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Self-focusing and Raman scattering of laser pulses in tenuous plasmas 
T. M. Antonsen, Jr.a) and P. Mora, 
Centre de Physique ThQorique, Bole Polytechnique, 91128 Palaiseau, France 

(Received 27 May 1992; accepted 22 January 1993) 

The propagation and self-focusing of short, intense laser pulses in a tenuous plasma is studied 
both analytically and numerically. Specifically, pulses of length of the order of a few plasma 
wavelengths and of intensity, which is large enough for relativistic self-focusing to occur, are 
considered. Such pulses are of interest in various laser plasma acceleration schemes. It is found 
that these pulses are likely to be strongly affected by Raman instabilities. Two different regimes 
of instability, corresponding to large and small scattering angles, are found to be important. 
Small-angle scattering is perhaps the most severe since it couples strongly with relativistic 
self-focusing, leading the pulses to acquire significant axial and transverse structure in a time of 
the order of the self-focusing time. Thus it will be difficult to propagate smooth self-focused 
pulses through tenuous plasmas for distances longer than the Rayleigh length, except for pulse 
duration of the order of the plasma period. 

1. INTRODUCTION 

There has been considerable recent technological ad- 
vances of high intensities (of the order of lOI* W/cm2), 
short pulses lasers ( 1 psec or less).’ These lasers could be 
of great interest in the context of plasma based particle 
accelerator concepts, in particular for the laser wake field 
accelerator which uses the ponderomotive force of a short 
laser pulse to drive an electron plasma wave in a low- 
density plasmas2 A severe limitation of the scheme is due to 
the diffraction of the laser beam. However, it has been 
argued that self-focusing of the beam could considerably 
lengthen the interaction region. 

If the pulse length T is much smaller than the inverse of 
the ion plasma frequency #pi, the ions’ inertia prevents 
them from moving, and the thermal3 and usual 
ponderomotive4 self-focusing effects are inoperative. How- 
ever, as pointed out by various authors,5-7 relativistic 
self-focusing* is relevant in this regime. The laser power is 
so large that the relativistic corrections to the electron re- 
sponse to the wave field lower the effective plasma fre- 
quency thereby increasing the refractive index. In addition, 
the ponderomotive force tends to expel1 the electrons from 
the laser channel, usually enhancing the relativistic effect. 

Depending on the laser pulse duration, there exist a 
priori two different regimes for relativistic self-focusing. If 
the laser pulse duration is much longer than the plasma 
period, time-independent solutions can be found where the 
electrons are in equilibrium, the radial ponderomotive 
force being balanced by the electrostatic force due to 
charge separation.6 Such self-focusing occurs when the la- 
ser beam power P is above a critical power5 P, 
=16.2 (o/w,)’ lo9 W, where mp=(4rq2ndm)“2 is the 
plasma frequency based on the ambient density no, and q 
and m are the charge and mass of an electron. Even for 
rather small values of (P-PL)/P, the reduction of the 
electron density, due to the ponderomotive force expulsion 
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of the electrons, is significant, and this leads to complete 
expulsion of all electrons within some inner radius for 
P> PO where PC= 1.1 PL (electron cavitation).6 

If the laser pulse duration is comparable with the 
plasma period, the dynamics of the electrons has to be 
taken into account.7 As a result, the degree of guiding 
varies along the pulse. In particular, the forward ponder- 
omotive force pushes the electrons at the front of the pulse 
leading to an increase of the electron density and this effect 
tends to exactly cancel the relativistic effect. The front of 
the pulse then diffracts as a low-intensity beam. These con- 
siderations were given by Sprangle et al., on the basis of a 
one-dimensional analysis of intense laser plasma 
interactions.’ Two-dimensional analysis of short laser 
propagation in tenuous plasmas are usually limited by as- 
sumptions on the transverse shape of the laser wave, such 
as a Gaussian ansatz.’ The first goal of the present work 
was to have a correct transverse description of the laser 
beam during self-focusing and to verify the predictions of 
Ref. 7. 

In addition, there is probably a more fundamental jus- 
tification of the need for a transverse description of the 
laser beam. It is well known that high-intensity laser beams 
are subject to various laser-plasma instabilities.‘0-‘2 The 
Raman sidescattering is of particular interest here, since it 
will be found to dominate the pure forward-scattering Ra- 
man instability. As a result, a significant part of the laser 
energy may end up in sidewards scattered waves. l3 We will 
find two regimes of Raman scattering to be important for 
finite-size laser pulses. The first regime corresponds to scat- 
tering at relatively large angles. Here the instability is spa- 
tially convective, and grows either from noise associated 
with the target plasma or from a seed signal which is part 
of the angular superposition of waves that compose the 
incident laser pulse. The instability develops in a relatively 
short time, namely, the time for the scattered wave to 
traverse the pulse. The pulse will survive this instability if 
the number of exponentiations is not too large. The second 
regime corresponds to scattering at small, but nonzero, 
forward angles, where there is significant coupling between 
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the Raman and relativistic self-focusing instabilities. Here 
the instability is absolute in space, but convective in wave 
number in a sense that will be described subsequently. The 
effect of the instability is to cause an incident pulse, which 
is longer than a plasma wavelength, to acquire axial and 
transverse structure. According to our estimates and sim- 
ulations, this structure appears within, roughly, the Ray- 
leigh time for the incident pulse. Thus it will be difficult, if 
not impossible, to obtain smooth self-focused pulses. These 
instabilities can affect the propagation of short laser pulses, 
as we will show in this paper. The second goal of the 
present work is, therefore, to study the effect of Raman 
sidescattering on short- and finite-size pulses. 

The outline of the paper is follows. In Sec. II we derive 
the basic equations describing the self-focusing and the Ra- 
man sidescattering of ultrashort- and finite-size laser 
pulses. Section III is devoted to the analysis of the Raman 
growth. The numerical simulations are described in Sec. 
IV. A discussion of the results is given in Sec. V; 

Il. BASIC EQUATIONS 

In this section we describe the basic set of equations 
which govern the propagation of radiation in a tenuous 
plasma, outline the approximations that are appropriate to 
the study of self-focusing of the radiation, and address the 
limitations of these approximations when Raman scatter- 
ing is important. We start with the equation describing the 
propagation of the radiation in the limit in which the 
plasma electron motion is weakly relativistic, 

(,_;$+,twcq 1+;-; (,plqP(g,t), (1) 

where ii(x,t) =qA/(mc’) is the normalized radiation vec- 
tor potential, and c is the speed of light. The terms on the 
right-hand side represent the response of the plasma, 
whose density can be written as the sum of the ambient 
value, no, and a small perturbation Sn. The term ( 1 ii] 2> 
represents the contribution of the first correction to the 
relativistic factor y = l/ dm’, where v=c ii/r is the 
jitter velocity of an electron in the radiation field. The 
angular brackets imply an average over the period of time 
associated with the frequency of the radiation. Finally, the 
constant kp=w/c represents the plasma wave number. 
Equation (1) is easily derived when the radiation is as- 
sumed to be circularly polarized. It is, however, valid for 
arbitrary polarizations as well. 

The density perturbation appearing in Eq. ( 1) results 
from the forced excitation of a plasma wave disturbance by 
the ponderomotive potential of the radiation. In the weakly 
relativistic limit the density response can be assumed to be 
linear in the ponderomotive potential, in which case one 
finds 

a* tin 
( 1 s+4 ,,=c2v2; ( liq2>, (2) 

where it has been assumed that the plasma is a cold fluid. 
Equations ( 1) and (2) are capable of describing both rel- 
ativistic self-focusing, as well as stimulated Raman scatter- 

ing at all angles. It is required that the magnitude of both 
the normalized vector potential and the relative density 
perturbation appearing in Eqs. ( 1) and (2) be small in 
order that the assumptions of weakly relativistic motion 
and linear density perturbation remain valid. 

In order to investigate self-focusing of a finite duration 
pulse the para-axial and quasistatic’ approximations are 
usually made. The para-axial approximation consists of 
writing the normalized radiation vector potential as a plane 
wave propagating in the z direction modulated by a slowly 
varying three-dimensional envelope 

ii(x,t)=a(q,~,;t)exp[i(koz-oat)] +c.c., (3) 

where w. and k. satisfy the dispersion relation for plane 
waves propagating in an unmagnetized plasma, 
w;=w;+kg2, and the variable c=cgt-z measures dis- 
tance back from the head of the radiation pulse which is 
moving with a group velocity cg= ( koc2/wo) in the positive 
z direction. This results in a parabolic equation for the 
amplitude a 

( 2 i?g+Vf)a=l$(f$-a*a*)a, (4) 

where we have dropped terms, which are of order c$/c$, 
that are presumed to be small. The quasistatic approxima- 
tion consists of assuming that the radiation envelope de- 
scribed by Eq. (4) changes little during the time which a 
plasma electron is within the envelope. In this case, when 
variables are expressed in terms oft and & one replaces the 
time derivative in the plasma wave equation (2) according 
to d/at = c&al r c&3<, yielding 

a2 an ( ) @+$ jg=V’(a*a*). 

The approximations leading to (4) and (5) are well satis- 
fied if the envelope, a, remains slowly varying and the vec- 
tor potential and the relative density perturbation remain 
small. There are two situations, however, under which the 
assumptions become strained even if they are initially sat- 
isfied. The first is the case of strong self-focusing. Solutions 
of J3qs. (4) and (5) for the case of a laser pulse, which is 
many plasma wavelengths long, indicate that there is a 
threshold power for relativistic self-focusing.5 That is, if 
the laser power exceeds this threshold it is possible for the 
laser pulse to adopt a transverse profile that is constant in 
time and does not diffract. It turns out, however, if this 
threshold is exceeded by only a small amount, of the order 
of lo%, then the relative density perturbations become of 
order unity in the self-guided state and a fully relativistic 
theory accounting for the nonlinear response of the plasma 
must be employed.6 

The second, and perhaps more fundamental problem 
with Eqs. (4) and (5) is the way in which they treat 
Raman scattering. In particular, these equations contain 
what can be described as an ultraviolet catastrophe. 
Namely, the growth rate for near forward Raman instabil- 
ity is unbounded as the transverse wave number goes to 
infinity. This divergence is a-consequence of having made 
the para-axial approximation, and does not occur if the full 
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wave Eq. ( 1) is solved instead of Eq. (4). In the full equa- 
tion, the transverse wave number of scattered light is lim- 
ited by the wavelength of the pump; the maximum scatter- 
ing angle is 180”. This limitation is not contained in the 
para-axial approximation. The consequence is that any nu- 
merical solution of Eqs. (4) and (5) becomes dependent 
on the transverse spatial resolution of the variables. The 
resolution of the problem requires the inclusion of more 
physics. 

It is somewhat surmising that large-angle scattering 
can be important for the propagation of laser pulses with a 
finite transverse size. One would expect that disturbances 
would propagate out of the laser pulse before reaching 
large amplitude. The problem is that the nonlinear cou- 
pling between the radiation and plasma waves that pro- 
duces the Raman instability increases faster with trans- 
verse wave number [due to the Laplacian on the right-hand 
side of Eq. (2)] than does the transverse group velocity of 
the scattered radiation. Thus perturbations grow as they 
convect out of the pump. As we will show in the next 
section where we treat the Raman problem analytically, 
both for systems (l), (2), (4), and (5), the number of 
exponentiations of a scattered wave is an increasing func- 
tion of the scattering angle. The maximum number of ex- 
ponentiations is then determined by whatever physics lim- 
its the maximum transverse wave number. The practical 
consequence of the instability is that the trailing end of a 
laser pulse for which the maximum number of exponenti- 
ations is too large will blow apart. 

In spite of the foregoing discussion, the para-axial 
equation (4), can still be used to analyze the propagation 
of laser pulses in tenuous plasmas. We will argue that to 
the extent that the additional physics, not contained in the 
para-axial equation, leads to an upper limit on the trans- 
verse wave number of the scattered light, this physics can 
be modeled by solving the para-axial equation with a con- 
trolled transverse spatial resolution. In Sec. IV we will 
present such solutions, illustrating the effect of the Raman 
instability for the case in which the governing equations 
are solved via a finite difference scheme on a two- 
dimensional grid. In this case a certain degree of care must 
be exercised in controlling the shortest allowed wave- 
lengths as will be discussed. Finally, Sec. V will contain our 
conclusions and will outline some of the remaining ques- 
tions regarding light propagation in tenuous plasmas. 

lit. ANALYSIS OF RAMAN GROWTH IN FINITE-SIZE 
PULSES 

In this section we consider the growth of the Raman 
instability as it affects the propagation of finite-sized laser 
pulses. It will be found that the instability is of a convective 
nature. Thus a precise calculation of the threshold would, 
in principle, involve details of the shape of the laser pulse 
(the pump), as well as the level of noise from which the 
instability is to grow. Such a theory is not easily carried out 
since the shape of the laser pulse is continually changing as 
it propagates, and the level of noise can depend on effects 
not always contained in the basic equations. An additional 
consideration of a more fundamental nature is the fact that 

for near forward scattering it is not possible to make a 
formal distinction between the equilibrium state and the 
small perturbation whose linear growth is to be deter- 
mined. This is because the finite size of the radiation pulse 
implies that the “equilibrium,” or pump, already contains 
the wave vectors that will be considered as the “perturba- 
tion.” As a result, when precise answers are required, the 
best course of action is to simulate the full governing equa- 
tions that describe simultaneously the evolution of pump 
and the perturbation. The results of such simulations will 
be presented in the next section. In this section, we will 
present estimates of the amount of growth that can be 
expected, based on the dispersion relation which applies to 
the case of an infinite homogeneous pump. The finite size 
of the pump is treated by using the local dispersion relation 
to calculate the space- and time-dependent impulse re- 
sponse for the system. In this way the amount of growth a 
perturbation experiences before it encounters the boundary 
of the pump can be estimated. Two different regimes of 
Raman growth, which correspond to relatively large and 
small scattering angles, are found to be important. As will 
be indicated, these regimes require separate treatment. The 
estimates will then give basic scaling relations for the 
growth of scattered radiation which will be compared with 
the more detailed simulations. 

We now outline the derivation of the dispersion rela- 
tion which determines the stability of an infinite homoge- 
neous pump as described by Eqs. ( 1) and (2). The result- 
ing dispersion relation, already derived by McKinstrie and 
Bingham,” is a generalization, to the case in which rela- 
tivistic self-focusing is important, of the standard disper- 
sion relation describing the coupling of high- and low- 
frequency waves in a plasma.” Here, due to the 
assumption of a tenuous plasma, we treat plasma waves as 
being low frequency, and assume the ions are stationary. 
The radiation field will be assumed to be plane polarized 
and consist of a pump of amplitude a0 and two daughter 
waves a, and a- propagating at an angle to the pump, 

ti(x,t) =ep{ao+a+ exp[i(k*x--wt)] 

+a- exp[ -i(k*x--*t)]) 

xexp[i(kG-mot)] +c.c., 

where eP is a unit vector giving the direction of polariza- 
tion, k and w are the wave number and frequency shift of 
the scattered radiation, eP* k=ep*er=O, and w0 and k, sat- 
isfy the dispersion relation CD~=C$( 1 -u$ + k$“. The 
beating of the pump and scattered waves gives rise to a 
time- and space-dependent ponderomotive potential which, 
to first order in the amplitudes of the scattered waves, is 

t(I~12)=~;+~(a++aYc) aeexp[i(k*x--wr)]+c.c.). 
(7) 

This, in turn, drives an electron density perturbation of the 
form 

Sn 
~=v exp[i(k*x--of)] +C.C 
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Inserting the preceding expressions for the dependent vari- c$$ on the left-hand side (actually, this term could be 
ables in Eqs. ( 1) and (2), and combining the equations’ removed by an appropriate shift of the wave number 6k), 
results in the dispersion relation we arrive at the cubic dispersion relation 

= a202c2k2 OP ’ 

where the quantities D,., and D- are the dispersion rela- 
tions for the scattered waves in the absence of plasma den- 
sity fluctuations, 

Dt=(oo~~)2-(ko~kz)2c2-~ c2-~;(l--a;). (10) 

Here, kz and kl are the components of the wave vector k. 
The dispersion relation (9) describes the interaction of 

the relativistic modulational instability (self-focusing) 
with the Raman instability at arbitrary angles for the case 
of a cold electron fluid. Solutions of this dispersion relation 
describing the interaction of these instabilities have been 
discussed extensively by McKinstrie and Bingham. l1 In the 
case in which the quasistatic and para-axial approxima- 
tions are made, one effectively transforms to a frame mov- 
ing with the pump pulse. The quasistatic assumption leads 
to the replacement of w appearing in the plasma wave 
dispersion relation in (9) by kg. The para-axial approxi- 
mation leads to the expansion of the daughter wave disper- 
sion relations for kz<ko, 

D, = f 2wool - k2, c2, 

where w , = w - kLxg= o - k#. A detailed comparison of the 
various regimes of Raman scattering in the infinite, homo- 
geneous pump limit for the two dispersion relations [the 
full dispersion relation (9) and the quasistatic/para-axial 
dispersion relation] is presented in Appendix A. 

A. Large-angle scattering 

We will focus on the Raman instability for propagation 
angles which are not too small. In particular, we write the 
wave vector k as the sum of a zero-order part which is 
chosen to satisfy the dispersion relation 
D- ( o=O,koez-- k) =0, plus a small correction 6k, 

&==-sin6ko+6~, 

kz= (1-cos B)k,+Sk,. 

Here 0 is the angle of propagation, with respect to the z 
axis of the scattered wave whose frequency is approxi- 
mately wo. We then assume the frequency o and wave 
number Sk are small and Taylor expand D_ obtaining 

D..-. z -2~o[w-cc,(cos 6 6k,+sin 8 Sk )]. 

The quantity D, is approximated as 

D+--,4k02 c2(cos 8-l), 

and we assume D, % D-. This last assumption will be jus- 
tified when the growth rate we are about to find is small 
enough so that I w/w0 I < ( 1 -cos 0). Thus, essentially, we 
are neglecting the anti-Stokes sideband, which is permissi- 
ble provided the scattering angle is large enough.“714 

Inserting the expression for D into Eq. (9>, using 
D-&D,, and ignoring the relativistic self-focusing term 

D(w,Gk) =0, (11) 

where 

D(w,Sk) = (w2-oi> [w-c,(cos 0 Gk,+sin 0 Sk )] +ws, 
(12) 

and 

CO;= 
2a2m2c2k2 

OP 0 sin2 00 0 8 5 , (13) 

is the coefficient of coupling between the scattered wave 
and the plasma density perturbation. Note that this cou- 
pling frequency vanishes for forward scattering, 8=0, and 
increases progressively with scattering angle reaching a 
maximum for backscattering, 0 = rr. In an infinite homoge- 
neous pump, where one is free to specify the wave number 
k, and hence Sk, dispersion relation ( 11) predicts unstable 
solutions with temporal growth rates. The scaling of these 
solutions depends on whether the coupling frequency w, is 
greater or smaller than the plasma frequency. When the 
coupling frequency is much greater than the plasma fre- 
quency one is in the Compton regime and one finds the 
complex frequency at maximum growth rate to be given by 

co=: ( fi i+l). 
In the opposite limit where the coupling frequency is less 
than the plasma frequency, one is in the Raman regime and 
the frequency at maximum growth rate satisfies 

Note that the frequency of the scattered wave is down 
shifted in both cases as it should be. 

We are not interested in the temporal growth rate of 
disturbances which are infinitely extended. Rather, we 
wish to assess the amount of growth than can be expected 
when the region of the pump is of finite size. To do this we 
use the method of determination of the impulse response 
due to a localized disturbance at x =0 and t==O, implied by 
Eq. ( 1 1 ), as described by Bers.” Specifically, we define a 
shifted frequency o’ =CL) --Sk. v and a shifted dispersion 
function 

D,(w’,Sk) = D(w’+Sk*v,Sk), 

where v=x/t, and solve simultaneously the equations 
D,= 0, and aDJ%k=O. The quantity Im(w’t) then gives 
the number of exponentiations experienced by the distur- 
bance as observed at the point x at time t. 

Solution of the equation, dDJdSk=O, yields two re- 
sults. First, one finds that the velocity v=x/t must be par- 
allel to the group velocity of the scattered radiation whose 
components are ca cos 0 and cg sin f3 in the directions par- 
allel and perpendicular to the direction of propagation of 
the pump. Physically, this implies that the disturbance will 
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FIG. 1. Geometry for the scattered light. 

be localized along the trajectory of the scattered electro- 
magnetic wave. Second, one obtains a relation between 
o=w’+gk*v and Sk, 

1-p (w2-0;) 
[w-c,(cos 8 Sk,+sin 8 84 )] = - ( 1 P 2w ’ 

(14) 
where @= ] x ] /c#. Substitution of ( 14) into the dispersion 
relations ( 11) and ( 12) then determines the frequency w, 

1-p (w%$2 ( ) 3 

P 20 = -wcm (15) 

The number of exponentiations of the disturbance as it 
propagates is then obtained by inserting the solution of 
( 15) into the definition of w’ and using ( 14) to eliminate 
Sk, 

(16) 

Expression (16) thus gives the amount of growth that 
would be experienced by a disturbance, initiated at the 
origin at t=O, as it propagates along the characteristic of a 
scattered wave making an angle 8, with respect to the di- 
rection of propagation of the pump. 

Our concern is the amount of exponentiation a distur- 
bance experiences before it leaves the region of the pump. 
Thus we would like to characterize ( 16) in terms of vari- 
ables which measure the location of the disturbance in the 
moving pump pulse. The position of a point in the pump 
pulse is determined by its transverse coordinate xi , and 
the distance back from the head of the pulse 4 = c$ - z. The 
relation between these variables and the lab frame quanti- 
ties 1 x 1, 8, and t, is illustrated in Fig. 1. Using simple 
trigonometric relations, one finds the time for a distur- 
bance to propagate from the center of the head of the pulse 
xI =O, (=O, to the point (x1 ,g) is given by 

cpg+q cot 8, 

provided this is a positive number. The quantity 
/3= 1 x 1 /c,t appearing in ( 16) can also be expressed in 
terms of these coordinates, 

This latter relation restricts the angle 8 such that for given 
values of g and x1 , /3 is less than unity. 

The procedure now is to insert the expressions for /3 
and t into ( 15) and ( 16) and arrive at the amount of 
exponentiation. The solution of ( 15) depends on a single 
parameter, 

For R & 1, one is in the Compton regime and ( 15) yields 
l/3 

o=$(fii+l) & . 
( 1 

The amount of exponentiation is then found from ( 16) to 
be 

where the effective spatial growth rate in the Compton 
regime is given by 

(18) 

and we have assumed cs= c. For R 4 1, one is in the Raman 
regime and ( 15) yields 

a=% [; ( (;!$J2+l), 
for which case the amount of exponentiation is found to be 

where the effective spatial growth rate in the Raman re- 
gime is given by 

It is interesting to note that, due to the appearance of the 
quantity ,B in ( 15), whether the Raman or Compton re- 
gime pertains depends not only on the intrinsic parameters 
such as the plasma and coupling frequencies, but also on 
where and at what time the disturbance is examined. If one 
is close to the front of the propagating disturbance, /3~ 1, 
then the Compton regime applies even if coupling fre- 
quency is less than the plasma frequency. This is due to the 
fact that as the disturbance enters a new, undisturbed re- 
gion of plasma, the growth of the density fluctuations is 
limited at first by the inertia of the electrons, as opposed to 
the built-up electrostatic field. Thus one can ignore the 
plasma frequency appearing in Eq. (2) compared with the 
time derivative. Note, however, from ( 16), the amount of 
exponentiation will be small close to the front of the dis- 
turbance. 

We now examine the dependence of the amount of 
exponentiation on the coordinates within the pulse and the 
angle of propagation. To do this we focus on the Raman 
expressions given by ( 19) and (20). It is clear from ( 19) 
that the larger the value of {, the greater the exponentia- 
tion. Thus to estimate the maximum expected growth, we 
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insert for f; the length of the pulse L. The dependence of 
the growth on the transverse coordinate is such that there 
is a maximum growth occurring for 

L 

q=2 ltan (f3/2) [ * (21) 

Whether this point is within the pulse depends on the angle 
6. If W is the width of the pulse then the maximum will lie 
within the pulse provided that the scattering angle exceeds 
a critical value obtained by replacing xl by Win the above. 
For angles greater than this critical angle, we insert (2 1) 
and (20) into (19) and obtain an expression for the 
amount of growth which, surprisingly, is independent of 
angle 

(22) 

Thus for angles greater than the critical angle, the amount 
of growth is the same as for pure backscatter. For angles 
less than the critical angle the amount of growth is ob- 
tained from ( 19) and (20) by inserting the length of the 
pulse, L, for { and the width of the pulse, W, for xl. As a 
function of angle, the amount of growth increases mono- 
tonically until the critical angle is reached after which it is 
constant. Similar conclusions are reached in the Compton 
regime. 

It is now instructive to ask: What is the amount of 
growth expected from the simplified set of equations (4) 
and (5)? This can be obtained from (17)-(20) by letting 
Ozkl /k. be small. The results are 

(234 

and 

Im{w’t)= 1% 1 1’21c/ “‘($k& )I” (23b) 

in the Compton and Raman regimes, respectively. Thus in 
both cases the number of exponentiations increase with 
perpendicular wave number, without limit. Thus without 
any restriction on the perpendicular wave number, the sim- 
plified set of equations is poorly posed in the sense that the 
results are dependent on the resolution with which the 
equations are solved. 

A more severe problem affects numerical solutions of 
(4) and (5) in which the transverse dependence of the field 
variables is based on a finite difference scheme. This can be 
understood by tirst considering the situation in which we 
suppose the pump wave is infinitely extended in the trans- 
verse direction and ignore the convection of the distur- 
bance in that direction. That is, suppose we set Sk, to zero 
in ( 12) and resolve the impulse propagation problem. The 
results can be obtained from (23a) and (23b) by substitu- 
tion of ckL t/k, for xl . That is, by expressing xl in terms 
of the time required for the disturbance to reach that point. 
The result is that for fixed 6 any disturbance eventually 
diverges with time. That is, the instability changes from 
convective to absolute in nature. This is of significance to 
finite difference simulations because the continuous wave 

number k, is replaced in the finite difference system by 
2 sin( k, dx/2)/dx, where dx is the spacing .of the grid. 
Thus the numerical group velocity in the transverse direc- 
tion [Q=C sin(kL dx)/(k, dx)] vanishes for the shortest 
wavelength disturbance, kl dx=n-, and the instability is 
absolute. In the next section we will discuss a way of sup- 
pressing this problem by carefully controlling the maxi- 
mum spatial wave number. 

Finally, since the instability is convective, we must dis- 
cuss the source, or seed, signal which is to be amplified. 
There are a number of possible sources that can produce 
signals which will subsequently grow as the pulse propa- 
gates. The first of these that comes to mind is the sponta- 
neous noise associated with the discreteness of the plasma 
electrons’ charge. This noise excites plasma waves which 
reach a level that can be estimated by attributing an 
amount of energy equal to the plasma temperature to each 
mode in k space 

where the integral is cut off for wavelengths shorter than 
the Debye length. Not all modes in k space will be resonant 
with the pump and decay waves which lead to a reduction 
in the noise level available to excite the instability. We 
estimate this reduction by restricting the integral in the 
above to a spherical shell in k space with a radius equal to 
the wave number of the pump and a thickness proportional 
to the spatial growth rate of the convective instability. This 
produces the following estimate for the level of noise in 
plasma waves that is to be amplified, 

Sn 2 
(( 1) 

~~Y~~~ - 
n0 eff = @NY, ’ 

where ‘I/~ is the effective temporal growth rate, & is the 
Debye length, and N,=nc& is the number of electrons in 
a cube of side ;to = 2?r/ko. This is just a rough estimate, and 
a more detailed calculation, which includes the k depen- 
dence of the amount of exponentiation, should be carried 
out. It is likely that such a calculation would reveal that 
backscattered radiation is most easily excited by this type 
of noise. We will assume that the level of this noise is 
extremely small, and since the focus of this paper is on near 
forward scattering, we will leave this issue to future stud- 
ies. 

A second source of signal which can be amplified is 
determined by the initial shape of the radiation pulse as it 
enters the plasma. For a pulse with a true Gaussian shape, 
the transverse Fourier spectrum falls off exponentially with 
the transverse wave number. However, a pulse that has 
been passed through an aperture will have a high wave- 
number tail that falls algebraically with wave number. 
Given that the amount of exponentiation of scattered ra- 
diation increases with transverse wave number, such aper- 
tured beams will contain high wave-number components 
that will initially be amplified before leaving the pulse. If 
the amount of amplification is large enough a significant 
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fraction of the radiation in the pulse can be scattered. This 
effect will be illustrated in the numerical simulations pre- 
sented in the next section. 

(25) 

B. Small-angle scattering 

We now consider the problem of near forward scatter- 
ing. Here it is not possible to make a formal distinction 
between the pump and the scattered radiation due to the 
finite size of the pump pulse. In this case, the slow evolu- 
tion of the pulse due to diffraction can serve as a seed for 
exciting plasma waves and slightly scattered radiation. Our 
simulations reveal an effect which we interpret in this way. 
Namely, the Gaussian-shaped pulse acquires a perturba- 
tion with an axial wavelength equal to the plasma wave- 
length and a transverse structure which appears to be a 
Gaussian modulated by a sine wave with a wavelength 
comparable to the width of the pulse. We consider this case 
analytically by returning to dispersion relation (9). For 
near forward scattering, we assume the axial wave number 
is small compared to the laser wave number, k,<k,, and 
we approximate the daughter dispersion relations D,, ac- 
cording to 

D, = zt 2w,,q - kf c2, 

where 

w,=o-ck,. 

Here, we have replaced the group velocity cg by the speed 
of light. We assume that the perturbations that develop 
satisfy the quasistatic approximation, and we replace w in 
the plasma-wave dispersion relation by ck,. With these ap- 
proximations Eq. (9) reduces to D(w,,k) =0, where 

2 

-k;l-2k: 
a;k;(k;+k: 1 

(k;-k;) . (24) 

This dispersion relation describes both the relativistic self- 
focusing instability, as well as the near forward Raman 
instability when both the Stokes and anti-Stokes scattered 
waves are important. Further, it represents the dispersion 
relation that one obtains upon linearization of the para- 
axial, quasistatic equations, and as such it describes per- 
turbations in the frame of the moving pulse. For distur- 
bances whose transverse wavelength is longer than the 
plasma wavelength we may neglect k: compared with k; 
in the parentheses in the numerator of the above. The op- 
posite limit, namely k: $k;, leads to (23a) and (23b) 
which we have already discussed. 

We now determine the impulse response as before. Spe- 
cifically, we define w’ = wt -k * v and the shifted dispersion 
relation D,( o’,k) = D( w’ + k l v,k) and solve simulta- 
neously the equations D,=O and dDJdk=O. As the re- 
sulting instability is absolute, in so far as its propagation in 
the perpendicular direction is concerned, we set the per- 
pendicular part of the velocity v equal to zero. The van- 
ishing of the derivative of the dispersion function (24), 
with respect to the perpendicular component of the wave 
vector, then determines the perpendicular component of 
the wave vector, 

Inserting this relation in the derivative, with respect to k, 
of the dispersion function (24), then gives 

dD,(w’,k) 40~~5 4k,(a;k;)2 

% F- (kj+‘=“’ (26) 

And, inserting the expression for the perpendicular wave 
number (25) into the dispersion relation (24) allows one 
to calculate the frequency w,, 

(27) 

where o is plus or minus one. Combining (26) and (27) to 
eliminate w1 then determines the axial wave number 

(k~-k~12=io a$$c2t 
k wof; ’ (28) 

where we have replaced v, by -Qt. The above is similar to 
our other dispersion relations in that it has both a Raman 
and a Compton limit. In this case, for fixed {, the Raman 
limit applies for early times, and the Compton limit applies 
for later times. The transition occurs at a critical time tc 
which is given by 

2k,f 
te=TRqqj 9 

where 

R2Wo 
TR=~ 

is the Rayleigh time for a pulse of width R, and ki R2 a$ is 
essentially the peak power in the pulse normalized to the 
critical value for self-focusing. Thus the transition time, 
measured in units of the Rayleigh time, depends on the 
length of the pulse, as measured in plasma wavelengths, 
and the instantaneous power of the pulse, as measured in 
units of the critical power for self-focusing. For our simu- 
lations to be presented in the next section, the Raman re- 
gime result is relevant. 

Before calculating the amount of exponentiation, it is 
interesting to examine the behavior of the perpendicular 
wave number with time. For early times (28) shows that k, 
is close to kp and the perpendicular wave number deter- 
mined by (25) is large. As time progresses, the perpendic- 
ular wave number decreases. The present calculation ap- 
plies only so long as the predicted perpendicular wave 
length is smaller than the transverse size of the pulse. Once 
this inequality is violated a different rate of growth will 
obtain. In this sense the instability is convective in k space. 

At the critical time, when k, is of the order of kp we 
have 

k; R2=:a;kjR2. 

Thus at the critical time the perpendicular wavelength is 
the same as one would obtain for the relativistic self- 
focusing instability. Further, for power levels below the 
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self-focusing threshold the perpendicular wavelength pre- nonlinear term on the right-hand side of (30a) as the prod- 
dicted by the infinite, homogeneous medium theory is uct of the time centered index of refraction and the time 
larger than the transverse size of the pulse. For this reason centered field then gives the finite difference equations the 
the Compton regime is probably difficult to realize. property of exact energy conservation. 

We now estimate the amount of exponentiation for the 
impulse response. That is, we calculate 

The following boundary conditions were imposed on 
the finite difference equations. Equation (30b) was inte- 
grated in 5 assuming that both x and its derivative van- 
ished upstream from the laser pulse (S < 0). The field vari- 
able a was assumed to possess even symmetry in x and to 
satisfy outgoing wave-boundary conditions at x=X,, 
The outgoing wave-boundary conditions were enforced by 
a method which is described in Appendix B. Outgoing 
boundary conditions are important for long simulation 
runs because of the convective nature of the Raman insta- 
bility. The most convectively unstable disturbances have 
the largest perpendicular wavelengths and hence, the high- 
est group velocities in the x direction. If these disturbances 
are reflected at the simulation boundary back into the laser 
pulse, then the convective character of the instability can 
be changed to absolute. Finally, the radiation profile as a 
function of 6 and x was specified. Typically, the axial pro- 
file was chosen to be of the form of a half-sine wave, and 
the radial profile was chosen to be a converging Gaussian 
beam. 

At the critical time, this is of the order of the length of the 
pulse measured in plasma wavelengths. For times less than 
the qritical time we have from (28) 

This gives the following estimate for the amount of expo- 
nentiation, 

Im{wrt)=kph( &) “‘c (v) 1’2. (29) 

Thus long pulses, with kpL) 1, will eventually loose their 
smooth shape and develop transverse and’ axial structure. 
The amount of time required for this structure to appear 
can be estimated from the above by setting the amount of 
exponentiation to unity and solving for t, 

t=4TR/(kpLa;k;2P2). 

Thus for pulses at or above the threshold for self-focusing, 
and which are longer than a plasma wavelength, the struc- 
ture will appear on the order of a Rayleigh time. Since, as 
shown by Sprangle et al.,’ the pulse must be longer than a 
plasma period to self-focus at all, we anticipate that it will 
be very difficult to produce a smooth, self-focused laser 
pulse. 

IV. NUMERICAL SIMULATIONS 

We now describe the results of numerical simulations 
of the propagation of laser pulses through plasmas. We 
adopted the simplified set of equations (4) and (5) and 
wrote a finite difference algorithm for their solution on a 
two dimensional Cartesian grid (zx). The radiation was 
assumed to be plane polarized with complex amplitude 
a(&x,t) in the direction perpendicular to the plane of the 
simulation. We introduced the variable 

to represent the perturbed index of refraction. This allows 
(4) and (5) to be rewritten 

wo a a2 
2iTat+g a=k&a, 

1 

($+$)x=(&k;) b12. 

(304 

(30b) 

This system can then be differenced in time in a completely 
implicit way, wherein (30a) is centered between two time 
levels and (30b) solved at each time level. Evaluating the 

As has been mentioned, in a straightforward finite dif- 
ferencing scheme as we have described, the continuous 
wave vector k1 is replaced by 2 sin( k1 dx/2)/dx, and the 
group velocity for perturbations with the maximum wave 
number vanishes giving rise to absolute instability. To 
eliminate this problem we filtered the wave function 
a( g,x,t) periodically during the course of a simulation. The 
filter worked by smoothing the field over a range of nine 
transverse grid points 

a’(xJ =(J(Xi) - i ’ C.[CZ(Xi+j> +a(Xi-j> -2a(xi) I? 
jcl 2 ’ 

where a’ (xi> is the filtered field. The coefficients Cj were 
chosen, such that the transfer function, 

T(h )=l- $ Cj[COS(jh dx)-11, 
j=l 

was unity to order k,’ at long wavelengths and zero when 
k, =?r/dx, where dx is the spacing of the grid in x. The 
resulting transfer function is plotted in Fig. 2. The fre- 
quency of application of the filter was then specified so as 
to suppress any instability with k, dx > 0.87r. In doing this 
we assumed that the convective growth of the instability 
was given by Eq. (23b). A test of the efficiency of the filter 
was the degree to which energy remained conserved. As 
mentioned, the basic finite difference scheme conserves en- 
ergy exactly (except for round-off error). This is no longer 
true when the filter is added. However, if the filter is work- 
ing properly, that is if the transfer function is sharp 
enough, then it will act only to suppress the instability and 
energy will be conserved to a high degree of accuracy. 

The results of several simulations in the form of 
pseudo-three-dimensional plots of the square of the nor- 
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FIG. 2. Transfer function specified so as to suppress the instability with 
k, dx > 0.8~. 

malized vector potential are shown in Figs. 3 (a)-3 (c). 
The initial radiation pulse had the form 

a(x,&t=O) =a0 sin(rg/L)exp( -x2/R2) 

x [ 1 + cos ( n-x/q-& l/2, (31) 

where for the plots of Figs. 3 (a) and 3(b) the relevant 
parameters are a,=0.32, k,L=80, k$=I6, and 
$Anax = 32. The last factor in (3 1) ensures that, initially, 

the vector potential and its radial derivative vanish at the 
boundary. This reduces the high k components that would 
be present if the initial vector potential was simply cut off 
at the boundary. The numerical resolution for the simula- 
tions were as follows: 81 grid points were used in the axial 
direction and 122 grid points were used in the radial di- 
rection for the cases of Figs. 3(a) and 3 (b), and 62 grid 
points were used for the case of Fig. 3 (c). 

Figure 3 (a) shows the field intensity at a time equal to 
0.35 times the Rayleigh time, based on the width R, viz., 
t=0.35 TR, where TR=0.5 o. R2/c2. One can see the 
development of the scattered radiation on the trailing end 
of the pulse. The axial wavelength of the perturbations is 
equal to the plasma wavelength, and radial wavelength is 
equal to the shortest value allowed by the filter. Increasing 
the radial resolution results in finer scale perturbations. 
This radiation has grown from the high k components of 
the initial waveform, which are present due to its finite 
radial extent. 

Figure 3 (b) shows a continuation of the same simula- 
tion now at one-half the Rayleigh time. Several important 
features are visible. First, the body of the puke has self- 
focused to a high degree. As predicted by Sprangle et a1.,7 
the head of the pulse has not focused. The high perpendic- 
ular radial wave-number scattered radiation is still visible 
at the very end of the pulse, but its magnitude has dimin- 
ished slightly from that in Fig. 3 (a). A new perturbation is 
seen to develop in the body of the pulse. The axial wave- 

FIG. 3. Plots of the normalized intensity as function of space. On these 
three-dimensional plots the laser is propagating from the right to the left. 
The parameters corresponds to a,=0.32, k&=80, kp= 16, and 
~j&nax - -32. (a) r=0.35 T,, (b) t=0.5 TR, (c) r=2 TR. 
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FIG. 4. Same as Fig. 3 for a lower intensity. Parameters are aa=0.16, 
k,L=80, k$=16, kdy,,,=128, and t=2 TR. 

FIG. 5. Root-mean-squared width of the pulse as a function of the axial 
distance for t=O to 5 TR Parameters are ae=0.16, k,L=40, k$=20, 
and kJmax= 160. 

length of the perturbation is, again, the plasma wavelength 
but the radial wavelength is larger than that of the pertur- 
bation at the tail of the pulse. In order to ascertain the 
effects of this perturbation we reduced the radial resolution 
by a factor of 2 and simulated the pulse for a much longer 
time. The result appears in Fig. 3(c) which shows the 
shape of the pulse at 2.0 Rayleigh times. The tail of the 
pulse has now been completely eroded by scattering. The 
degree of scattering is dramatic due to our choice of a 
rather large initial normalized field amplitude. Due to the 
relatively long radial wavelength of the scattered radiation 
in this case, we interpret this instability as being the cou- 
pled Raman self-focusing branch studied in the previous 
section. This scattering is an inherent feature of intense 
pulse propagation in tenuous plasmas. 

To illustrate the dependence of these instabilities on 
radiation amplitude we simulated a weaker pulse. Figure 4 
shows the result, at 2.0 Rayleigh times, of a simulation in 
which the initial amplitude has been reduced to a,=O. 16. 
Because of the reduction of the field amplitude, there is 
considerably less self-focusing. As a result, we increased 
the radial size of the simulation region to k&max= 128. 
The number of radial grid points used in this case was 242. 
Here, the long perpendicular wavelength instability is vis- 
ible on the trailing end of the pulse. 

Figure 5 illustrates the degree of self-focusing present 
for a simulation with the following parameters, ao=0.16, 
k,L=40, kpR =20, and kFYmax= 160. Plotted is the root- 
mean-squared width of the pulse as a function of axial 
distance for several different times. As predicted,‘.the head 
of the pulse expands in time, due to diffraction, just as it 
would in the absence of any guiding. The body of the pulse 
remains focused for the duration of the simulation. There 
is, however, considerable excitation of the Raman instabil- 
ity, as evidenced by the appearance of oscillations on the 
tail of the pulse with period equal to the plasma wave- 
length. The degree of self-focusing seen here is probably 
enhanced due to the fact that our simulation geometry is 
planar as opposed to cylindrical. In planar geometry the 
power density on axis in the head of the pulse decays with 

time as t-l instead of te2 as would be expected in cylin- 
drical geometry. This is important for the self-focusing of 
the body of~the pulse because the head of the pulse pro- 
duces the modification of the index of refraction that fo- 
cuses the body of the pulse. Thus in cylindrical geometry 
one might see a faster erosion of the head of the pulse 
which eventually leads to a defocusing of the body. 

Finally, Fig. 6 shows the perturbation of the index of 
refraction, ,;y, for the case of Fig. 3 (c). The largest pertur- 
bations occur behind the pulse where, due to scattering, the 
field amplitude is very small. Thus what is plotted here is 
essentially the density perturbation. The relative density 
perturbations are quite large in this case. Indeed, it was 
necessary in our simulations to restrict the range of the 
index of refraction to prevent the density to become nega- 
tive. In particular the index of refraction used in the wave 
equation, xW, was obtained from the solution of (30b) via 
xw=x/( 1 +x2) 1’2. The initial growth of the instabilities is 
not affected by this replacement. The restriction would not 
be necessary if the fully relativistic and electromagnetic 
equations16 for the plasma response were calculated instead 

FIG. 6. Plot of the perturbation of the index of refraction, xu as function 
of space. The parameters correspond to Fig. 3(c). Note that, for conve- 
nience, the x axis has been inverted compared to Fig. 3(c). 
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of the weakly relativistic equations used here. However, it 
should be cautioned that with such large amplitude density 
perturbations, multistreaming can be expected and a ki- 
netic description of the plasma electrons is probably 
needed. 

V. CONCLUSION 

We have examined the excitation of Raman instabili- 
ties as they affect the propagation of short pulses in tenu- 
ous plasmas. Two regimes of Raman instability, corre- 
sponding to relatively large and relatively small scattering 
angles, are important. For the large angle case, the insta- 
bility is convective in the frame of the moving pulse, and 
the amount of amplification increases with scattering an- 
gle. If the plasma wave-noise level is high then one can 
expect backscattering to be most important. Alternatively, 
if the seed signal for convective growth is generated by the 
radiation itself, then forward scattering will occur. Pulses 
that have passed through an aperture before they enter the 
plasma will contain high perpendicular wave-number com- 
ponents which will be transiently amplified, possibly lead- 
ing to a disintegration of the pulse. The small angle scat- 
tering instability is absolute in space but convective in wave 
number. The instability results from a coupling of the Ra- 
man and self-focusing mechanisms, and causes the pulse to 
develop transverse and axial structure within a Rayleigh 
time. In all cases the instability becomes more severe as the 
length and intensity of the pulse are increased. Thus, due 
to these instabilities, stable pulse propagation over many 
Rayleigh lengths can only be expected for pulses that are 
not too long, k& = 1 O-20. The trailing end of pulses which 
are longer than this limit will be sidescattered until the 
pulse is shortened to a stable length. This effect, combined 
with the diffraction of the head of the pulse,7 severely limits 
the parameters for which effective self-focusing will occur. 

A number of effects might mitigate the excitation of 
these instabilities, particularly the instabilities correspond- 
ing to large-angle sidescattering or backscattering. These 
effects include a more realistic treatment of the plasma 
electrons and the possible deliberate introduction of chirp 
in the laser pulse. The present theory has treated the exci- 
tation of plasma oscillations in the linear, cold fluid ap- 
proximation. Thermal effects would tend to suppress those 
instabilities for which the wavelength of the plasma distur- 
bance approached the Debye length. In practice, the tem- 
perature will probably not be high enough for this to be 
important,” but a similar effect can be expected when the 
pulse is intense enough to cause a macroscopic motion of 
the plasma. In this case, a scattered wave would encounter 
plasma with a spatially varying Doppler shift as it propa- 
gated out of the pulse. If the spatial variations of the Dop- 
pler shift are large enough, then the resonance between the 
scattered wave, the pump and the plasma wave could only 
be maintained over a small distance thereby reducing the 
amount of convective growth. A fully nonlinear treatment 
of the electrons is necessary to capture this effect. Likewise, 
the introduction of chirp in the laser pulse could spoil the 
resonance between the three waves. These effects can be 

likened to the degradation of gain in a free-electron laser 
with a poor quality beam, or a poor quality wiggler. 

Another consideration that we have not addressed is 
the effect of the instability on the coherence of the wake. It 
may be possible that the radial and axial structure of the 
wake is modified by the instability and the suitability of the 
wake for particle acceleration needs to be studied. 

Finally, due to the increase of convective ampliftcation 
with scattering angle, the numerical simulation of pulse 
propagation becomes problematic. Indeed, the frequently 
employed para-axial approximation to the wave equation 
leads to a poorly posed problem with an ultraviolet catas- 
trophe. This problem can be circumvented by careful con- 
trol of the spatial resolution of the simulation. In doing this 
one introduces another parameter which is the minimum 
perpendicular wavelength which is allowed in the system. 

ACKNOWLEDGMENTS 

We acknowledge fruitful discussions with D. Pesme on 
various aspects of Raman instability. One of the authors 
(T. M. A. Jr.) would like to thank the Centre National de 
la Recherche Scientifique for its support and the members 
of the Centre de Physique Theorique of the Ecole Poly- 
technique for their hospitality. 

APPENDIX A: RAMAN SCATTERING IN THE INFINITE 
HOMOGENEOUS PUMP LIMIT 

In this appendix, we show the different regimes of Ra- 
man scattering in the infinite, homogeneous pump limit. 
Neglecting the relativistic self-focusing term in Eq. (9), we 
can write 

In this purely temporal analysis, we assume that k is such 
that (we-tip, kc-k) exactly satisfy the dispersion relation 
for the light waves, i.e., 

co;-k2c2-2(q,mp-k+,c2) =O. 

We can approximate 

D-z- 2(~o-qJ(~--op) 

and 

(A21 

D + z2(wo+wp) (w-w,) +2(4-kV). 

The quantity k can be expressed as a function of the angle 
of propagation 0 of the scattered wave. Using an expansion 
in powers of wdoo we obtain 

k2c2zc$( 1 +s) +4wi sin2( g), 

and 
4 D + ~2(wo+wp) (w-9) -2 ( ) $+a;@ . 

It is sufficient to express the coupling term in Eq. (Al) 
with 
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In domain 5, the angular part of the mismatch of the anti- 
Stokes term is dominant, 

D + ~2Wo(W-WJ -2&P 

and 
8 

‘%‘wr, :’ .’ 

0 

~-* 

Pp+j2 *.* 

q,..: ,-” ” 

: 
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,$@ ,,,. )“..” @ a0 
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FIG. 7. Different regimes of the Raman instability in a tenuous plasma in 
the infinite, homogeneous pump limit. 

kZc2z=Wi+4&sin2 c . 
0 

(A4) 

The set of equations (Al)-(A4) corresponds to seven dif- 
ferent regimes of the instability, depending on ac, 0, and 
o/oe. For a fixed value of the ratio w/oo, Fig. 7 shows 
schematically the domains corresponding to the different 
regimes. Domain 1 corresponds to the usual forward Ra- 
man instability with 

co’-+2q,(w-w,), D-z -2w&0-q,), 

1 D+l N [ D-1, k2c2& 

The growth rate is 

1 wp 1’2 
YGT 00 

( ) 
upa0 * 

Domain 2 corresponds to the Raman sidescatter, where the 
angular term dominates in the coupling term (A4). One 
has 

Domain 3 is the Compton limit (also called strongly cou- 
pled limitr7), where 1 o I SW,, and 

So far, we have neglected the anti-Stokes contribution in 
(Al). This contribution has to be kept in the last four 
regimes. Domain 4 corresponds to the intermediate for- 
ward Raman studied by Pesme.14 In this regime one can 
approximate 

4 
D ,==2~o(+op) -2 2, 

and the growth rate is 

J 3 1 1’4 
w-j- 4 

0 
( .“e)2/3cop . 

Domain 6 differs from domain 5 by the fact that the an- 
gular term dominates the coupling term, so that 

Finally, domain 7 corresponds to the standard result for 
Raman forward scattering in rarefied plasma.“*14*‘8 The 
frequency mismatch can now be neglected in the anti- 
Stokes contribution, and one has 

D - -2(wo-qJ (w-Q+), -- 

D + LmqJ+op) b--o& 

and 

Let us now consider the modifications due to the paraxial 
approximations, for which 

D, = ~2(coOodc,ykc2) -G c2=0. 

We assume that (wo-tip, k,- k) satisfy the paraxial dis- 
persion relation, i.e., 

2(op,-b*kc’) -k; c’=O. 

Then we have 

De. = -~w~(w-c~+) 

and 

D, =2wo(o-a+) -2kf c2 

with 

,,+I, 
and the coupling term is approximated with 

k’c’=:co;+co$32. 

Comparing with the results obtained with the exact disper- 
sion relation we observe that the regimes 4 and 7 disap- 
pear, and merge into regime 5. In addition, the frontier 
between regimes 1 and 5 is slightly modified, as shown by 
the dashed line on Fig. 7. Finally we note that self-focused 
propagation corresponds to characteristic values of k, of 
the order of a0 kp so that we are not interested here in the 
domain below the dotted line on Fig. 7. Therefore, the 
paraxial approximation, apart from the ultraviolet catas- 
trophe described in the main text, is a good approximation 
to study the self-focusing propagation of an intense laser 
beam in a low-density plasma. 
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APPENDIX 6: OUTGOING WAVES 

We wish to solve Eq. (30a) subject to the condition at 
the boundary x=X,,, that waves leave the system without 
reflection. We assume that for x > X,,, the perturbation of 
the index of refraction is negligible and we set the right- 
hand side of Eq. (30a) to zero. The outgoing wave- 
boundary condition is easily enforced on the temporal La- 
place transform of the field amplitude a(x,f,s), 

;i,=, =i(qy *‘2a(x=X,,x,s). 

m m  

The problem is then to find a way to enforce this con- 
dition in the time domain. In principle, this requires car- 
rying out a convolution over time of all past values of the 
field amplitude at the boundary in order to determine the 
correct value of the derivative of the field amplitude. This 
is then repeated at each time step. Because a convolution of 
this type is not numerically efficient, we use an alternate 
procedure. In particular, we represent the square root of 
the Laplace transform variable as a sum of rational poles, 

i ii- n:, -- (s,wY+, - n:, zy n 
where the poles, ynyn, were chosen to satisfy a geometric 
progression with values between 0.05 and 4.0, and the val- 
ues of the ten coefficients (T,,, were chosen to minimize the 
integral of the square error defined by the difference of the 
two terms appearing on either side of the equality in the 
above, 

J:I dalEB( !l (im /w”;+ym - j, :)I** 
Here, w is a scale factor which gives the range of frequen- 
cies over which the boundary is nonreflecting. 

With the above replacement, the boundary condition 
in the time domain is expressed as 

~I,=, =i( T)‘, 

man 

( 

10 10 
x n~lgn-4x=xmaxJ) c s 9 

n=l Yn 1 

where the variables g, satisfy ordinary differential equa- 
tions in time 

dgn --py&,=cr,a(~&naxJ~- 

With this approximate boundary condition, we were able 
to successfully enforce outgoing waves over the range of 
frequencies encountered in the simulations. 
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