding considerationd{k’) versus time for five values af andF(k,t) from the
apply up to some finite timéy, at which the characteristic Fourier code. It can be seen that during the initial 7 periods

scale mentioned above becomes so small that diffusion cat’{‘-’hen diffus_ion is negligible this quantit.y grows Iingarly with
not be neglected. This time corresponds to the initial seveHIme ref]Icectlnﬁ the con_stanc;r/]Bf(a? dlgfrf]g this f}er'Odﬁ The
periods in the present simulations. After this time the meaS/OP€ Of €ach curve gives the valueloffor eacho. These

sure was shown in Ref. 3 to no longer be fractal. Our currenf'® plotted on Fig. 7. _The deper_mdencel“obn o is clearly
interest is in the intermediate range of times wheiglarge  "onlinear. In our previous work it was shown that the mul-
enough that the measure is approximately fractal, but smatffraCtal dimensionD,, of the measurg. could be obtained
enough that diffusion plays no rolé<ttp). This behavior of oM the dependence df on o~ _ .

the gradient is illustrated in Fig. 5 where grey scale intensity 1€ SPectrum of fractal dimensiori3, (wheregq is a
plots of the measure(s,t,1) are displayed for the same c_ontlnuous parametecharacterizes th_e multlfractg! proper-
times as in Fig. 4. The measure is constructed by calculatinfjeS ©f the m(‘z"fsl‘)”@ Roughly speakingD specifies the
the gradient as a function of position from the full Fourier scal_mg of((ue'™ ™)) whereu, is Fhe measure in a small box
code (Eq. (9)). The formation of narrow striations with a of sidee and the averagf . . .)) is over all boxes and taken

Cantor set-like structure can be seen in the figure.

<k0>=“:dk|:(k,t)k0

fee] _1
{f dkF(k,t)} .
0

This behavior is confirmed in Fig. 6 where we plot

(a)

FIG. 5. Grey scale intensity plot of the measwrgs,t,1) defined in Eq(19)
for (@) t=1T and(b) t=5T. FIG. 7. Growth exponenk (o) versuso for the initial transient phase.

3098 Phys. Fluids, Vol. 8, No. 11, November 1996 Antonsen, Jr. et al.
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) : . - determined by the growth of the magnitude of the corre-
sponding wave numbe, (t). If one substitutes the approxi-

195 - . mationk (t) ~keexph,t), one finds that the weight is con-
stant until a timetp~In(2h/kD)/(2h), and then quickly
Lo 7 decays to zero much faster than a simple exponential. Thus,

most orbits do not contribute to the long time decay of the
185 =
sl ‘ | The long time behavior of the variance is determined by
orbits for which the simple approximationk (t)
L7 1 . . , = kgexph,t) is not adequate. In particular, we note from the
0 0.5 1 13 2 more accurate expressigh7) that the amplitude of the ex-
ponentially growing component &f(t) is proportional to the
cosine of the angle between the initial wave ve&(®) and
FIG. 8. Predicted dimensioD, of the measurg:(s,t,1) versus. the exponentially decaying solutia?&,(0). Thus, if the ini-
tial wave vector is at right angles to the decaying solution
(the contracting direction k(t) will not grow exponentially
in time. This effect can be treated in the following way. We

with respect to the measuye itself. The average defining
D, scales withe as((u 1))~ e~ YPq for small € (e.g.,

see Grassberget al.” and references thergiriThe relation- write
ship betweerD, andI'(o) was showh to be K, (t)~Kkocosp exd h, t]
o=(q—1)(Dyq—2)+q, (200 where cog, accounts for the orientation of the initi&l,
whereq=T'(¢)/T'(1). Using Eq.(20) and the result foF (o) with respect F05§2(O). We then assume th.at _for the en-
from Fig. 7,D, versusq is plotted in Fig. 8. semble of orbits, the angles, are randomly distributed, and
a independent of the finite time Lyapunov exponehits, We
IIl. LONG TIME DECAY then replace the sum over elemental variances with integrals

over the anglep and the finite time Lyapunov exponeimt
Figure 1 shows that for>20T the scalar variance de-

cays exponentially with time at a fixed rate. This decay has C(t)— dehP(h t)fz”d_fﬁ
been observed and discussed previously by Pierrehuthbert. 0 " Jo 2w
We now show that the rate of decay can be determined from 5
the distribution of finite time Lyapunov exponents, and de- koDcos ¢exd 2ht]
. - ) Xexpg — .
pends on a small number of orbits where the initial gradient h

is aligned perpendicular to the contracting direction. . . .
First, we augment our wave vector model introduced inAS discussed, for late times the fackﬁDexp[th]/h is large,

the previous section by allowing the elemental variance?nd the dominant contrlbutl_on to the integral comes from
w, in Eq.(18) to depend on time. These variances will decaysma_II val_ues of cog. Expanding aboutp=* /2 and inte-

at a rate determined by the diffusion coefficient and the IocagratIng gives

wave vector as the local wave vector increases

12 o
f h¥2dhP(h,t)exd —ht].

. C(t):(wng) 0
G (D=—2KX(H)DwAL),

We now perform theh integration by noting that the

or integrating this P(h,t) distribution is well approximated as
t 5 tG”(h) 1/2
w,/(t)=w,(0)ex —ZDJ kZ(t")dt’|. (21 P(h,t)= o= exd —tG(h)], (22
0

The time dependence of the total variance is then given bywhere G(h)=G'(h)=0 (the prime denotes differentiation
with respect tdh). This distribution is the same as that which
C(t)=2 w,/(1). results from the multiplication of many random numbers.

/ Equation(22) is the so-called “large deviation” result for a

To verify this, we have computed the weights given(B) randgm vari.abl'e which i; the average of many indepgndent,
for the same ensemble of orbits discussed in the previouélentically distributed variables, and givegh,t) (a function
section. The time dependence ofclt) is then plotted on of t_he two variabledh andt) in terms of a _functlo_n of one
Fig. 1 along with that produced by the full Fourier amplitude Variable,G(h). The usual Gaussian result is obtained by ex-
code. The predictions are in close agreement. Thus, the lorRandingG(h) about its minimumh=h, G(h)= 1/2G"(h)
time decay of the variance can be described in terms of the<(h—h)2. The Gaussian result is good if the rangehobf
chaotic orbits. interest is limited such that the numbers of standard devia-
To analytically arrive at a value for the decay rate wetions fromh is not too largdthe standard deviation of the
need to evaluat€(t)==,w (t). From Eq.(21) it is seen Gaussian is G"n) Y?]. In doing the above integral for
that the time behavior of the elemental varianeggt) is  C(t), however, the main contribution comes from a saddle

Phys. Fluids, Vol. 8, No. 11, November 1996 Antonsen, Jr. et al. 3099
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FIG. 9. Data forG(h)+h at timet=50T (dot9 and a third order polyno-
mial fit versush.

Fave
point h=h, (which is independent ofi). Consequently the

number of standard deviations betweerand h. diverges
like n¥2 asn increases, and the more accurate large deviation
form (22) is necessary. The forif22) has been numerically
verified and used for cases where there are no K@dl- 0 ) . N 4
mogorov, Arnold, and Mosgrsurface§™! [this occurs, in in(kL/2m)
particular, for the situation in which the time dependence of , ,
the flow is nonperiodide.g., the Eulerian velocity(x.t) is  coc 20 e B e averaged over tme
itself temporally chaot&j. As in Refs. 7-11 we find Very oi<t<30 (dotted curve (b) The average of(k,t) averaged over time
good agreement witli22) for our flow given by(8). Also, 20<t=<30 using the Fourier cod@lotted curvg and using the orbit code
Eq. (22) is expected to apply for time-periodic flows, (solid curve. The slight systematic off-set between the two curvegjris
v(x,t)=v(x,t+T), if KAM surfaces are essentially absent due to a difference irf F(k,f)dk from the orbit code as compared to the
. . Fourier code. This difference is small considering that the overall amplitude
(e.g., the standard map at large nonlinearity parameter decays by a factor betweer0 andt=25.
the presence of KAM surfaces bounding the relevant chaotic
region, as typically arises for two-dimensional time-periodic
flows, there are important modifications of H@2). These
modification§® are due to the “stickiness” of KAM sur-
faces, leading orbits near KAM surfaces to remain near therflecay rate. Note, as implied by the classical results in Ref. 5
for long times. and as observed in Ref. 4 this value is independent of the
In the absence of KAM surfaces the integration okier diffusion coefficienD. In particular, from the fit in Fig. 9 we
may be carried out using the method of steepest descent. Tigdtain »=1.91 which compares favorably with the result at
essential result is that the full solutiony=1.87.
Thus, we conclude that the long time decay of the scalar
C(t)~exp(— 1), is determined by the eventual exponential growttk inof a
where small number of orbits for which the initi&d vector contains
a small component of the exponentially growing solution.

v=(he+G(he)), 23 Further, the rate of exponentiation of the orbits which con-
andh, is determined by tribute the mosth,, is less than the mean Lyapunov expo-
1+G’(h.)=0. nenth.<h. This long time behavior is likely to be strongly
_ — affected by the presence of KAM surfaces.
Note thatG’ (h) = 0 whenh = h; thush.<h. Thatis, the rate The exponential decay of the variance suggests that the
of exponentiationh, which contributes dominantly to the scalar has formed an eigenfunction; termed a “strange”
decay of the variance is less than the averagehate eigenfunction in Ref. 4. As further support for the eigenfunc-

To test this prediction we have made histograms oftion picture we note that the various mometks) plotted in
P(h,t) from the orbits, from which we can determine Fig. 6 are roughly independent of time during the long time

G(h), via exponential decay.
1 Figure 10 shows averages over time of the power spec-
G(h)=— ?m(p(h,t)/tlﬁ), trum F(k,t) obtained from both the Fourier amplitude code

and the orbit code. Figure & shows the result from the
for larget. Figure 9 shows data points from the histogramFourier code averaged over two different time inter-
along with a third order polynomial fit ta+G(h). As dis- vals 11=<t/T<20 (solid curve and 2G<t/T<30 (dotted
cussed above the minimum of this function determines theurve, where the vertical scale is normalized via
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F(k,t)/fdkF(k,t). The fact that the two curves in Fig. ()
coincide means thaf(k,t) assumes an asymptotically in-
variant k-dependence as it decays with time. Figurgbl0
shows results from the Fourier coddotted and the orbit
code(solid) averaged over the time interval 20<30. As

can be seen, both codes predict essentially the same shape

for the power spectrum.

We may obtain an analytic expression for the long time

power spectrum as follows. We again use expresgi@nfor
the power spectrum along with E1) for the time depen-

dence of the elemental weights. We rewrite the exponent in

Eq. (21) by multiplying and dividing by the final value of
KZ(t)

w,(t)=w,(0)exd —2DK2(t)7,],

where
t KAt
T/—fodt ki(t) .

As Kk, grows exponentially with time the value af is de-
termined by the behavior &, (t’) for t’ within several ex-
ponentiation times of. As the rate of exponentiation is not
constant, one cannot simply replageby (2h,) 1. We thus
regardr, andh, as two distinct random variables; witt)

0.6
x/(21L)

0.4

FIG. 11. Surface of section plot for a number of initial conditions with
6,=0,=0 andUT/L=0.5.

is the Laplace transform of the probability distributionof
The width ink of the power spectrum thus scales with the
diffusion coefficient aD ~*? while the decay rate is inde-
pendent ofD.

Equations(23) and(24) are the main results of this sec-

measuring the rate of exponentiation for the orbit average#ion. Equation (23) vyields the exponential decay rate,

over a long time,t>1/h,, and v, measuring the rate of

while (24) states the factorization of the time dependence

exponentiation over a short time in the recent past. As th@nd gives an expression for the “strange” eigenfunction of
distribution ofh values is the same as is obtained by sum-Pierrehumbert. We emphasize that betfand the function
ming a large number of independent variables we argue thd{l (andM) are determined purely by the dynamical behavior
the values oh, andr, can be considered to be independentof fluid element trajectories and are consequently indepen-

random variables(The sum of a large number of random
numbers depends weakly on any individual term in the $um.
Introducing probability distributions foh, and 7, we re-
place the sum in Eq18) by integrations oveh, 7, and the

angle ¢,

F(k,t)zfg—if th(h,t)f d7M(7) [ k—ko|cosep|

x exp(ht)Jexd — 7k2D cog pexp(2ht)]

where M(7) is the probability distribution forr. Carrying
out the integral over (expanding forcosp|<1 as beforg
gives

F(k,t)

_ 2 2
—W—kof th(h,t)exp(—ht)j d=M (7)exp(— 7DK?).

The integral oveh gives the exponential decay dependence

on time as before, while th& dependence of the power
spectrum is determined by the distributionofalues. That
is,

F(k,t)~exp — vt)M(\Dk), (24)
where
M_(s)szdTM(T)exq—sT] (25)
0
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dent of D.

IV. TIME PERIODIC FLOW

In this section we will examine the power spectrum for
cases in which the flow is time periodic, in particular, the
angles#,; and 6, in Eq. (8) are set to zero. In this case only
a fraction of the orbits are chaotic for the value of
the magnitude of the flow velocity under consideration
e=UT/L=0.5. Surface of section plots for a number of ini-
tial conditions are shown in Fig. 11. As can be seen, most of
phase space is integrable. Grey scale intensity plots of the
scalar and gradient for this case are shown in Fig. 12. They

(b)

FIG. 12. Grey scale intensity plot i) the scalar andb) the measure
n(s,t,1) defined in Eqg.(19 for t=5T, for the case 6;,=6,=0,
UT/L=0.5.
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FIG. 13. The quantityC(t) versust/T in the case with no KAM surfaces
present ;= 6,=0, UT/L=0.5) from the Fourier code. b)

are quite different than those in the fully chaotic case, Fig. 4.
A plot of C(t) versust obtained from the Fourier am-
plitude code for this case is shown in Fig. 13. There is an

In[ELF(k,t)] 10 .

2m

initial period in which the variance is constant corresponding M- 1
to early times when diffusion is negligible. Subsequently the

variance decays by about 30% and then becomes constant in 18 s . . . s :

time. This decrease is attributed to the decay of scalar vari- 0 ! AR S 8 !

ance in the chaotic regions of space where the growth of the
wave vector is exponential. In the integrable region, nearbyiG. 15. (8 The quantity Ifi(kL/27)F(k)] versus InkL/27) from the
orbits do not diverge exponentially and the spectrum remaingo_urier code(soli(_jlcurve and from the orbit cod§diamond$ computed
concentrated at low values of wave number. Ultimately thisiSing & superposition of pulse) The same quantities as (g) except the
variance will decay due to diffusion but at a very low rate. solid curve is computed with a source rather than a superposition of pulses.
The above picture is confirmed by the behavior of the
power spectrum with time shown in Fig. 14. The bulk of the
variance remains at low values while a portion, presumably
corresponding to the chaotic orbits, “cascades” to high val-
ues ofk where it is dissipated.

far in this paper conform to Batchelor’'s law. To recover
Batchelor’'s law we show in Fig. 15 the asymptotic power
spectrumF (k) for the case in which the source is given by
S= icog2m(x+y)/L]. As can be seen the power spectrum
V. BATCHELOR'S LAW has the prop(?k*l dependence.
Our previous theory argued that the “steady state”

According to Batchelo?,the power spectrum should de- spectrum in the presence of a soutsach as that shown in
pend inversely ork in the range of wave numbers greater Fig. 15 could be obtained from a time integration of the
than that of the flow but less than that where the variance igransient spectra produced in the initial value case. Figure
dissipated. Our previous wdrlargued that this behavior ap- 15(a) shows this time integrated power spectrum as produced
plied only for cases in which a source was present at lowy both the Fourier amplitude code and the orbit code. Fig-
wave numbers, and the time asymptotic power spectrum wasre 15b) compares the results of the Fourier code with a
considered. Indeed, none of the simulation results shown seteady source with those of the orbit code using a time inte-
gration of the transient spectra. The major contribution to
this time integration comes from the initial transient during
which the power spectrum has the form of a pulse as shown
in Fig. 2. As the rate of increase in the value of the wave
] number corresponding to the center of the pulsés deter-
mined by the Lyapunov exponeritk/dt= hk, the contribu-
tion of the moving pulse to the time average power spectrum
is inversely proportional tok. This is the origin
of Batchelor’s law.

BLE(k, 1)

‘ VI. CONCLUSIONS

3 4 5
In(kL/2m) , : We find that the reducel-spectrum model provides a
remarkably accurate description for the time evolution of the
FIG. 14. The quantity (RL/m)F(k.t) versus InkLi2m) for the case with ~ POWET Spectrum of a passive Scal_ar na ChQOtIC fluid ﬂOW_- In
KAM surfaces from the Fourier code. this model, the power spectrum is determined by following
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an ensemble of fluid orbits associated with which are any q) ~
ensemble of mean wave vectors and a contribution to thg; N+ V- J’(Z ) v(g,t)e'a™ ( (k—§)+N
scalar variance. Since the reduced power spectrum is de

scribed in terms of the fluid orbits we can characterize the iqx q
behavior of the power spectra using recently developed con- J (27 )nv(q e k_ 2]
cepts in nonlinear dynamics. In particular a humber of im-

portant features are related to the distribution of finite time =2D[EV2—k2
Lyapunov exponents. These include the initial evolution of

the power spectrum, its long time decay due to diffusion, an%/

ght

~ q
N k+§

N(k,x,1), (A5)

here v(q,t) is the spatial Fourier transform of the flow
(x,1).
So far, Eq.(A5) is exact. At this point we make the
assumption thall(k,x,t) extends to high values ¢k| com-
ACKNOWLEDGMENTS pared with the characteristic wave number of the flow. Fur-
ther, we focus on the smoothly varying in phase space part of
This work was supported by the U.S. Department of En-\(k,x,t) which we labeN(k,x,t). These assumptions allow
ergy and by the Office of Naval Resear@thysics. us to Taylor expand thg dependence dfl(k*q/2) on the
left hand side of Eq(A5) and to drop the Laplacian on the
right hand side compared witk?. The result is

the form of the power spectrum in the presence of a source
scalar variancéBatchelor’s law.

APPENDIX: REDUCED k-SPECTRUM MODEL

In order to put our reducekl-spectrum model on firmer iN(k,x,t)+V-(v(x,t)N(k,x,t))—Vv(x,t)-k-iN(k,x,t)
footing we rederive it here introducing the phase space ac* ok
tion densityN(k,x,t) defined via = —2k?DN. (AB)

For the case in which the flow is incompressible in space
¢(X_ 5)' (AL (a6) is the wave kinetic equation for disturbances with dis-
persion relationm=Kk-v. The characteristics are then given
by Hamilton’s equation

!
X f—
2

Nan=fdeQ—mn¢

We note that the transform of the correlation function
C(k,t) introduced in Eq.(5) is obtained by averaging the

action density over space dx Jdo
_ ),/, P Ji - 2k "V,
C(k,t)=(N(k,x,t)). (A2)
Similarly, integration over wave vectérgives the local sca- % - ‘9_“’ —_Vv.k.
lar variance dt X
K ~ The general solution for the smoothed action density
d*(x)= f WN(k’X’t)' (A3)  can then be expressed in terms of the phase space trajec-

tories &(x',t) and w(x',k’,t) where d&/dt=v(&t),
The definition of the action densit§Al) may also be ex- dx/dt= —VV(&1) -k, and&(x’,0)=x", k(x' ,k’,0)=k’. The
pressed in terms of the Fourier transforg(k,t) of the sca- result is
lar, where

d'k — ik-x N(X,k,t)=f d"’d"k’N(x’,k",0) 8(x— &X' ,t))
¢(X,t)—fw¢(k,t)e : t
namely, ><5(k—x(x’,k’,t))exp{—ZDJOKZdt’}
N(k,x,t)zf neiq~x$(k+ Eq t) ¢*(k_ Eq t) Ou.r model corre'sponds. to the gbove solution i_n.t.he case in
(2m) 2 which the continuous integrations over the initial phase

(A4) space coordinates are replaced by a discrete sum over initial
We now derive an evolution equation for the action densityconditions. Using Eqgs(A2) and (4) we then obtain(18).
from Eq. (1). Specifically we form Equation(A6) can be viewed as a WKBNentzel, Kramers,
and Brillouin) type description of the passive scalar. Similar

M fd“r exp(—ik-1)| ¢ x ﬂ(b(x_ L) formulations have been applied recently with suctess
at 2 at 2 other problems in fluid mechanics.
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