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1 Introduction

The purpose of these notes is to clarify and elucidate the idea of Landau damping. I may not go through the
whole derivation but I will try to capture the essential aspects and physical implications of this phenomenon.

2 Electrostatic linear analysis of the Vlasov-Poisson system

2.1 Vlasov’s analysis

The linearized Vlasov-Poisson system of equations can be written as

∂f1s
∂t

+ v ·∇f1s −
qs
ms

∇ϕ1 ·
∂f0(v)

∂v
= 0

−∇2ϕ1 =
∑
s

4πqs

∫
d3v f1s

(1)

where f1s � f0. To obtain the dielectric constant ε(k, ωk), Vlasov assumed

f1s =

∞∑
k=−∞

f̂1s exp(i(k · r − ωt))

ϕ1 =

∞∑
k=−∞

ϕ̂1 exp(i(k · r − ωt))
(2)

which means that the perturbations can be written as a linear combination of independent Fourier modes,
i.e., normal modes. Another way to describe normal modes would be to recall the identity∫

d3r exp(ik · r) = δ(k),

∫
dt exp(iωt) = δ(ω) (3)

where δ is the Dirac-delta distribution. For the Fourier(normal) modes in equation (2), we can write a similar
identity ∫

d3r exp(i(k · r − ωkt)) exp(i(k
′
· r − ω

′
t)) = δ(k − k

′
) exp(−i(ω − ω

′
)t) = δ(k − k

′
) (4)

Similarly, we can write the identity∫
dt exp(i(k · r − ωt)) exp(i(k

′
· r − ω

′
t)) = δ(ω − ω

′
) exp(i(k − k

′
) · r) = δ(ω − ω

′
) (5)

These identities imply that summing over two modes can only yield a non-zero value if the modes are identical.
In other words, the modes are linearly independent of each other. Note that normal mode frequencies don’t
have to be purely real. Using the ansatz in equation (2), we can write equation (1) as

−iωf1s + ik · vf1s −
qs
ms

ϕ1ik ·
∂f0(v)

∂v
= 0

k2ϕ1 =
∑
s

4πqs

∫
d3v f1s

(6)
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Eliminating f1s from the linearized Poisson’s equation, we get a dispersion relation

k2ϕ1 =
∑
s

4πq2s
ms

∫
d3v

k · ∂f0∂v

(−ω + k · v)
ϕi (7)

And the dielectric response function

ε(k, ωk) = 1−
∑
s

ω2
ps

k2 ns

∫
d3v

k · ∂f0∂v

(−ω + k · v)
, ω2

s =
4πq2sns
ms

(8)

where ns is the equilibrium plasma density. In class, we obtained the dispersion relation(not shown here)
for the electron plasma waves by solving ε(k, ω) = 0 in the limit ω � k · v and assuming a local thermal
equilibrium, i.e.,

f0(v) =
n0

π3/2v3th
exp

(
− v2

v2th

)
(9)

We also assumed that ω2
pi/ω

2
pe ∼ me/mi � 1. Using the ω � k ·v, we can avoid dealing with the singularity

at ω = k · v. This is exactly what Vlasov did in 1940. But what happens to the particles in the distribution
function f0 that have velocities close to the electron plasma waves? Vlasov doesn’t make it entirely clear in
his treatment. He suggests that the integral over the singularity can be written as a principal value integral.
This is not always true as we’ll find out in the next section.

2.2 Landau’s initial-value treatment

Before going into the details, we define Laplace and inverse Laplace transform, respectively as

f̂1 =

∫ ∞
0

dtf1(t) exp(iωt),

f1 =

∫ iω0+∞

iω0−∞

dω

2π
f̂1(ω) exp(−iωt),

(10)

where ω is a complex number chosen with an imaginary part ω0 such that fi(t) exp(−ω0t)→∞ as t→ 0 and
the Laplace transform is bounded and well-defined. The inverse Laplace transform is defined in the complex
ω plane as shown in illustration below.

Figure 1: shows the contour of integration(Bromwich contour) for the inverse Laplace transform. All the
singularities are below the line ω = iω0. The integral is a straight-line parallel to the Re(ω) axis and closes
in a semi-circle as Re(ω) → ∞ in the Im(ω) < 0 direction enclosing all the finite singularities within the
semi-circle contour.

Landau treated the electrostatic dielectric response calculation as an initial-value problem. That way one
doesn’t have to find a basis in which the perturbation can be decomposed as a sum of normal modes or even
assume that the perturbation always grows as a sum of normal modes. This gives one more freedom in the
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way one expresses the perturbation and makes the procedure more general. Instead of using the ansatz in
equation (2), we use the following ansatz

f1s =

∞∑
k=−∞

exp(ik · r)f̂1s(t)

ϕ1 =

∞∑
k=−∞

exp(ik · r)ϕ̂1s(t).

(11)

Note that the relation (5) does not hold for the above ansatz anymore. Next, we substitute (11) into equation
(1) and take the Laplace transform of the equation to get∫ ∞

0

dt exp(iωt)

(
∂f1s
∂t

+ ik · vf1s −
qs
ms

ϕ1ik ·
∂f0(v)

∂v

)
= 0∫ ∞

0

dt exp(iωt)

(
k2ϕ1 −

∑
s

4πqs

∫
d3v f1s

)
= 0

(12)

Using integration by parts for the first term in the Vlasov equation like so∫ ∞
0

dt exp(iωt)
∂f1s
∂t

= exp(iωt)f1s

∣∣∣∞
0
− iω

∫ ∞
0

dt exp(iωt)f1s = f1s(v, t = 0)− iωf̂1s (13)

we get the Laplace-transformed, Vlasov-Poisson system as

f1s(v, 0)− iωf̂1s + ik · vf̂1s −
qs
ms

ϕ̂1ik ·
∂f0(v)

∂v
= 0

k2ϕ̂1 −
∑
s

4πqs

∫
d3v f̂1s = 0

(14)

Eliminating f̂1s, we get a self-consistent, dielectric response equation(
k2 −

∑
s

ω2
ps

ns

∫
d3v

k · ∂f0∂v

ω − k · v

)
ϕ̂1s −

∑
s

ω2
ps

nsqs

∫
d3v

f1s(v, 0)

i(ω − k · v)
= 0

ϕ̂1s =
1

ε(k, ω)

∑
s

ω2
ps

nsqs

∫
d3v

f1s(v, 0)

i(ω − k · v)

(15)

This ϕ̂ can then be inverted to obtain ϕ(t)

ϕ1(t) =

∫ iω0+∞

iω0−∞

dω

2π
exp(−iωt)ϕ̂1s (16)

First let simplify the integrand inside the velocity integral. Without loss of generality, we can assume that
kẑ where ẑ. This means that the velocity integral in the x and y-directions doesn’t have a singularity. Let’s
define

F (vz) =

∫ ∞
−∞

∫ ∞
−∞

dvx dvyf0(v) (17)

Using these simplifications, the velocity integral inside ε(k, ω) will become

I0 =
∑
s

ω2
ps

ns

∫ ∞
−∞

dvz
F

′
(vz)

ω/kz − vz
(18)

Let’s digress for the next few paragraphs and talk about how these integrals are calculated. First, we have
to solve the velocity integrals inside equation (15). The contour for these integrals will look like this
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Figure 2: shows the contour of integration for velocity integral in the complex v plane. Once the value of
the imaginary pole iγ/k ≤ |δ|, 0 < δ � 1 we must deform the contour to preserve analytical continuity

Depending on the value of imaginary part of the pole, the integral I0 can have different values. The three
different scenarios and their corresponding integrals are:

1. The pole is above the line Re(v). This is the case of an unstable wave. In this case there is no singularity
on the real line and hence an integral I0 is unchanged.

2. The pole in on the line. This is the case of a weakly damped or undamped pole. In that case, we use
the idea of a principal value integral and write

I0 =
∑
s

ω2
ps

ns

[
P
∫

F
′
(vz)

ω/kz − vz
+ iπF

′
(
ω

kz

)]
(19)

3. The pole is below the line Re(v) = 0. This corresponds to the strongly damped case and the velocity
integral can be written as

I0 =
∑
s

ω2
ps

ns

[∫
F

′
(vz)

ω − kzvz
+ 2iπF

′
(
ω

kz

)]
(20)

After we complete the velocity integral we need to invert ϕ̂1s by using equation (16). For almost all the prac-
tical cases, the function ϕ̂1s will only have a finite number of poles. Using the idea of analytical continuation,
we can continue the contour in ω-space as long as we don’t break and rejoin the contour over a pole. The
illustration given below explains the process of analytical continuation

Figure 3: shows the analytically continued contour used for inverting the Laplace transformed variables to
real space. One can deform the contour in any possible shape as long as it does not cross the poles. The
contributions from the thin vertical lines will cancel each other and the only contribution will arise from the
circles around the poles
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Assuming the initial condition f1s(v, 0) to be analytic in the complex v-space, the numerator in the
dielectric response equation (15) will be analytic — any singularities coming from denominator of the integral

I1 =

∫
d3v

f1s(v, 0)

(ω − k · v)
(21)

will be integrable. Hence, there cannot be any singularities in ϕ̂1s from the numerator I1. So the only source
of singularities are the zeros of the dielectric function ε(k, ω). The most general form of ϕ̂ will be

ϕ̂ =
∑
i

ci
(ω − ωi)ri

+A(ω) (22)

where A(ω) is an analytical function and ci is the residue from Cauchy’s integral in ε(k, ω). For simplicity,we
assume that all the poles of ϕ̂1s are multiplicity one, i.e., ri = 1∀ i. Inverting the general form of φ we get a
general solution of the form φ(t) ∝ exp(γilt) where γil is the largest imaginary part of the ωis. When γil < 0,
the electrostatic potential of the wave decays exponentially via Landau damping.

Let’s look at what the perturbation to the distribution function looks like. To be continued...

5


