
Lecture 3 - Vlasov Theory

PHYS 761

In this lecture we will discuss the Vlasov equation, the equation that describes the evolution of a
distribution function in phase space in the absense of collisions.

We will use the following references

• Chapters 4-6 of Nicholson Introduction to Plasma Theory
• Chapters 22-23 of Goldston and Rutherford Introduction to Plasma Physics

Recall that the distribution function describes the density of particles in phase space (x,v). The
number of particles contained within the differential phase space volume d3xd3v is given by

dN = f(x,v, t)d3xd3v.(1)

Our goal will be to obtain an evolution equation for the distribution function, f(x,v, t). We will
find that

∂f

∂t
+ v · ∂f

∂x
+

q

m

(
E +

v ×B

c

)
· ∂f
∂v

= 0.(2)

This is the Vlasov equation.

1. Distribution function picture

Note that when discussing the distribution function, x, v, and t are treated as independent vari-
ables. This is opposed to the classical description of a trajectory x(t), v(t) where t is an independent
variable while x and v are dependent variables.

Question: If the distribution function is known, does this provide the equivalent information as the
single particle picture? No, it does not. Suppose a system consists of N particles. The complete state
of the system is given by 6N variables, the position and velocity of each particle. We will instead apply
a statistical treatment. For most problems, we are not interested in distinguishing between particles
that have the same position and velocity. Furthermore, we can average over distances of the order of
the Debye length, ignoring binary collisions between particles.

We really aren’t interested in tracking each individual particle, as they are indistinguishable. Sup-
pose we were to adopt a statistical picture of the 6N particles,

dP = fN (x1,v1, ...,xN ,vN , t) d
3x1d

3v1....d
3xNd

3vN ,(3)

here dP is the probability of finding particle 1 in phase space volume d3x1d
3v1 up to particle N in

phase space volume d3xNd
3vN . Here we assume that each particle is distinguishable, and fN is the

N -particle distribution function.
In practice this is much more information than we need. If we make the assumption that particles

are weakly interacting, then we can reduce this picture to the familiar distribution function which
provides the density of all particles in phase space. This is valid under the following assumptions.

1



2 PHYS 761

• In a dilute gas, particles quickly become uncorrelated. Collisions are infrequent, and particles
which collide are unlikely to collide again.
• Single inter-particle interactions have small impact. Rather, a given particle interacts with

many particles at once.
• A particle must travel a long distance before its next collision, at which point its correlation

due to the past collision is lost. Consider the ratio of the mean free path to the typical inter-
particle spacing. The size of a typical atom (e.g. hydrogen) is the Bohr radius, a0. We define
the mean free path, λmfp, as the distance that a particle travels before colliding. The number
of particles within the cylindrical volume of length λmfp is 1,

na20λmfp = 1,

so the ratio of λmfp to the typical particle spacing, L = n1/3, is

λmfp

L
=

L3

a20L
� 1.

As discussed in Lecture 2, this is typically a very large number for plasma parameters of
interest. A more quantitative calculation of the mean free path will be consider in our lectures
on collisions.

Consider the single particle distribution function, f1(x1,v1, t), such that the probability that a
given particle is in a region of phase space is given by

dP = f1(x1,v1, t)d
3x1d

3v1.(4)

A two particle distribution function, f2(x1,v1,x2,v2, t), can be similarly defined such that

dP = f2(x1,v1,x2,v2, t)d
3x1d

3v1d
3x2d

3v2(5)

describes the joint probability that particle 1 is in phase space volume d3x1d
3v1 and particle 2 is in

phase space volume d3x2d
3v2.

Under the assumption of statistical independence, the two-particle distribution function can be
written as

f2(x1,v1,x2,v2, t) = f1(x1,v1, t)f1(x2,v2, t).(6)

This can similarly be done for the N -particle distribution function,

fN (x1,v1, ...,xN ,vN , t) = f1(x1,v1, t)...f1(xN ,vN , t).(7)

The distribution function which describes density in phase space (1) is related via

f(x,v, t) = Nf1(x,v, t).(8)

We therefore recover the expected number of paticles

N =

∫
d3v f = N

∫
d3v f1(9)

The Vlasov equation can be obtained by considering the equations satisfied by the single particle
distribution function (see Nicholson chapter 4). In this lecture we will instead use a more heuristic
argument.
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2. Hueristic derivation of the Vlasov equation

The distribution function satisfies a conservation equation, the Vlasov equation.
For comparison, we will consider number conservation in 3D. Consider the total number of particles

in a fluid bounded within a volume, NV , in 3D space. As particles cannot be created or destroyed
(neglecting any atomic processes), NV can only change if there is a flux of particles into the volume,

∂NV

∂t
= −

∫
∂V
d2xnu · n̂,(10)

where n̂ is the outward unit normal on V ,

NV =

∫
V
d3xn,(11)

and u is the fluid velocity. The condition (10) can now be expressed as

∂

∂t

(∫
V
d3xn

)
+

∫
V
d3x∇ · (un) = 0(12)

using the divergence theorem. As this is true for any volume, we have the following conservation
equation for the density,

∂n

∂t
+∇ · (un) = 0.(13)

We would like to write a similar expression for the conservation of the distribution function. The total
number of particles in a phase space volume, V,

NV =

∫
V
d3xd3v f(x,v, t),(14)

should only change due to a flux of particles through ∂V,

∂NV
∂t

= −
∫
∂V
dS n̂ ·U ,(15)

where U is a 6D velocity in phase space and dS is a 5D surface area element bounding V. We can
apply the divergence theorem to write∫

V
d3xd3v

(
∂f

∂t
+

∂

∂x
· (Uf) +

∂

∂v
· (Uf)

)
= 0.(16)

As this must be true for any volume V, we find that

∂f

∂t
+

∂

∂x
· (Uf) +

∂

∂v
· (Uf) = 0,(17)

must be satisfied. The velocity in phase space is

U =

[
v

F /m

]
,(18)

as

d

dt

[
x
v

]
= U .(19)

So we find

∂f

∂t
+ v · ∂f

∂x
+

F

m
· ∂f
∂v

+ f
∂

∂v
· F
m

= 0.(20)
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Here F = q (E + v ×B/c). We can note that the velocity-space divergence of F vanishes, using the
vector identity ∇ · (A×B) = B · ∇ ×A−A · ∇ ×B,

∂

∂v
·
(
E +

v ×B

c

)
=

B

c
· ∇ × v = 0.(21)

So we arrive at the Vlasov equation:

∂f

∂t
+ v · ∂f

∂x
+

F

m
· ∂f
∂v

= 0(22)

The left hand side represents to the total time derivative of f along a test particles orbit with position
x(t) and velocity v(t),

df

dt

∣∣∣∣
orbit

=
∂f

∂t
+
dx(t)

dt
· ∂f
∂x

+
dv(t)

dt
· ∂f
∂v

= 0.(23)

Patches of phase space density can be moved around and carry their values of f with them.
Note that the electro-magnetic fields appear in the Vlasov equation through F . In principle, the

time evolution of f must be coupled to the time-evolution of the fields through Maxwell’s equations.

∇ ·E = 4π
∑
s

qsns = 4π
∑
s

qs

∫
d3v fs(x,v, t)(24)

∇×B =
4π

c

∑
s

qsnsus +
∂E

∂t
=

4π

c

∑
s

qs

∫
d3v fs(x,v, t)v +

∂E

∂t
(25)

The Vlasov equation must be solved for each species, s, coupled with solutions for E and B.
What assumptions have we made along the way?

• We have smoothed over any discrete particle effects. Thus we have neglected collisions between
particles that occur on length scales shorter than λD. This averaging is valid under the
assumption that the number of particles in a Debye sphere is very large, nλ3D >> 1, or the
plasma parameter Λ > 1.
• We have ignored any radiation, such as Bremstrahlung or cyclotron.

Note that we have found that the 6D divergence of the phase space velocity vanishes,

∂

∂x
·U +

∂

∂v
·U = 0.(26)

This will have important conservation consequences. For example, we can show that the total number
of particles is conserved,

d

dt

(∫
V
d3xd3v vf(x,v, t)

)
=

∫
V
d3xd3v

(
v · ∂(vf)

∂x
+

F

m
· ∂(vf)

∂v

)
=

∫
V
d3xd3v∇x,v · (Uvf)

=

∫
∂V
dS n̂ ·Uvf,(27)

if the flux through the boundary, n̂ ·Uvf , vanishes. Here ∇x,v is the 6D gradient.
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3. Properties of Vlasov solutions

Suppose have knew the solutions for all trajectories.

xT (t;x0,v0)(28)

vT (t;x0,v0),(29)

where x0, v0 are the initial conditions, which satisfy

dxT (t)

dt
= vT (t)(30)

dvT (t)

dt
=

F (xT (t),vT (t))

m
(31)

with xT (t = 0) = x0 and vT (t = 0) = v0.
Let f0(x0,v0) be the initial distribution function. If we know know xT , vT as a function of x0, v0,

x0(t;xT ,vT )(32)

v0(t;xT ,vT ),(33)

then

f = f0(x0(t;x,v),v0(t;x,v))(34)

is a solution of the Vlasov equation.
Suppose there exists a constant of motion for the classical particles. Consider, for example, the

Hamiltonian for a charge particle in the presence of an electrostatic field E = −∇Φ,

H =
mv2

2
+ qΦ(x).(35)

As ∂Φ/∂t = 0, H is a constant of the motion,

dH

dt
= mv · dv

dt
+ qv · ∇Φ = qv · ∇Φ− qv · ∇Φ = 0.(36)

This implies that f(x,v, t) = f(H(x,v)) is a solution of the Vlasov equation, where f(H) is any
function of the energy. We can directly apply the Vlasov operator to show that this is true,(

v · ∂H
∂x

+
F

m
· ∂H
∂v

)
∂f

∂H

?
= 0

(qv · ∇Φ +−q∇Φ · v)
∂f

∂H
= 0.(37)

As another example, consider the canonical momentum. If we have electro-magnetic fields

E = −∇Φ− 1

c

∂A

∂t
(38)

B = ∇×A,(39)

the Hamiltonian is

H(x,p, t) =
(p− qA(x, t))

2m
+ qΦ(x, t).(40)

The Hamiltonian now has explicit time-dependence, so the energy is no longer a constant of the motion.
However, if each of the vector components of A and Φ are independent of some coordinate x, then
∂H/∂x = 0, implying that

px = mvx +
q

c
Ax(41)
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is a constant of the motion from Hamilton’s equations. We can again directly apply the Vlasov operator,(
v · ∂px

∂x
+

F

m
· ∂px
∂v

)
∂f

∂px

?
= 0(

q

c
v · ∂Ax

∂x
+
q

c
(v ×B · x̂)

)
?
= 0

q

c
v · ∂A

∂x
= 0(42)

where we have used the vector identity A× (∇×B) = ∇B ·A−A · ∇B.

4. Consideration of collisions

Question: How do particles influence each other? Through E&M forces due to the average charge
and current distributions.

The collisions between particles occurs on the scale of the Debye length, λD, discussed in Lecture
1, as the electric fields are shielded out on longer length scales. If collisions are included, another term
is added to the Vlasov equation,

∂fs
∂t

+ v · ∂fs
∂x

+
Fs

ms
· ∂fs
∂v

=
∑
s′

C(fs, fs′),(43)

where fs is the distribution function of species s and C(fs, fs′) is the collision operator which describes
the change in distribution function fs due to its interaction with fs′ . Including the effects of collisions,
(43) is referred to as the Boltzmann equation.

The collision operator is nonlinear integral operator, describing binary collisions between two dis-
tribution functions. The Landau form of the collision operator is written as

C(fs, fs′) = −
2πq2sq

2
s′ ln Λ

ma

∂

∂v
·

(∫
d3v′

(
u3
←→
I − uu

u3

)
·
(
fa(v)

mb

∂fb(v
′)

∂v′ − fb(v
′)

ma

∂fa(v)

∂v

))
,(44)

where u := v − v′ is the relative velocity of the species and
←→
I is the identity tensor. We will dis-

cuss collisions is much more detail in upcoming lectures. This operator can be found by considering
the classical scattering cross-section between charged particles and summing over all possible interac-
tions. The Landau form of the collision operator assumes that small-angle collision dominate, which
is typically appropriate for the Coulomb potential.

The collision operator has several important properties

• Conservation of particles, energy, and momentum
• If f is a thermal equilibrium (Maxwell-Boltzmann) distribution

f =
n0

(2πT/m)3/2
exp

(
−mv

2/2 + qΦ

T

)
,

then C(f) = 0 (∂f/∂t = 0 due to collisions).
• Collisions drive f to a thermodynamic equilibrium. Collisions increase the entropy until TE

is reached. This statement is known as Boltzmann’s H theorem.
• Collisions act locally in physical space and non-locally in velocity space. In order of particles

to collide, they must be physically near each other (within λD of each other). When we write
down the Vlasov equation, we have considered any length scales smaller than λD to have been
averaged over. In this sense, collisions always occur at the same physical position. However,
particles with very different velocities can collide with each other.
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