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The role of chaotic orbits in the determination of power spectra
of passive scalars

Thomas M. Antonsen, Jr., Zhencan Fan, Edward Ott, and E. Garcia-Lopez
University of Maryland, College Park, Maryland 20742

~Received 29 June 1995; accepted 23 May 1996!

This paper relates properties of the power spectrum of a passive scalar convected by a chaotic fluid
flow to the distribution of finite time Lyapunov exponents. The properties considered include the
early time evolution of the power spectrum, the late time exponential decay of the scalar variance,
and the wave number dependence of the power spectrum in the presence of a source of scalar
variance. Theoretical predictions are tested by comparing full numerical solutions of the relevant
partial differential equation to solutions of a model system which includes diffusion and involves
integrations along the fluid orbits only. The model system is shown to give results in close
agreement with the numerical solutions of the full problem. This suggests the possible general utility
of the model equations for a broad range of problems involving passive scalar convection.
@S1070-6631~96!01611-X# © 1996 American Institute of Physics.

I. INTRODUCTION

The properties of scalar quantities~e.g., temperature or
the concentration of an impurity! that are passively con-
vected by an incompressible fluid flow have been of interest
for many years.1 The evolution equation for the passive sca-
lar is

df

dt
5D“2f1S~x,t !, ~1!

where the time derivative in~1! is taken following the mo-
tion of the fluid,

d

dt
5

]

]t
1v~x,t !

]

]x
,

wherev(x,t) is the fluid velocity. The quantityD represents
the microscopic diffusion coefficient for the scalar, and
S(x,t) represents a source of the scalar. Here it is assumed
that the fluid motion is incompressible,¹–v(x,t)50 and is
determined by external dynamics~such as stirring!, that the
sourceS(x,t) is prescribed, and that neither the source nor
the fluid flow are affected by the scalarf.

In the absence of a source and diffusion, Eq.~1! states
that the value of the scalarf is constant in a moving fluid
element. The trajectory of the fluid element is given by the
equation,

dj~x,t !

dt
5v~j,t ! ~2!

with the initial condition

j~x,t !5x.

Thus, j(x,t) is the position at timet of the fluid element
which is located atx at time t50. The properties of the
trajectories of the fluid elements can be expected to affect the
solutions for the scalarf both when diffusion is negligible
(D50) and when it is not. The purpose of this paper is to
explore this relationship in the case in which the trajectories
given by Eq.~2! are chaotic in the sense that nearby fluid
elements diverge exponentially from each other.1–4

Specifically, we will explore the relationship of the time
evolution of the power spectrum of the passive scalar to the
distribution of the finite time Lyapunov exponents of the
flow. Previous work along these lines appears in Refs. 2 and
3 which we discuss subsequently.

The power spectrum of the passive scalar is the Fourier
transform of the two point correlation function,

C~r ,t !5^f~x1r ,t !f~x,t !&, ~3!

where the average is taken over thex-domain in which Eq.
~1! is solved. The power spectrumF(k,t) is then defined

F~k,t !5E dnk8

~2p!n
d~k2uk8u!C̄~k8,t !, ~4!

where

C̄~k8,t !5E dnrC~r ,t !exp@2 ik8–r #, ~5!

is the Fourier transform of the correlation function andn is
the dimensionality of the domain. The present paper will
consider the two dimensional case exclusively.

The chaotic orbits of the flow can be characterized by
their finite time Lyapunov exponents. These may be defined
as follows. Consider two trajectories which initially are sepa-
rated by the vectorr , j(x1r ,t) and j(x,t). Consideringr
to be a differential vector, the differential separation
dj(x,t)5j(x1r ,t)2j(x,t) satisfies the linear equation,

d

dt
dj~x,t !5dj–¹v~j~x,t !,t !, ~6!

with initial condition,

dj~x,t !5r .

For chaotic flows the separationdj typically diverges expo-
nentially in time, and the net rate of exponentiation over the
time interval from 0 tot,

h~x,t !5
1

t
log

udju
ur u

, ~7!
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is the finite time Lyapunov exponent. Defined in this way,
the exponent,h, depends on the orientation of the vectorr
and on the initial coordinates,x, as well as on the time,t. In
the limit t→` almost every initial condition in a given cha-
otic region yields the same value ofh which is the Lyapunov
exponent and is denoted byh̄,

h̄5 lim
t→`

h~x,t !.

For finite times there is a distribution of values ofh which
may be characterized by a probability distributionP(h,t),
whereP(h,t)dh is the probability thath(x,t) is betweenh
andh1dh, if x is chosen randomly with uniform probability
in the relevant ergodic fluid region. Later in the paper we
shall relate various properties of the power spectrum to the
probability distributionP(h,t).

To verify our predictions we will compare them with
numerical solutions of Eq.~1! for a specific realization of the
flow v(x,t),

v~x,t !5U@exf 1~ t !cos~2py/L1u1~ t !!

1eyf 2~ t !cos~2px/L1u2~ t !!#, ~8!

which is periodic inx andy with periodL. The time depen-
dent functionsf 1 and f 2 are defined as follows. Both are
periodic with periodT,

f 1~ t !5H 1 0,t,T/2

0 T/2<t,T

and

f 2~ t !5H 0 0<t,T/2

1 T/2<t,T.

The flow v is in thex direction during the first half of each
period and in they direction during the second half. The
anglesu1 andu2 take on different values in each time period.
If all the anglesu1 and u2 are set to zero then the phase
space flow is periodic in time, and, depending on the initial
value ofx, solutions of Eq.~2! yield either chaotic or non-
chaotic orbits. If the anglesu1 and u2 are constant in each
periodnT<t<(M11)T, but vary randomly from period to
period, then all the orbits are chaotic~i.e., h̄.0). Examples
of each case will be shown. The evolution of a passive scalar
in this flow has also been considered in Ref. 4.

To solve Eq.~7! with the given flow velocity we assume
the scalar has the same spatial periodicity as the flow and
express the scalarf in terms of its Fourier series

f~x,y!5(
mn

fmn~ t !expF2p i

L
~nx1my!G .

We then obtain the following evolution equation for
fnm(t),

ḟnm~ t !1
ipU

L
$n f1~ t !@exp~ iu1!fnm211exp~2 iu1!fnm11#

1mf2~ t !@exp~ iu2!fn21m1exp~2 iu2!fn11m#%

52S 2p

L D 2D~m21n2!fnm1Snm , ~9!

whereSnm is the Fourier coefficient of the sourceS. ~Note
that ~9! involves coupling of (n,m) only to the neighboring
Fourier modes (n,m61) and (n61,m).! Equation~9! is in-
tegrated numerically for a finite set of values ofn,m. The
power spectrumF(k,t) can be related to the Fourier ampli-
tudesfnm by

F~k,t !5(
nm

ufnmu2d~k2knm!, ~10!

where

knm5
2p

L
~n21m2!1/2.

The results of a sample run are shown in Fig. 1 where
we have plotted the log of the scalar varianceC(t),

C~ t !5E
0

Ldxdy

L2
f2~x,y,t !5(

nm
ufnm~ t !u25E

0

`

F~k,t !dk,

versus time, normalized to the periodT. The parameters for
this run wereSnm 5 0, e5UT/L50.5, q 5 (2p/L)2DT
5 0.00000125,umu, unu<500, andu1(t) andu2(t) were se-
lected randomly in each time interval with uniform probabil-
ity distribution between 0 and 2p. Initially,
f(x,y,0)52$cos@2p(x2y)/L#2cos@2p(x1y)/L#%. Figure 1
shows that there is an initial period of time lasting about 8
periods during which the scalar variance is constant, and
then a transition to a late time behavior where the scalar
variance decays exponentially in time at a fixed rate. The rate
of change of scalar variance can be derived from Eq.~1! or
Eq. ~9!,

dC~ t !

dt
522q(

nm
~n21m2!ufnmu2. ~11!

FIG. 1. A plot of lnC(t) versust/T. The solid curve is the result of a full
numerical solution~Fourier! of Eq. ~1!. The diamonds correspond to the
RKS model introduced in Sec. II.
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During the initial period of time the Fourier spectrum
ufnmu2 is concentrated at sufficiently small wave numbers
such that, owing to the small value of diffusion
(q50.00000125), dissipation of the variance is negligible.
We refer to this phase as the initial transient and we will
discuss its properties in Sec. II. Later, the variance damps
exponentially as if the scalar has formed an eigenfunction
with a fixed rate of decay. This phase has been studied re-
cently by Pierrehumbert.4 We will relate the properties of the
scalar to the chaotic orbits during this late time phase in Sec.
III. In particular, we show that the power spectrumF(k,t)
factorizes into the product exp(2nt)M̄(ADk) where the func-
tion M̄ and the decay raten depend only on the chaotic
dynamics. Section IV will discuss the modifications to our
results that occur when the phase space has both chaotic and
integrable trajectories. Finally, Sec. V will relate the behav-
ior of the power spectrum of the scalar during the initial
transient to that predicted by Batchelor’s law5 which applies
to cases in which a source is present.

Throughout we will present detailed comparison be-
tween the solutions of the full partial differential equation
~Eq. ~1!!, with a model system~Eqs. ~15! and ~21!!, which
includes diffusion and is based on integration along fluid
element orbits. Solution of the model system is much faster
and more economical as compared to solution of the full
problem, yet the model system yields results in close agree-
ment with those for the full problem. This suggests the gen-
eral utility of the model system for passive scalar problems
~in addition, to those treated specifically in this paper!.

II. INITIAL TRANSIENT

During the first eight periods of the simulation in Fig. 1
the scalar variance is nearly constant implying that diffusion
may be neglected. We have considered this case in our pre-
vious work2 and have shown that the power spectrum
F(k,t) can be related to the distribution of finite time
Lyapunov exponents by

F~k,t !>~kt!21PF t21ln
k

k0
,t G , ~12!

wherek0 is the magnitude of the initial wave vector of the
scalar andP(h,t) is the probability density function for finite
time Lyapunov exponents discussed previously. We now re-
derive, heuristically, this expression by introducing a model
which we term the reducedk spectrum model~RKS!. This
model follows very closely the previous analysis of both
Batchelor and Kraichnan.5 A more rigorous derivation of this
model is contained in the Appendix.

In the absence of diffusion, the value of the scalar is
constant following a fluid trajectory. Thus, if we consider
two infinitesimally separated trajectories we have

f~j~x1r ,t !,t !2f~j~x,t !,t !

5dj~x,t !–¹f~j~x,t !,t !5const.

This implies

d

dt
dj–¹f50. ~13!

Now imagine that we initially divide the fluid into many
small areas. We consider the case in which the initial condi-
tion is in the form of a modulated sinusoidal function ofx;
that is, f(x,0)5A(x)sin(*xk i(x)dx1u(x)) where k i(x),
A(x), andu(x) vary on the scale of the flow which is much
larger thanuk i u21. To each area we can then assign a mean
wave vectork. As the scalar is advected by the flow the
mean value of the scalar in each evolving fluid element is
constant. Equation~13! then suggests that the wave number
evolves according to

d

dt
dj–k50. ~14!

Using Eqs.~6! and ~14! the evolution equation fork is

d

dt
k52„¹v…–k. ~15!

In two dimensions the differential separation equation,
Eq. ~6!, will have two linearly independent solutionsdj1 and
dj2. Due to the incompressible nature of the flow the area of
the parallelogram defined bydj1 and dj2 is constant
J5 ẑ•dj13dj2,

d

dt
J50. ~16!

Generally,dj1 and dj2 can be chosen such that ifdj1 is
growing exponentially dj2 is decreasing exponentially.
Comparing~14! and~15! we note that the solution fork may
be written

k~ t !5J21@~k~0!•dj2~0!!ẑ3dj1~ t !

2~k~0!•dj1~0!!ẑ3dj2~ t !#. ~17!

Thus,k(t), like the differential displacement, will consist of
an exponentially growing and an exponentially decreasing
component. The amount of each component depends on the
orientation of the initial wave vector,k(0), relative to the
initial displacementsdj1(0) anddj2(0). Theexponentially
growing solution for the wave vectork(t) is proportional to
the component of the initial wave vector in the contracting
direction,dj2(0). This is represented by the first term in the
sum of Eq.~17!.

Under the present model, the power spectrum can be
written

F~k,t !5(
l

v l ~ t !d~k2ukl ~ t !u!, ~18!

wherev l (t) is the variance contained in thel th initial area
~which does not vary in the absence of diffusion!, and
kl (t) is the time evolving wave vector for the fluid trajectory
followed by thel th element of area. To obtain Eq.~12! we
note that for large time

kl ~ t !;k0exp~hl t !,

wherehl is the finite time Lyapunov exponent correspond-
ing to thel th initial condition. We then replace the weighted
sum over initial conditions with an integration over the prob-
ability function for finite time Lyapunov exponents
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F~k,t !5E dhP~h,t !d@k2k0exp~ht!#,

where we have assumed for simplicity that the initial
weights,v l and wave numbersukl cosu5k0 are the same for
all elements. Performing the integral overh results in~12!.

To test this prediction for the power spectrum we com-
pare a numerically generated histogram ofF(k,t) obtained
from Eq. ~10! and the numerical results of the Fourier am-
plitude code with one obtained from Eq.~18! by solving the
orbit and wave vector equations, Eqs.~2! and ~15! for an
ensemble of 2003200 trajectories initially distributed uni-
formly on the simulation area. In this case, the initial condi-
tion is taken to be f(x,y,0)52$cos@4p(x2y)/L#
2 cos@4p(x1y)/L#%. For the particular realization of the flow
under consideration, Eq.~8!, the solutions of Eqs.~2! and
~15! can be expressed as two dimensional maps,

xn115xn1
1

2
UTcosS 2p

L
yn1u1nD ,

yn115yn1
1

2
UTcosS 2p

L
xn111u2nD

and

ky,n115ky,n1
pUT

L
sinS 2p

L
yn1u1nD kx,n ,

kx,n115kx,n1
pUT

L
sinS 2p

L
xn1u2nD ky,n11 .

The results of the Fourier amplitude code are displayed
in Fig. 2 where a histogram ofF(k,t) is plotted versus lnk
for times t52T, 4T, and 6T. As can be seen, the power
spectrum has the form of a pulse which moves to higher
values of lnk and spreads out as time progresses. This is the
behavior predicted previously based on Eq.~12!. The peak of
the pulse moves with a velocity equal to the Lyapunov ex-
ponenth̄ and the spreading of the pulse is due to the distri-
bution of finite time Lyapunov exponents.

A comparison with the results of the orbit code~Eqs.
~15! and ~18!! is shown in Fig. 3 where the histograms of

F(k,t) from the two codes are plotted on the same axes. As
can be seen both codes predict the same pulse-like behavior
of the power spectrum.

Grey scale intensity plots of the scalar from the full nu-
merical solution at four different times are displayed in Fig.
4. Recent work by ourselves and others2,3,6 has focused on
another quantity of interest, namely, the fractal dimension of
the measure of the gradient of the scalar. In particular, in
Ref. 3 we defined a measurem of a region of spaces based
on the distribution ofu¹fug,

m~s,t,g!5
*su“fugdnx
*V0u“fugdnx

, ~19!

whereV0 is a reference domain in which~1! is satisfied and
s is a subset of this domain. The situation was considered in
which the flow was smooth on large scales, meaning that the
smallest flow scale is much larger than the scales which de-
velop in the variation of the passive scalarf(x,t). Moreover,
the flow was assumed to be chaotic and ergodic inV0.

FIG. 2. Power spectraF(k,t) for three times,t52T, 4T, and 6T, obtained
from the Fourier code.

FIG. 3. Comparison of results from the Fourier code~solid curves! with the
results from the RKS model~dots! for ~a! t52T, ~b! t54T, and ~c!
t56T.
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For the initial-value problem it was found2 that in the
case of small diffusivity the measurem exhibited fractal
properties over some time interval determined by the diffu-
sivity and the flow. To understand this, first consider the case
where there is no diffusionD[0. Then, as time increases,
f(x,t) develops finer and finer scale variations, and the re-
gions of largestu“fu occupy a smaller and smaller fraction
of space. This fraction approaches zero ast→`, and in this
limit, in an appropriate sense, the region of largestu“fu
approaches a fractal set. At any large finite time, the region
of largestu¹fu will be approximately fractal in that, when
viewed with finite spatial resolution@larger than some appro-
priate characteristic scale of the region of largeu“fu ~this
length scale decreases with time!#, the region looks fractal. If
DÞ0, but is very small, then the preceding considerations
apply up to some finite timetD at which the characteristic
scale mentioned above becomes so small that diffusion can-
not be neglected. This time corresponds to the initial seven
periods in the present simulations. After this time the mea-
sure was shown in Ref. 3 to no longer be fractal. Our current
interest is in the intermediate range of times wheret is large
enough that the measure is approximately fractal, but small
enough that diffusion plays no role (t,tD). This behavior of
the gradient is illustrated in Fig. 5 where grey scale intensity
plots of the measurem(s,t,1) are displayed for the same
times as in Fig. 4. The measure is constructed by calculating
the gradient as a function of position from the full Fourier
code ~Eq. ~9!!. The formation of narrow striations with a
Cantor set-like structure can be seen in the figure.

Our previous theoretical work on the power spectrum
predicted that the appearance of the multifractal measurem
would be accompanied by the exponential growth of various
moments of the power spectrum. In particular, during the
initial evolution of the scalar,

^ks&;exp@G~s!t#,

where

^ks&5F E
0

`

dkF~k,t !ksGF E
0

`

dkF~k,t !G21

.

This behavior is confirmed in Fig. 6 where we plot
ln^ks& versus time for five values ofs andF(k,t) from the
Fourier code. It can be seen that during the initial 7 periods
when diffusion is negligible this quantity grows linearly with
time reflecting the constancy ofG(s) during this period. The
slope of each curve gives the value ofG for eachs. These
are plotted on Fig. 7. The dependence ofG on s is clearly
nonlinear. In our previous work it was shown that the mul-
tifractal dimensionDq of the measurem could be obtained
from the dependence ofG on s.

The spectrum of fractal dimensionsDq ~where q is a
continuous parameter! characterizes the multifractal proper-
ties of the measurem. Roughly speaking,Dq specifies the
scaling of^^me

(q21)&& whereme is the measure in a small box
of sidee and the averagê̂ . . . && is over all boxes and taken

FIG. 4. Grey scale intensity plot of the scalar for~a! t51T, ~b! t55T. Here
the white indicates the highest values and black the lowest values.

FIG. 5. Grey scale intensity plot of the measurem(s,t,1) defined in Eq.~19!
for ~a! t51T and ~b! t55T.

FIG. 6. The logarithm of moments of the power spectrum, ln^ks& versus
t/T for s52, 1.6, 1.2, 0.8, and 0.4.

FIG. 7. Growth exponentG(s) versuss for the initial transient phase.
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with respect to the measurem itself. The average defining
Dq scales withe as ^^me

(q21)&&;e (q21)Dq for small e ~e.g.,
see Grassbergeret al.7 and references therein!. The relation-
ship betweenDq andG(s) was shown2 to be

s5~q21!~Dq22!1q, ~20!

whereq5G(s)/G(1). Using Eq.~20! and the result forG~s!
from Fig. 7,Dq versusq is plotted in Fig. 8.

III. LONG TIME DECAY

Figure 1 shows that fort.20T the scalar variance de-
cays exponentially with time at a fixed rate. This decay has
been observed and discussed previously by Pierrehumbert.4

We now show that the rate of decay can be determined from
the distribution of finite time Lyapunov exponents, and de-
pends on a small number of orbits where the initial gradient
is aligned perpendicular to the contracting direction.

First, we augment our wave vector model introduced in
the previous section by allowing the elemental variances
v l in Eq. ~18! to depend on time. These variances will decay
at a rate determined by the diffusion coefficient and the local
wave vector as the local wave vector increases

d

dt
v l ~ t !522kl

2 ~ t !Dv l ~ t !,

or integrating this

v l ~ t !5v l ~0!expF22DE
0

t

kl
2 ~ t8!dt8G . ~21!

The time dependence of the total variance is then given by

C~ t !5(
l

v l ~ t !.

To verify this, we have computed the weights given by~21!
for the same ensemble of orbits discussed in the previous
section. The time dependence of lnC(t) is then plotted on
Fig. 1 along with that produced by the full Fourier amplitude
code. The predictions are in close agreement. Thus, the long
time decay of the variance can be described in terms of the
chaotic orbits.

To analytically arrive at a value for the decay rate we
need to evaluateC(t)5( l v l (t). From Eq.~21! it is seen
that the time behavior of the elemental variancesv l (t) is

determined by the growth of the magnitude of the corre-
sponding wave numberkl (t). If one substitutes the approxi-
mationkl (t);k0exp(hl t), one finds that the weight is con-
stant until a time tD; ln(2h/k0

2D)/(2h), and then quickly
decays to zero much faster than a simple exponential. Thus,
most orbits do not contribute to the long time decay of the
variance as their elemental variances have already decayed.

The long time behavior of the variance is determined by
orbits for which the simple approximationkl (t)
5 k0exp(hl t) is not adequate. In particular, we note from the
more accurate expression~17! that the amplitude of the ex-
ponentially growing component ofk(t) is proportional to the
cosine of the angle between the initial wave vectork(0) and
the exponentially decaying solutiondj2(0). Thus, if the ini-
tial wave vector is at right angles to the decaying solution
~the contracting direction!, k(t) will not grow exponentially
in time. This effect can be treated in the following way. We
write

kl ~ t !;k0cosf l exp@hl t#

where cosfl accounts for the orientation of the initialkl
with respect todj2(0). We then assume that for the en-
semble of orbits, the anglesf l are randomly distributed, and
independent of the finite time Lyapunov exponents,hl . We
then replace the sum over elemental variances with integrals
over the anglef and the finite time Lyapunov exponenth

C~ t !5E
0

`

dhP~h,t !E
0

2pdf

2p

3expF2
k0
2Dcos2fexp@2ht#

h G .
As discussed, for late times the factork0

2Dexp@2ht#/h is large,
and the dominant contribution to the integral comes from
small values of cosf. Expanding aboutf56p/2 and inte-
grating gives

C~ t !5S 2

pk0
2D D 1/2E

0

`

h1/2dhP~h,t !exp@2ht#.

We now perform theh integration by noting that the
P(h,t) distribution is well approximated as

P~h,t !5F tG9~h!

2p G1/2exp@2tG~h!#, ~22!

whereG(h)5G8(h)50 ~the prime denotes differentiation
with respect toh). This distribution is the same as that which
results from the multiplication of many random numbers.
Equation~22! is the so-called ‘‘large deviation’’ result for a
random variable which is the average of many independent,
identically distributed variables, and givesP(h,t) ~a function
of the two variablesh and t) in terms of a function of one
variable,G(h). The usual Gaussian result is obtained by ex-
pandingG(h) about its minimumh5h̄, G(h)> 1/2G9(h̄)
3(h2h̄)2. The Gaussian result is good if the range ofh of
interest is limited such that the numbers of standard devia-
tions from h̄ is not too large@the standard deviation of the
Gaussian is (G9n)21/2#. In doing the above integral for
C(t), however, the main contribution comes from a saddle

FIG. 8. Predicted dimensionDq of the measurem(s,t,1) versusq.
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point h5hc ~which is independent ofn). Consequently the
number of standard deviations betweenh̄ and hc diverges
like n1/2 asn increases, and the more accurate large deviation
form ~22! is necessary. The form~22! has been numerically
verified and used for cases where there are no KAM~Kol-
mogorov, Arnold, and Moser! surfaces7–11 @this occurs, in
particular, for the situation in which the time dependence of
the flow is nonperiodic~e.g., the Eulerian velocityv(x,t) is
itself temporally chaotic!#. As in Refs. 7–11 we find very
good agreement with~22! for our flow given by~8!. Also,
Eq. ~22! is expected to apply for time-periodic flows,
v(x,t)5v(x,t1T), if KAM surfaces are essentially absent
~e.g., the standard map at large nonlinearity parameter!. In
the presence of KAM surfaces bounding the relevant chaotic
region, as typically arises for two-dimensional time-periodic
flows, there are important modifications of Eq.~22!. These
modifications8,9 are due to the ‘‘stickiness’’ of KAM sur-
faces, leading orbits near KAM surfaces to remain near them
for long times.

In the absence of KAM surfaces the integration overh
may be carried out using the method of steepest descent. The
essential result is that

C~ t !;exp~2nt !,

where

n5~hc1G~hc!!, ~23!

andhc is determined by

11G8~hc!50.

Note thatG8(h) : 0 whenh: h̄; thushc,h̄. That is, the rate
of exponentiationhc which contributes dominantly to the
decay of the variance is less than the average rateh̄.

To test this prediction we have made histograms of
P(h,t) from the orbits, from which we can determine
G(h), via

G~h!.2
1

t
ln~P~h,t !/t1/2!,

for large t. Figure 9 shows data points from the histogram
along with a third order polynomial fit toh1G(h). As dis-
cussed above the minimum of this function determines the

decay rate. Note, as implied by the classical results in Ref. 5
and as observed in Ref. 4 this value is independent of the
diffusion coefficientD. In particular, from the fit in Fig. 9 we
obtainn51.91 which compares favorably with the result at
the full solutionn51.87.

Thus, we conclude that the long time decay of the scalar
is determined by the eventual exponential growth inkl of a
small number of orbits for which the initialk vector contains
a small component of the exponentially growing solution.
Further, the rate of exponentiation of the orbits which con-
tribute the most,hc , is less than the mean Lyapunov expo-
nenthc,h̄. This long time behavior is likely to be strongly
affected by the presence of KAM surfaces.

The exponential decay of the variance suggests that the
scalar has formed an eigenfunction; termed a ‘‘strange’’
eigenfunction in Ref. 4. As further support for the eigenfunc-
tion picture we note that the various moments^ks& plotted in
Fig. 6 are roughly independent of time during the long time
exponential decay.

Figure 10 shows averages over time of the power spec-
trum F(k,t) obtained from both the Fourier amplitude code
and the orbit code. Figure 10~a! shows the result from the
Fourier code averaged over two different time inter-
vals 11<t/T<20 ~solid curve! and 20<t/T<30 ~dotted
curve!, where the vertical scale is normalized via

FIG. 9. Data forG(h)1h at time t550T ~dots! and a third order polyno-
mial fit versush.

FIG. 10. ~a! The quantityF(k,t)/*dkF(k,t) computed from the Fourier
code averaged over time 11<t/T<20 ~solid curve! and averaged over time
21<t<30 ~dotted curve!. ~b! The average ofF(k,t) averaged over time
20<t<30 using the Fourier code~dotted curve! and using the orbit code
~solid curve!. The slight systematic off-set between the two curves in~b! is
due to a difference in*F(k,t)dk from the orbit code as compared to the
Fourier code. This difference is small considering that the overall amplitude
decays by a factor betweent50 andt525.
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F(k,t)/*dkF(k,t). The fact that the two curves in Fig. 10~a!
coincide means thatF(k,t) assumes an asymptotically in-
variant k-dependence as it decays with time. Figure 10~b!
shows results from the Fourier code~dotted! and the orbit
code ~solid! averaged over the time interval 20<t<30. As
can be seen, both codes predict essentially the same shape
for the power spectrum.

We may obtain an analytic expression for the long time
power spectrum as follows. We again use expression~18! for
the power spectrum along with Eq.~21! for the time depen-
dence of the elemental weights. We rewrite the exponent in
Eq. ~21! by multiplying and dividing by the final value of
kl
2 (t)

v l ~ t !5v l ~0!exp@22Dkl
2 ~ t !t l #,

where

t l 5E
0

t

dt8
kl
2 ~ t8!

kl
2 ~ t !

.

As kl grows exponentially with time the value oft l is de-
termined by the behavior ofkl (t8) for t8 within several ex-
ponentiation times oft. As the rate of exponentiation is not
constant, one cannot simply replacet l by (2hl )

21. We thus
regardt l andhl as two distinct random variables; withhl
measuring the rate of exponentiation for the orbit averaged
over a long time,t@1/hl , and t l measuring the rate of
exponentiation over a short time in the recent past. As the
distribution ofh values is the same as is obtained by sum-
ming a large number of independent variables we argue that
the values ofhl andt l can be considered to be independent
random variables.~The sum of a large number of random
numbers depends weakly on any individual term in the sum.!
Introducing probability distributions forhl and t l we re-
place the sum in Eq.~18! by integrations overh, t, and the
anglef,

F~k,t !5E df

2pE dhP~h,t !E dtM ~t!d@k2k0ucosfu

3exp~ht!#exp@2tk0
2Dcos2fexp~2ht!#

whereM (t) is the probability distribution fort. Carrying
out the integral overf ~expanding forucosfu!1 as before!
gives

F~k,t !

5
2

pk0
E dhP~h,t !exp~2ht!E dtM ~t!exp~2tDk2!.

The integral overh gives the exponential decay dependence
on time as before, while thek dependence of the power
spectrum is determined by the distribution oft values. That
is,

F~k,t !;exp~2nt !M̄ ~ADk!, ~24!

where

M̄ ~s!5E
0

`

dtM ~t!exp@2st# ~25!

is the Laplace transform of the probability distribution oft.
The width in k of the power spectrum thus scales with the
diffusion coefficient asD21/2 while the decay rate is inde-
pendent ofD.

Equations~23! and~24! are the main results of this sec-
tion. Equation ~23! yields the exponential decay rate,
while ~24! states the factorization of the time dependence
and gives an expression for the ‘‘strange’’ eigenfunction of
Pierrehumbert. We emphasize that bothn and the function
M ~andM̄ ) are determined purely by the dynamical behavior
of fluid element trajectories and are consequently indepen-
dent ofD.

IV. TIME PERIODIC FLOW

In this section we will examine the power spectrum for
cases in which the flow is time periodic, in particular, the
anglesu1 andu2 in Eq. ~8! are set to zero. In this case only
a fraction of the orbits are chaotic for the value of
the magnitude of the flow velocity under consideration
e5UT/L50.5. Surface of section plots for a number of ini-
tial conditions are shown in Fig. 11. As can be seen, most of
phase space is integrable. Grey scale intensity plots of the
scalar and gradient for this case are shown in Fig. 12. They

FIG. 11. Surface of section plot for a number of initial conditions with
u15u250 andUT/L50.5.

FIG. 12. Grey scale intensity plot of~a! the scalar and~b! the measure
m(s,t,1) defined in Eq. ~19! for t55T, for the case u15u250,
UT/L50.5.
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are quite different than those in the fully chaotic case, Fig. 4.
A plot of C(t) versust obtained from the Fourier am-

plitude code for this case is shown in Fig. 13. There is an
initial period in which the variance is constant corresponding
to early times when diffusion is negligible. Subsequently the
variance decays by about 30% and then becomes constant in
time. This decrease is attributed to the decay of scalar vari-
ance in the chaotic regions of space where the growth of the
wave vector is exponential. In the integrable region, nearby
orbits do not diverge exponentially and the spectrum remains
concentrated at low values of wave number. Ultimately this
variance will decay due to diffusion but at a very low rate.

The above picture is confirmed by the behavior of the
power spectrum with time shown in Fig. 14. The bulk of the
variance remains at lowk values while a portion, presumably
corresponding to the chaotic orbits, ‘‘cascades’’ to high val-
ues ofk where it is dissipated.

V. BATCHELOR’S LAW

According to Batchelor,5 the power spectrum should de-
pend inversely onk in the range of wave numbers greater
than that of the flow but less than that where the variance is
dissipated. Our previous work2 argued that this behavior ap-
plied only for cases in which a source was present at low
wave numbers, and the time asymptotic power spectrum was
considered. Indeed, none of the simulation results shown so

far in this paper conform to Batchelor’s law. To recover
Batchelor’s law we show in Fig. 15 the asymptotic power
spectrumFs(k) for the case in which the source is given by
S5 1

2cos@2p(x1y)/L#. As can be seen the power spectrum
has the properk21 dependence.

Our previous theory2 argued that the ‘‘steady state’’
spectrum in the presence of a source~such as that shown in
Fig. 15! could be obtained from a time integration of the
transient spectra produced in the initial value case. Figure
15~a! shows this time integrated power spectrum as produced
by both the Fourier amplitude code and the orbit code. Fig-
ure 15~b! compares the results of the Fourier code with a
steady source with those of the orbit code using a time inte-
gration of the transient spectra. The major contribution to
this time integration comes from the initial transient during
which the power spectrum has the form of a pulse as shown
in Fig. 2. As the rate of increase in the value of the wave
number corresponding to the center of the pulse,k̄, is deter-
mined by the Lyapunov exponent,dk̄/dt5h̄k̄, the contribu-
tion of the moving pulse to the time average power spectrum
is inversely proportional to k. This is the origin
of Batchelor’s law.

VI. CONCLUSIONS

We find that the reducedk-spectrum model provides a
remarkably accurate description for the time evolution of the
power spectrum of a passive scalar in a chaotic fluid flow. In
this model, the power spectrum is determined by following

FIG. 13. The quantityC(t) versust/T in the case with no KAM surfaces
present (u15u250, UT/L50.5) from the Fourier code.

FIG. 14. The quantity (2kL/p)F(k,t) versus ln(kL/2p) for the case with
KAM surfaces from the Fourier code.

FIG. 15. ~a! The quantity ln@(kL/2p)Fs(k)# versus ln(kL/2p) from the
Fourier code~solid curve! and from the orbit code~diamonds! computed
using a superposition of pulses.~b! The same quantities as in~a! except the
solid curve is computed with a source rather than a superposition of pulses.
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an ensemble of fluid orbits associated with which are an
ensemble of mean wave vectors and a contribution to the
scalar variance. Since the reduced power spectrum is de-
scribed in terms of the fluid orbits we can characterize the
behavior of the power spectra using recently developed con-
cepts in nonlinear dynamics. In particular a number of im-
portant features are related to the distribution of finite time
Lyapunov exponents. These include the initial evolution of
the power spectrum, its long time decay due to diffusion, and
the form of the power spectrum in the presence of a source of
scalar variance~Batchelor’s law!.
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APPENDIX: REDUCED k-SPECTRUM MODEL

In order to put our reducedk-spectrum model on firmer
footing we rederive it here introducing the phase space ac-
tion densityÑ(k,x,t) defined via

Ñ~k,x,t !5E dnrexp~2 ik–r !fS x1
r

2DfS x2
r

2D . ~A1!

We note that the transform of the correlation function
C̄(k,t) introduced in Eq.~5! is obtained by averaging the
action density over space

C̄~k,t !5^Ñ~k,x,t !&. ~A2!

Similarly, integration over wave vectork gives the local sca-
lar variance

f2~x!5E dnk

~2p!n
Ñ~k,x,t !. ~A3!

The definition of the action density~A1! may also be ex-
pressed in terms of the Fourier transform,f̄(k,t) of the sca-
lar, where

f~x,t !5E dnk

~2p!n
f̄~k,t !eik–x,

namely,

Ñ~k,x,t !5E dnq

~2p!n
eiq–xf̄S k1

1

2
q,t D f̄* S k2

1

2
q,t D .

~A4!

We now derive an evolution equation for the action density
from Eq. ~1!. Specifically we form

]Ñ~k,x,t !

]t
5E dnr exp~2 ik–r !FfS x1

r

2D ]

]t
fS x2

r

2D
1fS x2

r

2D ]

]t
fS x1

r

2D G ,
and use Eq.~1! to replace the time derivatives off. To
evaluate these terms it is useful to first express quantities in
terms of their Fourier transforms and then to utilize Eq.~A4!.
The result is

]

]t
Ñ1“–E dnq

~2p!n
v̄~q,t !eiq–x

1

2 S ÑS k2
q

2D1ÑS k1
qht

2 D D
1 ik–E dnq

~2p!n
v̄~q,t !eiq–xS ÑS k2

q

2D2ÑS k1
q

2D D
52DF14¹22k2GÑ~k,x,t !, ~A5!

where v̄(q,t) is the spatial Fourier transform of the flow
v(x,t).

So far, Eq.~A5! is exact. At this point we make the
assumption thatÑ(k,x,t) extends to high values ofuku com-
pared with the characteristic wave number of the flow. Fur-
ther, we focus on the smoothly varying in phase space part of
Ñ(k,x,t) which we labelN(k,x,t). These assumptions allow
us to Taylor expand theq dependence ofÑ(k6q/2) on the
left hand side of Eq.~A5! and to drop the Laplacian on the
right hand side compared withk2. The result is

]

]t
N~k,x,t !1“–~v~x,t !N~k,x,t !!2¹v~x,t !–k–

]

]k
N~k,x,t !

522k2DN. ~A6!

For the case in which the flow is incompressible in space
~A6! is the wave kinetic equation for disturbances with dis-
persion relationv5k–v. The characteristics are then given
by Hamilton’s equation

dx

dt
5

]v

]k
5v~x,t !,

dk

dt
52

]v

]x
52“v–k.

The general solution for the smoothed action density
can then be expressed in terms of the phase space trajec-
tories j(x8,t) and k(x8,k8,t) where dj/dt5v(j,t),
dk/dt52“v(j,t)–k, andj(x8,0)5x8, k(x8,k8,0)5k8. The
result is

N~x,k,t !5E dnx8dnk8N~x8,k8,0!d~x2j~x8,t !!

3d~k2k~x8,k8,t !!expF22DE
0

t

k2dt8G .
Our model corresponds to the above solution in the case in
which the continuous integrations over the initial phase
space coordinates are replaced by a discrete sum over initial
conditions. Using Eqs.~A2! and ~4! we then obtain~18!.
Equation~A6! can be viewed as a WKB~Wentzel, Kramers,
and Brillouin! type description of the passive scalar. Similar
formulations have been applied recently with success12 to
other problems in fluid mechanics.
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