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Ttk T KINETIC.THECRY OF "PLASHA

Heuristie Derivation of the Boltemann Eaquation

g The following assumptions are made as a preliminary to the development .
of Eoltzmann's equation: '

(a) It is reasonable to assume that the state of the gas-is described by
a one-body distributien function,

(b) the density of particles is low enough for only two body interactions
to be considered, i.e., r << JLO , where 1, is the range of inter-
- particle forces and'i,o is the mean interparticle distance,

{(c) the duration of an encounter betueen two particles 15 much smaller than
~ the period of the free motion of the particles, il.e., ti << tf , Where
t, = ro/vav and t, = A

i o/Vav
and A , their mean free path,

s V is the mean speed of the particles

av

(d) particles are assumed to be point centers of spherically symmetric
fields, so that the one-body distribution function depends only on the
position X , velocity ¥ of the particles and time t . In case of
exceptional models for the particles other variables, e.g., the angular

“yelocity, may be introduced. o e e

A fifth assumption is made later on.

N e am .
let f£(x, v, t} #x 63xr_ be the expected number of particles to be

.. found in a volume element 63>c A”v of phase space about x and v at

the instant of time %t . The volume element A p = ﬁjx ABV must be

large enough to coritain a sufficient number of particles in order that
- probability concepis can be applied at all. Thus

R t 3 f £ a’x &y
- - Ax A

(1)
Lp

- where f = Z 5(x - :_cr) §(v - 'v'fr) , T 1is a particle index.
s r o

; ~ :
| Further, the changes in { will be observed over a time At which is
- much larger than t. . In what follows we will keep these restrictions in
mind although we shall write £(X, ¥, t) d’x d%v instead of
-~ .
£f(x, v, t) ABx dBv .
We are concerned with developing an equation which determines the
temporal evolution of f given its value at some initial time to for all

%X and v . By definition the total pumker of particles

N = ff(;, 3, ) ax dv o (2)

e
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where the intepgration is carried over the volume V in configuration space
oceupied by the porticles and over the accessible region of velocity space.
Further, we define a density n

n= ¥ o (1G5, 0 | ®
with V vanishingly small but large enough to contain several particles.
If we now assume that those particles contained in d3x d3v do not

jnteract with each other, then at a time t +dt ({(dt >> ti) we expect

these particles to be in the volume element djx' d3v' about X' and V'
where _

X +vadt+ o(dt)2 . ~ (ka)

i

Xt

Te = V43 dt + o(dt)? (4b)

where a is the acceleration suffered by the particles as a2 result of
fields that may be applied by external means or those generated by the
collective action of all particles excluding those whose trajectories are
under examination, Thus .

a = Ee -+ Ei . (5)
where the superscripts e and i classify the cause of the acceleration,
The new volume element d.Bx' djv' is related to the old volume element

d3x djv by the relation . .
(3050 ) |

,: _
d’x! dsv' = Ji -—’-—-) d3x d3v {6}

Xy V

where J 1is the Jacobian of the transformation written cut in full as
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Making use of (ba) and (4b)

Baa
J=1 +—Z gt +0(at)? ' (7)
. BV¥y :
. oa :
&x ady! = [_1 + 5—‘;5-" dt + O(dt)z__—[ &’x dov (8)
N a \-'.

and further,

3
f
Y

which means that the same numbter of particles are in the new volume element
as in the old element except for those gained or lost by interaction among
the particles themselves denoted by

£\ 3.3 ' -
(6t)c a'x d”v dt , ‘

£(RY, ', t + dt) dox' vt = £(X, T, t) dx dov + '5£ Px dov dt (9)

Expanding the L.H.S. of . (9) in a Taylor series about (x, v, t) we have

' dx dv
o e of ef Q of 3. .3
LHs (9) {f(x, v, t)+(at ISR the dt)dtfdxd (1+—-—dt)
& a
+ o(dt?) |
at X, dt ava dt av 6t

As we shall be confining ourselves to forces that are either independent of
particle velocity or if they do depend, they are given by the Lorentz relation

- = 2 N
qQvxB, ef?:g alweys vanishes and we have finally
o
of af of §1
st * Yo bx * %a 3v, (6-{-,) (10)

($5)
Collision term §t/ec

The volume swept per second by a particle having velocity v (class A)
and a particle of velocity vy {class B} such that if they are found in

this volume, a collision will certainly occur is given by
v, o(v,, 8) d°fL
R R?

Vg = l v - ;1 I is the relative velocity.

cr(vR, ®) is the differential cross-section for the two particles.

®@ 1s the scattering angle in the center of mass system of the two particles.
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The total amount of such volume swept in a time dt by particles in volune
elements d3x d3v and d3 x4 d3 vy is

2
fz(x, v, xl, vi, t) dox djxl v d3v1 dt'Jﬂ vp © (v,, 8) a°fL
_where £, d3x djxi'dBV d3v1 is the mmber of particles with velocity vectors
v and ;, in d3x d3v and d3x1 d3v1 of phase space,
(e} If the particles are to interact |§ - §1l must be of order T, and
since djx is much larger than r3

o * We put x = Xy and further, we
make the assumption that the particles are uncorrelated, i.e.,

fz(SE, v, X "1 o B = I, Y, ) £k, Y Vs t)
(ASSumption of molecular chaos)

The total number of colllslons that result in particles being knocked out of
@x dOv an dt

L = a’x dov at [ £(x, ¥, t) £(x, ¥y, t) p &L oy

with p = VR © (vR, 8)

|

Likewise the number of collisions between particles having velocities ¥°
and V] which finally end up in dx dv

G 3 dx v dt JA £(%, 7', t) £(X, V], t) p &N da'vi
Net loss of particles from djx djv is then

(bt) dOx v dt = dt d3 fdj"fy £, ¥, 1) £(X, V],
vi fl :

t) p d J’LdjVi' .

d3ff(x, ¥, t) £(%, ¥, t) p d°0 &y By, (11)
v N

The velocities ¥, ﬁi_ and ;,';1 are related because these are the
velocities of the interacting particles before and sfter the collision
respectively, Because we have assumed an elastic ccllision the following
conservation relations hold,

- - - = -

mv' + mv1 my -+ mv1
1 2 1 2 _ 1 2 i 2
3 mv'. + 2 in = 3 mv + 5 vy
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The collision is described aptly by Fig. 1. The relative velocity ;R
- rotates through an angle € and the center of mass velocity OG is unchanged;
for this transformation from V', ?i to v, ;1 the Jacobian is unity and

therefore '

dsvi vt = @y djv1 : | . (12)

<!

Figure 1 Y

Substituting this in (11) and taking (10) into account,

XY TS ¥ S P = =
at+vaaxa_+aaava = ff(x, v, t) f(x, vi,t)

- 1%, T, ) 1%, T, t)( pdn v, (13)

which is the standard way of expressing Boltzmann's equation.

If the gas contains several kinds of particles then each kind of particle has

ils own distribution function and we can readily generalize Boltzmann's equation
to

et oy arh et N J (£ £%) | (14)
at a9x a av
[+ 4 . a B

A and B refer to the particle species, J (fA i‘B) denotes the collision
operator and the summation over B 1includes A .



