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in tenuous plasmas
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Fast time averaged equations are derived for the motion of particles and the generation of
electromagnetic wake fields under the action of the ponderomotive potential of an ultraintense laser
pulse propagating through a tenuous plasma. Based on these averaged equations, a new particle code
is designed which calculates the particle trajectories on the plasma period time scale. The regime of
total cavitation of the plasma is investigated. It is found that stable propagation over a long distance
is possible in this regime, and that energetic electrons are produced with a simple characteristic
dependence of their angle of deflection on energy. This new code allows for computationally
efficient modeling of pulse propagation over great distances. ©1997 American Institute of
Physics.@S1070-664X~97!03301-6#

I. INTRODUCTION

Channeling of intense optical fields in plasmas is an im-
portant challenge, with possible applications in the context of
laser plasma accelerators and x-ray lasers. Many nonlinear
physical processes can be expected to affect the propagation
of these intense pulses. In particular, it has been shown in
recent papers that self-channeled intense laser pulses are sub-
ject to severe instabilities of the Raman type which modulate
the laser pulse and erode its tail,1–8or cause the laser pulse to
veer off its axis.9,10 The simulations and theory of Refs. 1–4
were based on laser-plasma fluid models corresponding to a
cold plasma. This prevents one from treating situations
where the plasma motion reaches the wave breaking limit
and where fast electrons are generated in the interaction. In
addition, these models contain a mathematical singularity at
zero plasma electron density which prevents their use when
the electrons are totally expelled from the axis of the laser
propagation~electron cavitation!. Such features are strong
limitations of the fluid models in the high intensity regime.
An alternative to the fluid models is the particle-in-cell~PIC!
technique.7,8 This technique follows the evolution of the la-
ser radiation on the short time scale associated with the laser
period, and thus, is computationally intensive and restrictive
in the parameters that can be studied.

In the following, a novel particle model is used to de-
scribe the long-time plasma behavior under the action of an
ultrahigh intensity~of the order of 1018 W/cm2 or more!,
short laser pulse~1 ps or less!. Among the results we obtain,
we emphasize the following:~i! Relativistic focusing for
short laser pulses is possible over a long distance~.30 zR!
with total electron cavitation in the laser channel and strong
reduction of the Raman type plasma instabilities
~zR5v0r L

2/2c is the Rayleigh length,v0 is the laser fre-
quency,r L is the laser spot size, andc is the light velocity!.
This self-focused propagation does not need the help of a
preformed plasma channel,11 which is necessary at moderate
intensities.~ii ! Plasma electrons can be ejected with relativ-

istic energies in the wake of the laser pulse. The angle of
ejection is related simply to the electron energy as a conse-
quence of momentum and energy conservation.

The organization of this paper is as follows. In Sec. II
we will present our kinetic model and discuss the approxi-
mations used in its derivation. The actual detailed steps in
the derivation are included in Appendix A. Properties of the
model are also discussed in both Sec. II and Appendix B.
Section III contains a discussion of the numerical implemen-
tation of the model for the case of a cylindrically symmetric
laser envelope and plasma wake. Section IV contains some
sample simulations illustrating the versatility of the code.
Finally Sec. V contains our conclusions and a discussion of
the direction of future work.

II. MODEL

The model we propose is fully relativistic, nonlinear, and
kinetic.12 In contrast to particle-in-cell techniques, however,
approximations are made. Specifically, we make the follow-
ing assumptions. Electrons interact with the radiation electric
field in two separate ways. First, they jitter in response to the
high frequency laser field, and thus contribute to a dielectric
constant. Second, they respond to the low frequency pon-
deromotive potential of the laser field, creating a nonlinear
wake following the laser pulse. This also modifies the dielec-
tric constant through modification of the electron density and
relativistic factor. Generally speaking, it is required that the
plasma be tenuous for this separation of responses to be
valid. In particular, we assume that the laser wavelength~fre-
quency! is much smaller~greater! than all the other charac-
teristic lengths~times! in the system. That isvp!v0 and
r L@c/v0 , where vp5(4pq2n0/m)

1/2 is the plasma fre-
quency based on the ambient densityn0, andq52e andm
are the charge and mass of an electron. These inequalities
enable one to expand the equation of motion of the electrons
and the wave equation in powers of the small parameter
vp/v0.
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A second approximation that we make with regard to the
particle motion is the so-called quasistatic approximation
~QSA!,13 which assumes that the electron transit time
through the laser pulse is short compared with the character-
istic laser pulse deformation time. This approximation is
valid for plasma electrons of sufficiently low energy. For
these electrons, the laser pulse passes over quickly during
which time its shape does not change. For electrons which
have been accelerated to high energy, and which are travel-
ing with the laser pulse, this approximation will fail. We
made sure that in our simulations the number of electrons for
which this is the case is zero or negligible.

Finally, consistent with our assumptions of a tenuous
plasma, the plasma contribution to the dielectric constant
will be small. Consequently, to lowest order the laser pulse
will propagate without changing shape. Over a long distance
and after a long time the shape of the pulse will evolve. This
is treated in the envelope approximation. We will retain
some higher order corrections to the envelope approxima-
tion, which allows the laser radiation to be considerably
down-shifted in frequency. However, it is still assumed that
the radiation is dominantly forward-propagating. Thus the
development of backscattering instabilities is not treated in
the present model.14 Due to the above approximations the
relevant numerical time and space scales are the plasma pe-
riod and the plasma wavelength, instead of the laser period
and the laser wavelength as in PIC codes. This results in a
considerable gain in terms of computing time. In addition,
due to the separation of the electron response into high and
low frequency components, we are able to treat the case of a
cylindrically symmetric wake and an arbitrarily polarized la-
ser pulse. It is believed that cylindrical effects are important
in modeling the evolution of the head of the laser pulse
which erodes due to diffraction.13

We begin our presentation with the envelope equation
for the radiation. Here the radiation is written in terms of the
high frequency vector potentialÃ' , which we write in the
form of an envelope modulating a plane wave traveling at
the speed of light,

Ã'5Â'~z,x' ,t !exp@ ik0z#1c.c., ~1!

wherek0 is the wave number of the plane wave andz5z2ct
measures the distance back from the head of the pulse. Here,
the envelope,Â' , depends on time and space and is deter-
mined by

F2c ]

]t S ik01 ]

]z D1¹'
2 G Â'5

4pq2

mc2 K n̄ḡ L Â' , ~2!

which follows from Eqs.~A32! and ~A34!. In writing the
left-hand side of Eq.~2! we have dropped the term]2/]t2,
which is of order~vp/v0!

2. In doing this we eliminate com-
ponents of the radiation which appear to vary rapidly in the
laser framez5z2ct. This corresponds to eliminating back-
scattered radiation. Note that we have retained the mixedz–t
derivative which is of ordervp/v0 in our simulations. As
discussed in Appendix B and shown in our numerical results,
retention of this term allows one to model the absorption of
radiation due to the creation of a plasma wake. Further, it can

be shown that inclusion of this term also enables one to
model pure forward Raman scattering, which is normally
excluded in the paraxial approximation.

The right-hand side of Eq.~2! represents the dielectric
response of the plasma. The angular bracket represents an
ensemble average over a distribution of particles each mem-
ber of which has a slowly varying in time density,n̄, and
relativistic factor,ḡ. In our numerical modeling this averag-
ing will take the form of summing the contributions of the
various simulation particles to the plasma dielectric.

The slowly varying density and relativistic factor are ob-
tained by solving for the motion of a particle in the combined
fields of the wake and the ponderomotive potential of the
laser pulse. Specifically, the particles, in effect, satisfy the
modified equation of motion,

dp̄

dt
5qS Ē1

v̄

c
3B̄D2

q2

ḡmc2
“uÂ'u2, ~3!

where the overbar on each quantity signifies that it is slowly
varying in time. Here the average relativistic factor is given
by,

ḡ5A11
1

m2c2 F up̄u212Uqc Â'U2G , ~4!

where the term under the radical involving the laser vector
potential represents the contribution of the jitter motion of
the electron to the transverse momentum. The derivation of
Eqs.~3! and ~4! for the specific case of interest is presented
in Appendix A @see Eqs.~A21! and ~A25!#, where it is
shown that their validity is limited to electrons for which
12vz/c@vp/v0 ~in particular this excludes trapped par-
ticles from the range of validity of the model!. We have also
used the relation

Uqc Ã'U252Uqc Â'U2,
which follows from averaging the square of expression~1!
over the period of the laser.

The equations of motion~3! can alternatively be written
in Hamiltonian form by introducing vector and scalar poten-
tials Ā andF̄ associated with the low frequency wake fields,
and the canonical momentumP̄5p̄1qĀ/c. In this case the
Hamiltonian is given byH̄5ḡmc21qF̄. In the quasistatic
approximation, the Hamiltonian depends onz and t only in
the combinationz5z2ct. This leads to the constancy of
H̄2cP̄z via

dH̄

dt
5

]H̄

]t
52c

]H̄

]z
52c

]H̄

]z
5c

dP̄z
dt

. ~5!

For electrons which are initially at rest this implies

ḡmc21qF̄2cp̄z2qĀz5mc2. ~6!

Equation~6! along with Eq.~4! can be used to solve alge-
braically for the axial momentum of a particle considering
the perpendicular momentum, and scalar and vector poten-
tials as known. In particular, introducing the potential

c̄5F̄2Āz , ~7!
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we find

ḡ5
1

2~12qc̄/~mc2!!
H 11

1

m2c2 F up̄'u212Uqc Â'U2G
1S 12

qc̄

mc2D
2J , ~8!

and

p̄z5
mc

2~12qc̄/~mc2!!
H 11

1

m2c2 F up̄'u212Uqc Ā'U2G
2S 12

qc̄

mc2D
2J . ~9!

Thus, in solving the equations of motion, only the perpen-
dicular components of momentum for a particle need to be
evolved. The axial component can be obtained using Eq.~9!.
Specifically, we imagine solving the equations of motion on
a two-or three-dimensional grid. We introduce the coordinate
j5ct2z52z so that positivej measures distance back from
the head of the pulse, or alternatively, time at a fixed axial
position. The evolution of the transverse momentum of a
plasma particle as the pulse passes over it is then given by

dp̄'

dj
5

1

c~12qc̄/~mc2!! FqḡS Ē1
v̄

c
3B̄D

'

2
q2

mc2
“'uÂ'u2G , ~10!

where we have used

dj

dt
5c2 v̄z5

c

ḡ S 12
qc̄

mc2D ~11!

and Eq.~6! in replacing the derivative with respect to time
with a derivative with respect to the laser frame coordinatej.
This replacement is useful in numerical solution of the gov-
erning equations as it allows particle quantities to be defined
on the same axial grid as the field quantities. The trajectory
of a particle in the transverse plane is then written,

dx'

dj
5

p̄'

mc~12qc̄/~mc2!!
. ~12!

Once the electron trajectories in the~x' ,j! space are deter-
mined, the wake current densities and the dielectric constant
for the laser field can be evaluated. As the laser pulse passes
over an electron it contributes to the local density according
to the amount of time it spends in a particular axial region.
The effective density of the particle is then given by

n̄~x' ,j!5n̄0~x'0!
c

c2 v̄z
5n̄0~x'0!

ḡ

~12qc̄/~mc2!!
,

~13!

wheren̄0~x'0! is the plasma density of the electrons upstream
from the pulse. The density,n̄~x'j!, can be assigned to the
grid in the transverse plane using techniques developed for
PIC codes. The electrical current density may also be as-
signed based on the same procedure using Eq.~13! in Eq.
~A35!.

We note, in the speed of light frame, all information
must propagate from small values ofj5ct2z to large val-
ues. Accordingly we integrate Eqs.~10! and ~11! starting
from j50, the head of the pulse. We must also write the
equations for the wake fields so that they may be integrated
in j in the same direction. To do this we rewrite the axial and
transverse components of Eq.~A37! introducing the potential
c̄ defined in Eq.~7!,

4p

c
j̄'5“'

]c̄

]j
1“'~“'–Ā'!2¹'

2 Ā' ~14!

and

4p

c
j̄ z52

]2c̄

]j2
2¹'

2 Āz2
]

]j
~“'–Ā'!. ~15!

Solution of Eqs.~14! and ~15! along with the charge conti-
nuity implied by solution of the particle equations then guar-
antees that the Poisson equation~A36! is satisfied as well.

The two transverse components of Eq.~14! can also be
thought of as equations for the transverse solenoidal and ir-
rotational parts of the current density~the last two terms on
the right have zero transverse divergence!. For a given cur-
rent density, Eq.~14! can be solved for]c̄/]j andĀ' once a
gauge condition is specified. An obvious choice, which we
make here is the transverse Coulomb gauge,“'–Ā'50.
Then we have from Eq.~14!

4p

c
“'–

] j̄'
]j

5¹'
2G, ~16!

whereG is given by

]2c̄

]j2
5G. ~17!

The left-hand side of Eq.~16! is determined from the particle
equations, and Eq.~16! is inverted to findG. With G known,
Eq. ~17! may be integrated axially to determine the potential
C̄, and Eqs.~14! and ~15! ~with “'–Ā'50! inverted to find
Ā.

To summarize, within the stated assumptions, the deter-
mination of the plasma response to an intense laser pulse is
as follows. Trajectories of individual particles are obtained
by integrating Eqs.~10! and ~11! forward in j. The axial
momentum and relativistic factor for individual particles are
determined from Eqs.~8! and ~9!. Simultaneously, one inte-
grates Eqs.~16! and ~17! to find the potential and then in-
verts the transverse Laplacians in Eqs.~14! and ~15! to find
Ā' and Āz . Finally, one computes the plasma dielectric and
integrates Eq.~2! in time to evolve the laser fields. The pro-
cedure is then repeated for a fresh group of plasma particles.
The realization of this system for a cylindrically symmetric
laser pulse will be discussed in Sec. III.

III. NUMERICAL REALIZATION

We have solved the set of Eqs.~6! and~19!–~22! on both
a two-dimensional Cartesian grid~j,x! and a cylindrical grid
~j,r'! with the computer codeWAKE. The numerical method
is implicit as far as weakly nonlinear terms are concerned,
and the remaining terms in the equations of motion are
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treated using a predictor corrector scheme. Once the particle
trajectories are computed, we collect the terms contributing
to the right-hand side of Eq.~2! to advance the laser field in
time with a time step which is a fraction of the Rayleigh
length divided by the light velocity. Finally we also treat the
ions’ motion and contribution to the source in Maxwell equa-
tions. However, except for quite long laser pulses, when the
ions tend to be expelled from the laser channel by the ambi-
polar field due to the electron expulsion, the simulation re-
sults are almost insensitive to whether or not the ions are
allowed to move.

In the case of two-dimensional geometry the transverse
Coulomb gauge condition impliesA'50. Further, we com-
bine Eqs.~15! and ~16! to form the modified equation

4p

c S“'–

] j̄'
]j

1kp
2 j̄ zD 5~¹'

22kp
2!G2kp

2¹'
2 Āz , ~18!

wherekp5vp/c, which is inverted to findG as opposed to
Eq. ~16!. This equation has the feature that in the weakly
nonlinear, electrostatic limit it produces the same equation as
fluid theories for the excitation of the plasma wave.

Finally, to simplify matters we have introduced the fol-
lowing normalized quantities:a(r ,t)5qÂ'/mc2, p5p̄/mc,
c52qc̄/mc2, r5kpr , j5kpj, and b52q“3Ā/mvpc. In
cylindrical geometry this results in the following equation of
motion:

dpr
dj

5
1

11c S g
]

]r
c2

1

2

]

]r
^a2& D2bu , ~19!

dr

dj
5

pr
11c

, ~20!

and the following equations for the wake field;

~D'21!
]2

]j2
c5

1

r

]

]r
r S ] j r

]j
2buD1 j z , ~21!

1

r

]

]r
rbu5

]2

]j2
c1 j z . ~22!

The equations are solved using a finite difference
scheme in which a grid is set up in both axial coordinatej
and radial coordinater . Certain quantities are defined on the
grid or halfway between two grids. For example, among the
field quantities the radiation vector potentiala, the normal-
ized wake potentialc and its second derivativeG, the density
n̄ and dielectric constant, and the axial current densityj z are
all defined on both the radial and axial grid. The azimuthal
magnetic field and radial electric field are defined on the
axial grid and halfway between to radial grid points. The
axial electric field is defined on the radial grid, but halfway
between two axial grid points, and the radial current density
is defined halfway between both the radial and axial grid
points. For the particles, the radial location, relativistic fac-
tor, and axial velocity are calculated on the axial grid,
whereas the radial momentum is defined halfway between
two axial grid points.

The following radial boundary conditions are used. In
inverting Eq. ~21! it is assumed that the wake potential is
regular at the origin and vanishes at a sufficiently large ra-

dius corresponding to the boundary of the simulation vol-
ume. The azimuthal magnetic field is assumed to be regular
at the origin. Concerning the particles, those which intersect
the symmetry axis are specularly reflected. For the laser field
Eq. ~2! is solved subject to the outgoing radiation boundary
condition discussed in Ref. 1. Numerical solutions of the
above system of equations will be presented in Sec. IV.

IV. SAMPLE RESULTS

We verified that the code gives identical results to Ref. 1
~slab geometry! in the weakly relativistic limit and to Ref. 2
~cylindrical geometry! when the electron flow is laminar. We
also compared the code with the results of a PIC code7 for
values ofvp/v0 as large as 0.2, and in situations where the
QSA is only marginally valid, and the code gave very close
results, with a lower noise in our case. Sample results from
this latter case are shown in Fig. 1. The following parameters
were chosen:a053/8, kpr L59, andvp/v050.2. The initial
profile for the laser radiation was selected to be of the form,

a~r ,j,t50!5a0f ~j!exp~2r 2/r L
2!,

where f ~j! increases linearly from 0 to 1 for 0,kpj,30,
f ~j!51 for 30,kpj,50, andf ~j! decreases linearly from 1
to 0 for 50,kpj,80. Figure 1 displays the gray scale plots
of the amplitude of the laser electric field, and the axial low
frequency wake electric field in thex, j plane at several
different times. This figure can be compared with Fig. 3 of
Ref. 7. One can see that the qualitative features of the evo-
lution of the laser pulse are in good agreement, and that

FIG. 1. Contour plots from a two-dimensional planar simulation with
a050.375,v0/vp55.0, kpr L59, andkpL580. The size of the simulation
box shown are 85kp

21 alongz and 63kp
21 in the perpendicular direction:~a!

laser field and~b! axial wake electric field atvpt5100, ~c! laser field, and
~d! axial wake electric field atvpt5150, ~e! laser field, and~f! axial wake
electric field atvpt5250.
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quantitatively there is reasonably good agreement as well,
though trapped particles are seen in Ref. 7, while they are not
treated in the present model.

We now show the result of a high intensity laser pulse
propagating in a tenuous plasma in cylindrical geometry. Ini-
tially, the radiation is of the form

a~r ,j,t50!5a0 sin~pj/L !exp~2r 2/r L
2!.

The following parameters were chosen:a050.25, kpL540,
kpr L516, andvp/v050.03, which corresponds to a plasma
of density 1018 cm23 for a 1mm laser light. Figure 2 shows
surface plots of the laser intensity at four times during the
simulation. The power is about twice the critical power for
relativistic self-focusing15,16 @Pc516.2(v0/vp)

2 109 W#. As
expected, we observe that the pulse is subject to the Raman
self-focusing instability.1 However we observe that the insta-
bility develops slightly slower than predicted by the weakly
nonlinear model of Ref. 1. After one Rayleigh length, we
observe that the pulse has been separated into two pulses
which are still focused and propagate on about 2 Rayleigh
lengths, and then diffracts quickly after a strong pump
depletion.8 The same case run withvp/v050, that is without
the ]/]z term in Eq.~2!, would propagate on about 10 Ray-
leigh lengths, which shows the importance of the pump
depletion and of the forward Raman term here.

Figure 3 corresponds to the same laser power, but to a
smaller focal spot, i.e.,a051.0, kpr L54. In this case, we
observe a total expulsion of the electrons from the laser
channel which stabilizes the Raman instability in the bulk of
the laser pulse. As a result, the laser pulse propagates over a
large distance~more than 30 Rayleigh lengths! with a radial
profile similar to the one predicted in the model of Sun
et al.16 The front part of the pulse is eroded as predicted by
Sprangleet al.13 The fact that self-focused propagation on
distances much larger than the Rayleigh length is possible is
in agreement with recent experimental results.17,18We veri-

fied here that the role of the forward Raman term was appar-
ently smaller in this case. Note however that as the Rayleigh
length scales asr L

2, the actual distance on which the laser
pulse propagates is not much different in the small focal spot
case than in the case of Fig. 2.

Figure 4 shows the electron density after one Rayleigh
length for the same case as Fig. 3. One observes total elec-
tron cavitation where the laser intensity is large, enhance-
ment of the density on the sides of the self-focused channel,
and a strong peak behind the laser pulse due to electrons
which come back toward the center of the channel under the
action of the charge separation field. This behavior is similar
to that observed in the case of the nonlinear plasma wake
field.19 Suppression of Raman instabilities may be attributed
to a number of effects. The electron density is reduced where
the laser intensity is greatest, the plasma channel is inhomo-
geneous which disturbs the plasma wave resonance, and the
channel density has a maximum at a radius just greater than
the spot size. This last effect contributes to enhancing the
diffraction of radiation which is side scattered and thus sup-
presses side scattering instabilities.20

FIG. 2. Time evolution of the laser intensity for the case of a moderate
intensity and large focal spot~a050.25,kpr L516, kpL540!.

FIG. 3. Time evolution of the laser intensity for the case of a large intensity
and small focal spot~a051.0, kpr L54, kpL540!.

FIG. 4. Electron density after one Rayleigh length~same case as Fig. 3!.
The electron density has been limited to 3n0 on this curve.
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Figure 5 shows sample electron trajectories after the la-
ser has propagated one Rayleigh length in the plasma. In this
example the electron flow is laminar untilkpj'15. For
kpj.15, the radial wavebreaking of the plasma disturbance
results in a multipeaked electron distribution function and
the ejection of fast electrons in the MeV range. The validity
of fluid codes would be limited tokpj,15 here. Figure 6
shows the cross sections(E) for the generation of electrons
with energy greater thanE. This cross section is generated
after the laser pulse has propagated 30 Rayleigh lengths in
the plasma. It is averaged over the propagation length and
normalized tos052p(c/vp)

2. The rate of productionR of
electrons with energy greater thanE is given by

R5s~E!n0c55.331022
s~E!

s0
s21. ~23!

In the example shown in Fig. 6, the maximum Lorentz factor
of the accelerated electrons is of the order of 3, which is well
below the validity limit of the ponderomotive approach@Eq.
~3!#, since herev0/vp533. Due to the constraint, Eq.~6!, the
ejected electrons~for which c50! satisfy the relationpz
5 1

2pr
2. Note that this relation applies to the electrons accel-

erated by the ponderomotive force~and self-consistent
plasma fields!, and that it has the same form as the relation
between

the axial and the radial jitter momentum of an electron in a
plane wave.21 It does not apply to longitudinally trapped
electrons which violate the validity limit of the ponderomo-
tive approach. The relation may be reexpressed in terms of
the angleu made by the electron with respect to the axis of
the laser,

cosu5Ag21

g11
. ~24!

A simple interpretation of this result can also be given by the
analysis of the collision of a photon packet~of total energy
E@mc2! with a single electron when the energy loss of the
radiation is small~multiphoton Compton effect with small
photons deflection!. This relation can be expected to apply so
long as the radiation wave vector remains in the forward
direction. Electrons satisfying this relation were recently ob-
served by Meyerhoferet al. in a laser-gas experiment.22

A final set of simulations correspond to cases typical of
contemporary experiments.18 The parameters of the refer-
ence run for this set area051.083, kpr L53.713,
vp/v050.0594, which correspond to 1.058mm laser light,
r L510.54 mm, zR5330 mm, n053.531018 cm23, P510
TW, P/Pc'2.2, andI 055.7331018W cm22 ~whereP is the
laser power andI 0 is the maximum laser intensity when fo-
cused in vacuum!. The plasma length is 3 mm long~9 zR!,
including two linear ramps of one Rayleigh length on each
side. The temporal pulse profile is Gaussian with a full width
at half-maximum in energy of 300 fs~'31.7 vp

21!. The
simulation box extends to 12r L . In the reference run~curves
A on Figs. 7 and 8! the laser is focused near the entrance of
the gas jet, namely atz/zR523.5, wherez50 corresponds
to the center of the gas jet. Figures 7 and 8 show the maxi-
mum intensity attained on the laser axis as a function of the
positionz5ct. Due to self-focusing the intensity grows up to
approximately 3.5I 0, and the laser pulse then propagates in a
self-focused state withI /I 0'2–2.5 until the exit of the jet.
As in the case corresponding to Fig. 3, we have verified that
the self-focused part of the pulse progressively shortens as
the pulse propagates in the plasma, while there is a complete
electron density cavitation with the formation of a strongly
nonlinear wake. In the case of Figs. 7 and 8, we have varied
some parameters compared to the reference case.

For the case of Fig. 7~a! we have varied the laser inten-
sity. Curve B corresponds toa050.766, or I 052.8631018

W cm22, P55 TW, P/Pc'1.1. Though the laser power is
still slightly above the critical power, it is not sufficient to
maintain self-focused propagation over a long distance as in
the reference case. Curve C corresponds toa050.01 and
shows no nonlinear effect. One recovers in this case the
vacuum propagation characteristics.

For the case of Fig. 7~b! we have varied the electron
density. Curve B corresponds to the same laser parameters as
curve A except for the density which isn05731018 cm23, so
that P/Pc'4.4. One observes a similar behavior, with an
even stronger amplification of the maximum laser intensity,
which attains 4–6I 0, in a smaller density channel.

For the case of Fig. 7~c! we have varied the focal posi-
tion, from near the entrance of the gas jet to near the exit of
it. More specifically, the focal position~in vacuum or for

FIG. 5. Sample electron trajectories for the case of Figs. 3 and 4, after the
laser pulse has propagated 1 Rayleigh length in the plasma.

FIG. 6. Cross section for the generation of electrons with energy greater
thanE in the case of Figs. 3–5. The fast electrons are collected over the first
30 Rayleigh lengths.
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a0!1! corresponds, respectively, to23.5 ~curve A!, 22.5
~curve B!, 0. ~curve C!, and13.5 ~curve D!. The simulation
box has been extended respectively to 16 and 20r L for the
cases corresponding to curves C and D, respectively. One
observes on these curves that the self-focused propagation is
favored when the laser is focused near the entrance of the gas
jet. When focused in the middle of the gas jet~curve C!,
there is still a strong amplification of the maximum laser
intensity compared to the vacuum case, but the laser seems
to bounce back and almost no self-focusing occurs. We ob-
served, however, that some part of the laser pulse has self-
focused propagation betweenz/zR52 and 4 with I /I 0'0.2
and a rather large spot. The corresponding density wake is

still significant, since forz/zR53.5 the wake electron density
oscillates between 0.6 and 1.5n0.

Figure 8 shows a comparison of cylindrical~curve A!
and slab~curve B! geometry for the same set of numerical
parameters. As expected, and already noticed by Pukhov and
Meyer-ter-Vehn in a higher density case,23 the cylindrical
case leads to a higher on-axis intensity than the slab case.
Similarly, we verified that the electron density cavitation was
less important in the slab case. These effects have to be kept
in mind while using slab results to interpret real experiments.

Figure 9 shows the laser energy in the simulation box
normalized to its initial value versus the propagation distance
for the parameters of Fig. 7~b! ~i.e.,n053.531018 cm23 cor-
responding to curves a and A, andn05731018 cm23 corre-
sponding to curves b and B!. The radius of the simulation
box is 10r L for curves a and b, and 20r L for curves A and B.
The difference between the lower case and upper case curves
is indicative of the fraction of laser energy side scattered out
of the simulation region. At higher density there is a greater
depletion of laser energy associated with creating the plasma
wake.

V. CONCLUSION

We have derived the fast time averaged equations for the
motion of particles and the generation of electromagnetic
wake fields under the action of the ponderomotive potential
of an ultraintense laser pulse propagating through a tenuous
plasma. Based on these averaged equations, we have de-
signed a new particle code calculating the particle trajecto-
ries on the plasma period time scale. This code is able to deal
with cylindrically symmetric geometry as well as slab geom-
etry. As an example of the use of the code we have studied
stable propagation in the regime of total electron cavitation,
with relativistic electrons ejected from the wake of the pulse
in a cone whose angle decreases with energy. This calcula-
tion could also help in improving the interpretation of recent
experiments on relativistic self-focusing.17,18

As the code is based on a multiple time and space scale
formulation of the governing equations its regime of validity
is restricted to propagation of pulses in tenuous plasmas,
vp!v0. However, it is this regime which is particularly dif-
ficult to treat with PIC codes. Additionally, the assumption
has been made that the radiation is dominantly forward
propagating, which eliminates the possibility of studying Ra-
man backscattered waves with the present code. Also the

FIG. 7. On-axis maximum intensity~normalized to the maximum intensity
when focused in vacuum! as function of the propagation distance. Curves A
always correspond to the following physical parameters,r L510.54 mm,
zR5330mm, n053.531018 cm23, P510 TW ~P/Pc'2.2!, for a 1.058mm
laser light. The plasma length is 3 mm long~9 zR!, including two linear
ramps of one Rayleigh length on each side. The temporal pulse profile is
Gaussian with a full width at half-maximum in energy of 300 fs. The laser
is focused near the entrance of the gas jet, namely atz/zR523.5, where
z50 corresponds to the center of the gas jet.~a! Same parameters as curve
A except for the laser intensity,P55 TW ~curve B!, andP51 GW ~curve
C!; ~b! same parameters as curve A except for the plasma density,
n05731018 cm23 ~curve B!; ~c! same parameters as curve A except for the
focal spot position,z/zR5 22.5 ~curve B!, z/zR50. ~curve C!, and
z/zR513.5 ~curve D!.

FIG. 8. On-axis maximum intensity for cylindrical~curve A! and slab
~curve B! geometries. Parameters correspond to those of curves A of Fig. 7.

FIG. 9. Laser energy in the simulation box. Curves A and a correspond to
the parameters of curve A of Fig. 7~b! ~i.e.,n053.531018 cm23!, and curves
B and b correspond to the parameters of curve B of Fig. 7~b! ~i.e.,
n05731018 cm23!. The radius of the simulation box is 10r L for curves a and
b, and 20r L for curves A and B.
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quasistatic approximation, in which it is assumed that the
shape of the laser pulse changes only lightly in the time
during which a given electron remains in the laser pulse,
restricts from consideration those electrons which have been
accelerated to high energy, 12vz/c@vp/v0 . Finally, the
code uses the predictor corrector method of calculation of the
wake magnetic field. It has been our observation that for
extremely intense and relatively long pulses that this can lead
to some numerical difficulty.

One of the characteristics of the code is that it has a
particularly low numerical noise. We have taken advantage
of this to study the magnetic field generated in the wake of
an ultra-intense field in a separate paper.24 This magnetic
field appears to be of fourth order in power of the laser field
amplitudeA and may play an important role in the laser
wake field accelerator concept.

The code is presently devoted to the study of the inter-
action of laser pulses with plasmas. In many experiments
however the laser pulse primarily interacts with a neutral gas,
and the ionization processes may play an important role in
the laser propagation itself.25 We are currently incorporating
an ionization package in the model to be able to deal with
these aspects. The result will be a versatile and most efficient
model to describe ultrashort pulse interaction with gas or
preformed plasma.
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APPENDIX A: PONDEROMOTIVE EQUATIONS

In this appendix we derive the fast time averaged equa-
tions for the motion of particles in the laser pulse wake and
the electromagnetic wake fields. We begin the derivation
with the equations of motion for relativistic particles in elec-
tromagnetic fields described by a scalar and vector potential,

d

dt S p1
q

c
AD52q“F1S“ q

c
AD –v, ~A1!

wherep is the particle momentum,g is the relativistic factor,
v5p/(gm) is the particle velocity, andA and F are the
vector and scalar potentials. The total time derivative appear-
ing in Eq. ~A1! is the Lagrangian derivative following the
particle velocityv. Equation~A1! can be supplemented by
the equation of evolution of particle energy,

d

dt
gmc252qv–S“F1

1

c

]A

]t D , ~A2!

which will be useful in the following derivation.
The fields are determined by Maxwell’s equations which

are written as

F 1c2 ]2

]t2
2¹2GA5

4p

c
j2“S 1c ]F

]t
1“–AD , ~A3!

“–F“F1
1

c

]A

]t G524pr, ~A4!

where j and r are the current density and charge density,
respectively. We calculate these by assuming that the plasma
consists of an ensemble of cold fluids whose velocities are
determined by Eqs.~A1! and~A2!, and whose corresponding
densities are determined by the continuity equation,

]n

]t
1“–nv50. ~A5!

The charge and current densities are then obtained by aver-
aging over the ensemble of cold fluidsr5^qn& andj5^qnv&.
This averaging will be performed after the averaging over
the fast time scale of the radiation. Further, we temporarily
specialize to the Coulomb gauge where“–A50.

The next step is to transform to laser frame coordinates
by introducing the variablez5z2ct. In terms of this new
axial coordinate Eqs.~A1! and ~A2! can be written as

F ]

]t
1~v2cez!–“ G S p1

q

c
AD52q“F1S“ q

c
AD –v,

~A6!

F ]

]t
1~v2cez!–“ Ggmc252qv–S“F1

1

c

]A

]t
2

]A

]z D .
~A7!

Here, the axial component of the gradient operator is under-
stood to represent differentiation with respect toz. Further,
Maxwell’s equations in the Coulomb gauge become,

F 1c2 ]2

]t2
2
2

c

]2

]t]z
2¹'

2 GA5
4p

c
j2“S 1c ]F

]t
2

]F

]z D ,
~A8!

and,

¹'
2F1

]2

]z2
F524pr. ~A9!

Rather than solving the three independent components of Eq.
~A6!, we consider our system to be the two components of
Eq. ~A6! transverse to the direction of propagation of the
laser pulse,

F ]

]t
1~v2cez!–“G S p'1

q

c
A'D

52q“'F1S“'

q

c
AD –v, ~A10!

and the axial component of Eq.~A6! minus Eq.~A7! divided
by the speed of light,

F ]

]t
1~v2cez!–“GFpz2gmc1

q

c
~Az2F!G

52
q

c S ]F

]t
2
v

c
–

]A

]t D . ~A11!

The next step in our derivation is to introduce an expan-
sion based on the disparity between the laser and plasma
frequencies. We define the small parametere5vp/v0 where
vp is the plasma frequency andv0 is the laser frequency. In
terms of this small parameter the axial,L, and transverse,R,
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sizes of the laser pulse scale asR'L'l0/e, wherel0 is the
laser wavelength. Derivatives with respect to the axial vari-
ablez are expanded as follows:

]

]z
5

]

]z0
1

]

]z1
, ~A12!

where z0 is a fast variable associated with the laser wave-
length]/]z0'1/l0, andz1 is a slow variable associated with
the laser envelope and the plasma wavelength,]/]z1'e/l0.
The transverse gradient is also assumed to follow the scaling,
“''e/l0. In the laser frame coordinates all quantities vary
slowly in time. Correspondingly, we take the time derivative
to scale as]/]t'e2v0. Next we expand the field quantitiesF
andA in powers ofe. As it turns out, only the lowest order
terms in each field quantity enter the final equations. Thus,
we suppress the subscript, 0, for the lowest order quantities
but retain it when expressing the higher order quantities. For
situations of interest the particle motion is relativistic. Thus,
it is appropriate to consider the magnitude of the lowest or-
der quantitiesF andA to scale asmc2/q. Consequently, the
source terms involvingr and j in Eqs. ~A8! and ~A9! are
second-order quantities scaling ase25~vp/v0!

2.
The leading~zero! order version of the Poisson equation,

]2F/]z0
250, requires that the lowest order electrostatic poten-

tial be independent of the fast variablez0, F5F̄~z1,x' ,t!.
Here the overbar indicates that a quantity is averaged over
the fast space scale. Similarly, the lowest order version of the
gauge condition,]Az/]z050, requires that the zero-order
axial component of the vector potential be independent of the
fast variablez0, Az5Āz~z1,x' ,t!. This follows from the fact
that the transverse gradient is assumed to be first order. To-
gether these conditions require that the zero-order axial elec-
tric field vanish. The first-order version of the Poisson equa-
tion, ]2F1/]z0

212]2F/]z0]z150, then indicates that the first-
order potential,F1 is also independent of the fast variable
@Note that in the above the second term is identically zero as
a result of the lowest order solution,F5F̄~z1,x' ,t!.# Finally,
in second order the charge density enters,

¹'
2 F̄1

]2

]z1
2 F̄1

]2

]z0
2 F25 24pr.

Averaging this equation over the fast scale annihilates the
second-order potential and indicates that only the average
charge density contributes to the lowest order potential. The
averaging step will be performed later in the derivation, once
the charge density is determined. The rapidly varying part of
the charge density produces a second-order contribution to
the electrostatic potential. The physical implication of the
above equations is that in tenuous plasmas large electrostatic
potentials can only develop over distances much greater than
the laser wavelength.

The lowest ~zero!-order contribution to the transverse
component of the vector potential has both a rapidly varying
component and an averaged component,

A'5Ã'~z0 ,z1 ,x' ,t !1Ā'~z1 ,x' ,t !. ~A13!

The rapidly varying component is associated with the laser
field, and the slowly varying component is associated with
the electromagnetic component of the wake. Both compo-

nents are determined by the leading order version of Eq.
~A8! which is second order ine. We note that the transverse
components of Eq.~A8! are second order. Thus the average
of ~A8! will determine the electromagnetic field of the wake,
while the rapidly varying part describes the propagation of
the laser light. Solution of this equation will also be deferred
until the charge and current densities are determined.

We now consider solution of the particle equations.
Within the approximation that quantities evolve slowly in the
laser frame we may neglect the time derivatives in Eq.~A11!
through two orders ine. Further assuming that the particle
velocity satisfies the condition 12vz/c@e, Eq. ~A11! yields

gmc2pz5mc1
q

c
~Āz2F̄!, ~A14!

where we have inserted overbars on the potentialF andAz

indicating that they do not vary on the scale of the laser
wavelength. Equation~A14! indicates the constancy of the
quantity H2cPz , where H is the particle Hamiltonian andPz

the canonical momentum, for cases in which the fields de-
pend on time only in the combinationz2ct. The value of
this conserved quantity is determined from the condition that
the plasma electrons be unperturbed upstream from the laser
pulse. It is important to note that Eq.~A14! indicates that,
while the quantitiesg and pz have both rapidly and slowly
varying components, their difference is a slowly varying
quantity. The condition 12vz/c@e requires that one wave-
length of the laser field pass by electrons in a time suffi-
ciently short such that their radial motion is negligible. This
condition ~which will appear again! effectively excludes
from consideration the motion of electrons which have been
trapped and accelerated to high energy by the laser pulse.

Turning now to the transverse components of the mo-
mentum, the lowest order version of~A10! gives
]~p'1qA'/c!/]z050. Thus,

p'5p̃'~z0 ,z1 ,x' ,t !1p̄'~z1 ,x' ,t ! ~A15!

where

p̃'~z0 ,z1 ,x' ,t !52
q

c
Ã'~z0 ,z1 ,x' ,t !, ~A16!

is the lowest~zero!-order transverse jitter momentum associ-
ated with the laser field. We note that there is also a zeroth-
order longitudinal component of the jitter momentum which
can be calculated from Eq.~A14! once the rapidly varying
component of the kinetic energy is determined. The averaged
transverse momentum~also zero order! is determined from
the first-order version of Eq.~A10!

Fp'–“'1~ p̄z2ḡmc!
]

]z1
G S p̄'1

q

c
Ā'D1~ p̄z2ḡmc!

3
]

]z0
S p'11

q

c
A'1D52qgm“'F̄1S“'

q

c
AD –p.

~A17!

Here we have multiplied bygm, and used Eq.~A14! to re-
placepz2gmc by its average. We have also indicated the
necessary presence of first-order corrections to the transverse
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momentum and vector potential. These however, are annihi-
lated by averaging Eq.~A17! over the fast length scale,

F p̄'–“'1~ p̄z2ḡmc!
]

]z1
G S p̄'1

q

c
Ā'D

52qḡm“'F̄1S“'

q

c
AD –p. ~A18!

Thus, except for the last term on the right-hand side, all the
quantities appearing in Eq.~A18! are averaged quantities.
The last term on the right is evaluated as follows:

S“'

q

c
AD –p5S“'

q

c
ĀD –p̄2

1

2
“'Uqc Ã'U2, ~A19!

where we have used Eq.~A16! to express the rapidly varying
momentum, and we have used the fact that the axial vector
potential has only a slowly varying component.

We now derive an expression for the fast scale averaged
relativistic factor. We begin by writing an expression for the
square of the zero-order relativistic factor,

g2511
1

m2c2 FUp̄'2
q

c
Ã'U21pz

2G , ~A20!

where we have expressed the rapidly varying part of the
perpendicular momentum in terms of the vector potential.
We then use Eq.~A14! to express the axial momentum in
terms of its average and the relativistic factor,
pz5 p̄z1mc(g2ḡ). Inserting this expression in Eq.~A20!
and averaging over the fast time scale produces,

ḡ2511
1

m2c2 F up̄'u21 p̄z
21Uqc Ã'U2G . ~A21!

Thus, the average relativistic factor depends algebraically on
the average momentum, and radiation vector potential in a
straightforward way.

We then introduce the fast scale averaged velocity which
we define via the relation,

v̄[
p̄

ḡm
. ~A22!

With this definition, Eqs.~A18!, ~A19!, and ~A20! may be
combined and rewritten,

~ v̄2ezc!–“S p̄'1
q

c
Ā'D

52q“'F̄1S“'

q

c
ĀD –v̄2

1

2mḡ
“'Uqc Ã'U2. ~A23!

Thus, we recover an averaged equation of motion which is of
the same form as the original equation for the unaveraged
quantities,~A10!, except that time derivatives are absent~re-
placed by a derivative with respect toz in the quasistatic
approximation!, and there is a ponderomotive potential due
to the jitter of electrons in the laser field.

Equation ~A23! describes the evolution of the perpen-
dicular components of momentum. The evolution equation
for the parallel component of momentum can be obtained by

combining Eq.~A23!, the definition of the average relativis-
tic factor Eq.~A21!, and the constant of motion, Eq.~A14!.
The result, after considerable algebra, is

~ v̄2ezc!–“S p̄z1 q

c
ĀzD

52q
]F̄

]z
1S ]

]z

q

c
ĀD –v̄2

1

2mḡ

]

]z U qc Ã'U2, ~A24!

which is again of the same form as the original, unaveraged
equation of motion,~A10!. Combining Eqs.~A23! and~A24!
one can write all components of the equation of motion in
the following form:

~ v̄2ezc!–“p̄5qS Ē1
v̄3B̄

c D 2
1

2mḡ
“U qc Ã'U2, ~A25!

where Ē and B̄ are the wake electric and magnetic fields.
Finally, using Eqs.~A21!, ~A23!, and~A24! the evolution of
the averaged particle energy is determined by

~ v̄2ezc!–“ḡmc2

52qv̄–S ¹F̄2
]Ā

]z
D 2

c

2mḡ

]

]z U qc Ã'U2. ~A26!

We now focus on the field equations for which we must
calculate the charge and current densities. The charge density
for each cold fluid in the ensemble is obtained from the par-
ticle density which satisfies the continuity equation,~A5!.
Written in laser coordinates Eq.~A5! appears as

“'–p'

n

g
1F ]

]z0
1

]

]z1
G~pz2gmc!

n

g
50, ~A27!

where we have multiplied through by the mass to express the
velocities in terms of momenta. The lowest order version of
Eq. ~A27!,

]

]z0
~pz2gmc!

n

g
50,

requires that the ration/g be a slowly varying quantity,
n/g 5 n/g. Here we have used the fact that the lowest order
version of pz2gmc is a slowly varying quantity,
pz2gmc5 p̄z2ḡmc. In first order Eq.~A27! becomes

“'–p'S ng D1
]

]z1
~ p̄z2ḡmc!S ng D

1
]

]z0
F ~pz2gmc!

n

gG
1

50,

where we have indicated the necessary presence of first-order
corrections to the density, axial momentum, and relativistic
factor. As before these corrections are annihilated on averag-
ing over the fast length scale,

“'–p̄'S ng D1
]

]z1
~ p̄z2ḡmc!S ng D50. ~A28!

Given the ration/g is a slowly varying quantity, we conclude
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n̄5ḡS ng D . ~A29!

Introducing the velocity defined in Eq.~A22! we observe
that the average quantities also obey the continuity equation,

“'–v'n̄1
]

]z1
~ v̄z2c!n̄50. ~A30!

The space and ensemble averaged density is then inserted in
the space averaged Poisson equation,

¹'
2 F̄1

]2

]z1
2 F̄524pq^n̄&. ~A31!

Included in the density is the contribution of both electrons
and ions.

Finally, we need to calculate current density to be in-
serted in Eq.~A8!. We separate this equation into its rapidly
varying component,

F2c ]2

]t]z0
1¹'

2 G Ã'52
4p

c
j̃' , ~A32!

and its slowly varying component,

¹'
2 Ā52

4p

c
j̄2“S ]F̄

]z1
D . ~A33!

The rapidly varying component of the current density can
then be expressed in terms of the laser vector potential and
the average density and relativistic factor,

j̃'5
q

m K S ng D p̃'L 52
q2

mc K n̄ḡ L Ã' , ~A34!

where we have used Eq.~A29!. Similarly, the average cur-
rent can be written as

j̄5
q

m K S ng D p̄L 5q^n̄ v̄&. ~A35!

The final system of averaged equations consists of Eqs.
~A14!, ~A21!–~A23!, and ~A30!–~A35!. It is interesting to
note that the averaged quantities obey essentially the same
equations as the unaveraged quantities except for the addi-
tion of the ponderomotive force in Eq.~A25! and the revised
definition of the relativistic factor~A21!. Thus, in solving
these equations, the only quantity that needs to be averaged
over the fast space scale is the square of the laser vector
potential appearing in Eq.~A21!. All the other averaged
quantities are derived from this. The additional ensemble av-
eraging of cold fluids may be done either by solving for the
evolution of an ensemble of particles~as done in this paper!
and computing the charge and current densities on a grid, or
by introducing a distribution function and the appropriate
kinetic equation. We note that the restriction to the Coulomb
gauge can easily be lifted by comparing the averaged equa-
tions to the unaveraged ones. The results are that Eqs.~A31!
and ~A33! are replaced by the following:

¹2F̄2
]

]z1
“–Ā524pq^n̄&, ~A36!

and

¹'
2 Ā52

4p

c
j̄2“S ]F̄

]z1
2“–ĀD , ~A37!

respectively.
As a final comment we note that the expression for the

ponderomotive force in Eq.~A26! has been derived a num-
ber of times in the literature previously. In particular, for the
case of circular polarization this result is equivalent to that
published in Refs. 26 and 27. In the case of elliptically or
linearly polarized radiation there is an inconsistency between
our result and those of Ref. 26. However, our results are
consistent with earlier derivations,28,29using different appro-
achs to the equations of motion. Further, our results are con-
sistent in the fluid limit with those published in Ref. 2. The
various discrepancies, which are only noticeable when the
jitter motion is relativistic, seem to be related to the correct
inclusion of the high frequency component of the axial mo-
mentum. In particular, the presence of this component of the
momentum allows the particularly simple Eq.~A21! to be
derived from Eq.~A20!.

APPENDIX B: CONSERVATION LAWS

In this appendix we derive two conservation laws for our
system of ponderomotive equations; the conservation of laser
wave action, and the conservation of particle and field en-
ergy. Our derivations follow closely those presented in Ref.
8. We begin by writing the radiation field in terms of a rap-
idly varying phase and an envelope,

Ã'5Â' exp@ ik0z0#1c.c. ~B1!

The evolution of the envelope is then determined by substi-
tuting Eq.~B1! in Eq. ~A32!,

F2c ]

]t S ik01 ]

]z D1¹'
2 G Â'5

4pq2

mc2 K n̄ḡ L Â' . ~B2!

The para-axial approximation consists of neglecting thez
derivative in comparison with the lowest order wave number
k0. As the plasma density becomes modulated the phase of
the laser envelope will develop increasingly rapid variations
with axial distance, at some point thez derivative will no
longer be negligible. Thus, we will keep this term here as it
becomes important with time as the laser field decays and the
laser frequency drops. To derive the conservation of wave
action we multiply Eq.~B2! by Â'

* , integrate over all vol-
ume, and subtract from that quantity its complex conjugate,

d

dt
2ik0E d3xuÂ'u2

12E d3xF Â'
* –

]2

]t]z
Â'2Â'–

]2

]t]z
Â'
* G50. ~B3!

Here we have assumed the laser amplitude vanishes at infin-
ity so that boundary terms can be neglected. We now use the
identity,
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E d3xF Â'
* –

]2

]t]z
Â'2Â'–

]2

]t]z
Â'
* G

5
1

2

]

]t E d3xF Â'
* –

]

]z
Â'2Â'–

]

]z
Â'
* G ,

to rewrite Eq.~B3! as a conservation law,

d

dt H 2ik0E d3xuÃ'u2

1E d3xF Â'
* –

]

]z
Â'2Â'–

]

]z
Â'
* G J 50. ~B4!

The interpretation of the above as conservation of action fol-
lows from the identification of the second term as the shift in
wave number from the reference valuek0. Thus, Eq.~B4!
can be viewed as the integral of the product of the local wave
number multiplied by the square of the vector potential.
Given that wave number and frequency are linearly related in
a low density plasma this corresponds to the action.

To obtain a conservation of energy relation, we form the
energy associated with the laser pulse,

UL5
1

2p E d3xU ik0Â'1
]Â'

]z
U2, ~B5!

which represents the sum of the electric and magnetic energy
of the pulse. Differentiation of this quantity with respect to
time, and use of Eq.~B2! and its conjugate give,

dUL

dt
5

c

4p E d3x
4pq2

mc2 K n̄ḡ L ]

]z
uÂ'u2, ~B6!

where we have assumed that the radiation field vanishes at
the boundary of the volume in carrying out a number of
integrations by parts.

The evolution of the particle energy is determined by
multiplying Eq. ~A26! for each member of the ensemble of
fluids by its corresponding density,n̄, and averaging over the
ensemble,

“–^~ v̄2ezc!n̄ḡ&mc2

52 j̄–S“F̄2
]Ā

]z
D 2

c

2m K n̄ḡ L ]

]z U qc Ã'U2, ~B7!

where the plasma wake current density is given by Eq.
~A35!. Using Eq.~A33!, integrating over the simulation vol-
ume, and noting cancellations we have

E d3x“–^~ v̄2ezc!n̄ḡ&mc2

5E d3x
c

8p

]

]z
@ u“~F̄2Āz!u21u“'3Ā'u2#

2E d3x
c

2m K n̄ḡ L ]

]z U qc Ã'U2. ~B8!

Replacing the last term in Eq.~B8! using Eqs.~B1! and~B6!,
and noting that the contributions from the remaining two
terms can be expressed in terms of surface integrals up- and
downstream from the laser pulse we obtain,

dUL

dt
5E d2x'H c

8p
@ u“~F̄2Āz!u21u“'3Ā'u2#

1^~c2 v̄z!n̄ḡ&mc2J
z52`

z5`

. ~B9!

Here, z5` represents a surface upstream from the pulse
where the plasma is undisturbed, andz52` is a surface
downstream from the pulse across which the plasma wake
passes. Thus, Eq.~B9! shows that energy extracted from the
laser pulse is used to accelerate plasma electrons and to cre-
ate the wake electric and magnetic fields.
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