Chapter 40

Wavetunctions and Uncertainty



Chapter 40. Wave Functions
and Uncertainty

Topics:

* Waves, Particles, and the Double-Slit
Experiment

* Connecting the Wave and Photon Views
* The Wave Function

e Normalization

* Wave Packets

* The Heisenberg Uncertainty Principle



Wave - Particle Duality

Electrons and Photons have both particle and wave aspects

Both exhibit interference - wave aspect

Both are detected as discrete chunks - particle aspect




FIGURE 40.1 The double-slit experiment
with light.
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Diffraction of Matter

(a)

Viewing screen

Electrons
arrive one by
one. Hitting
the screen at
discrete points. FS*
But over time a pl#*d
diffraction
pattern is built

up!

The drawing is not to scale:
the distance to the screen is
actually much greater than ...,

the distance between the slits. &

Double slit

. Electron beam

Copyright © 2008 Pearson

Puzzle: When it hits the screen it acts
like a particle, but somehow it went
through both Slits. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley




FIGURE 40.1 The double-slit experiment
with light.
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Photon’s and matter particle’s motion 1s described by a wave field
that governs the probability of observing the particle at some
point or with some property.

It’s weird.

To make predictions for measurements we need to make two steps.

1. Solve for the values of the wave field (wave function).

2. Use the wave function to calculate the probability of finding
our particle somewhere. We can’t say for sure where it will be.

"God does not play dice with the universe.” A. Einstein(1926)

So far as we know he does.



Probability First

The probability that outcome A occurs is P,.
What does this mean?

Let’s say you conduct an experiment N, , times, and observe
outcome A N, times. Then:

P, = lim N

A Ntot — 00 N
Tot

In other words, if you were to conduct the experiment an
infinite number of times, P, 1s the fraction of times outcome
A occurs.

Certain qualifications need to be made: e.g. each try is independent of the others but
otherwise each try is under the same conditions.



Comments:

O<P <1 Dart Board

~L 4 =

Probabilities are between zero and one _ ,
45 in region A

If A, B and C are exclusive outcomes

PAorBorC:PA—|_PB—|—PC

If A, B and C are exclusive and the
only possible outcomes

])AorBorC:])A_l_])B—|_I)C:1

35 in region B
20 in region C



45 in region A

Question

Is this true?

PAorBorD:PA—|_PB—I_PD

Yes

No

Probably No
Maybe Yes

onwp

35 in region B
20 in region C

Copyright © 2008 Pearson Educ ishing as Pearson Addison-Wesley.



45 in region A

What is the probability that
the dart hits right here?

35 in region B
20 in region C



A

45 in region A

What 1s the probability that
the dart hits in this small

area AA?

P, = AA P(x,y)

Probability density function
P(x,y)
>

35 in region B X Density of dots
20 in region C




Linear mass density
ox_ atxis u(x).
0 S )

: X-ax1s

g X
The mass of this small segment
of string 1s

mass(in ox at x) = u(x) ox

Probability density
Ox  atx is P(x).

| Al |

: X-axis

. %
The probability that a photon
lands in this small segment
of the screen 1s
Prob(in éx at x) = P(x) éx

iblishi

One dimensional
probability density

P(x)ox

Is the probability that
the value of the
measured quantity (x)
falls in the small

interval 0x centered at
X.



Some examples:

Your computer can generate “random” numbers X, X,, ... that satisty
0<x,<1.0.

The chances of any particular value are equal.

What is the Probability Density Function (PDF) for x?

P(x) )

1

Total Area under curve
=1




In example 1, what is the probability a single random number
number 1s generated that falls in the interval 1/2 < x <2/3 ?
Call this outcome A.

P(x) )

2/3 2 1 1
Po=[Podx=C-D=-

1/2

N | —
W | B



Example 2:

Students selected at
random give different
answers on exams.

A histogram of the exam
scores for 120 students
appears at right.

The underlying PDF
might appear as the black
curve.

EXAM 1

Count

20 30 40 50 60 70 80 90 100



Example 2:

What is the probability
that a student (chosen at
random) scores between

70 and 807

Count

80
P, = f P(x)dx ~ .25
70

Area under curve 20-100 = 1



FIGURE 40.1 The double-slit experiment
with light.
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Interference of photons suggests the following heuristic approach.

1. First treat photons as waves and calculate the classical wave
fields for a wave of frequency w=27f

E(x) B(x)

2. Calculate the classical intensity

1 2
[(x)== /5_o| E(x)
2\ 1

3. Number of photons/second/area related to intensity

# photons  1(x)
sec area hf
Use Intensity to define P(x) (PDF) for a single photon

Check units



What should we do for electrons?

We need to make up a wave equation for some
quantity that we will square and say 1s the PDF

Requirements: Y(x,1) satisties a wave equation.
[y (x,0) must act like a PDF
For wave like solutions
Momentum: p=h/A=hk
p2

Energy: E=hf =hw=-"—+U(x)
2m



Consider light waves as a guide

O°E(x,t) ,0°E(x,t)
2 =C 2
ot 0x

Try a traveling wave solution

E(x,t)= E, cos(kx — wt) = Re[ E e "]

where ;=41

0 ... - s R -
_ez(kx wt) — _lwez(kx wt) _ez(kx wt) — lkez(kx wt)

ot 0x

Each time derivative becomes -10. Each x derivative becomes 1k



’E(x,t) 2 J°E(x,1)
ot’ ox’
Try a traveling wave solution
E(x,t)= E,cos(kx —wt) = Re[E e’ "] i=-1

. . 2 i(kx—wt) _ 2 ,7:71\2 i(kx—wt)
Wave equation ~ (—i0) E,e = c"(ik)" Ege

After canceling common factors w’ =c’k’
If I say: E=hw p = hk
Then E=pc  which describes photons but not

particles.



To describe particles start with expression for particle energy.

2

E=L 1uw
2m
/ replace momentum
replace energy \
E:ha):ih3 pzhkz—ihi
ot ox
/ introduce wave function
0 n 0’
h— J)=———~ H+U o1
iy () == oSy )+ U@ ()

Schrodinger’s Equation



The wave function 1s complex.

? 0 h* 0
lhgl[/(x,l‘) = —%yw(x,t)+ U(x)w(x,t)

What 1s the PDF for finding a particle at x ?

2

P(x,t)=|w(x,1)

Step 1: solve Schrodinger equation for wave function

Step 2: probability density of finding particle at x 1s

P(x,t)=|w(x,1)

2



Stationary States - Bohr Hypothesis

. 0d h 0’
lhgl[/(x,l‘) = —%yw(x,t) +U(x)y(x,t)
w(x,1) = l/’}(x)e—iEt/h o= %

Stationary State satisfies

. /i A .
Ey(x,t)= —ﬂyw(x,t) +U(x)y(x,t)
Note:  |w(nof =|g@)e ™| =gl = P(x)

P(x) Independent of time



(a) Wave function

Jr(x) Corresponds to a particle in the
potential

1
U=—kx’
| | X 2

(b) Probability density

P(x) = [p(x)|*

The particle has the
maximum probability
of being detected where
[(x)]* is a maximum.

.
o**
.

"
*
‘Q
“ 0‘
A4

r A | X
—bs0 b
The particle has zero probability of
being detected where [i(x)|* = 0.



Normalization

A photon or electron has to land somewhere on the
detector after passing through an experimental apparatus.

« Consequently, the probability that 1t will be detected at
some position 1s 100%.

* The statement that the photon or electron has to land
somewhere on the x-axis 1s expressed mathematically as

] P(x)dx = ‘ () |2dx = 1

= — 0

* Any wave function must satisfy this normalization
condition.



The value of the constant a is
P(x) = |(x)|

-

| I i x (mm)
0 | 2

A. a=05mm'2,

B. a=1.0 mmV2,

C. a=2.0 mm2,

D.a=1.0mm!.
E. a=2.0mm.



FIGURE 40.8 The area under the
probability density curve is a probability.
(a) P(x) = |dr(x)]}
A property of the
Schrodinger equation is that
|

/\ if initially
Fx 0 xg ‘\

The area under the curve between ’ P(\) dx = J | d,(_x-) | 3(-/_\* == 1
x

v, and x, is the probability of finding
the particle between x; and x;.

Y= — %

(b) P(x) = (x| Then 1t will be true for all
time.

_The total area under
the curve must be 1.




The figure shows the detection of photons in an

optical experiment. Rank in order, from largest
to smallest, the square of the amplitude function
of the electromagnetic wave at positions A, B, C,
and D.

B

8 i = A D>C>B>A
- o B.A>B>C>D

A LR C.A>B=D>C
1 P PRI I D.C>B=D>A
N KA T I S T O S A



.. (x)
This is the wave

function of a
neutron. At what

value of x is the
neutron most likely
to be found?

A x=0
B. x =x,
C. x=xp
D. x = x¢



Uncertainty Relation

There are certain pairs of variables we can not predict
simultaneously with arbitrary accuracy.

Energy and Time

Momentum and Position

Uncertainty relations:

AEAt > h
ApAx > h



How to remember which variables go together

Traveling Wave V(x,t)= /:(kx wf)\
Pairs: k and x wandt
A 0
Remember = Ak =—In—"— E=hw=ih—

//, / /at

Momentum is derivative wrt x Energy 1s derivative wrt t



Waveftunctions with a single value of momentum or energy

i(kx—mt)

I/j(-xal‘) — l//Oe

Probability density is is constant in space and time

te=on® “/fo‘2 = const.

P o<y (x| =|yye

So, if momentum has a definite value, PDF in constant x .

It energy has definite value PDF is constant in time.



Example of a wave
function that 1s not
extended in time.

A Pulse of duration At
has a spread in Frequency

values Af.

Af =1/ At

FIGURE 40.12 History graph of a wave
packet with duration Ar.

A wave packet can represent either a
.~matter particle (wave function ) or a
¢ photon (electromagnetic field E).

Wror E

The wave packet oscillates,
a wave-like characteristic.

T
b b

g’

V\J V
UUUU

4 '™
R, |

Wave packet duration Af
o

The wave packet is localized,
a particle-like characteristic.



FIGURE 40.14 A single wave packet is the Waves to be added span the frequency The waves are all in phase

superpositic.»n of many component waves range from f; Af to fo+ 3Af. |t this instant of time.
of similar wavelength and frequency. Y e
INNNNNNNNSNNANANANANNNNL = fo+ A

A sum (superposition) on\/\/\ VAN

many sine waves can give /\/\/\/\/\/\/\/\N\/\/\/\ -
youa pulse VAVAVAVAVAV/VAVAVAVAVAY

Increasing frequency

The superposition of the
many waves spanning a =t

range of frequencies is
a wave packet.

The mathematical statement that a time dependent pulse can be
represented as a sum of sinusoidal waves with different frequencies is
a branch of mathematics known as Fourier analysis.

Very important in Physics and Engineering



Jean Baptiste Joseph Fourier (21 March 1768 n 16
May 1830) wikimedia commons



A sum of two waves gives beats. (I hate beets!)

cos[(@+ Aw / 2)t |+ cos[(w — Aw / 2)t| = 2 cos| wt |cos| Awt |

Displacement
rapid oscillations
given by m, average
frequency.

Duration Az

I |
\Anﬂﬂ RI\MI\MM\A/Jﬁ

Duration At given by w
variation in

frequency, A U w U J TR \l

AG)AZ‘ =7l soft loud soft loud soft loud




Wave Packets

Suppose a single non-repeating wave packet of duration ¢
1s created by the superposition of many waves that span a
range of frequencies Af.

Fourier analysis shows that for any wave packet

AfAL =~ |

We have not given a precise definition of a7 and Af for a
general wave packet.

The quantity az 1s “about how long the wave packet lasts,”
while Af'1s “about the range of frequencies needing to be
superimposed to produce this wave packet.”



The same
considerations apply
to the spatial
dependence of a wave

packet. Pix) N ’,f y)

{
AkAx =70 Y [y p——
A W
h 7
p=tk="hil 1

‘\-\-’u\-’e racket length A.\"
Ap = WAk = h | Ax .

FIGURE 40.17 A snapshot graph of a wave
packet.




EXAMPLE 40.4 Creating radio-

frequency pulses
QUESTION:

EXAMPLE 40.4 Creating radio-frequency pulses

A short-wave radio station broadcasts at a frequency of
10.000 MHz. What is the range of frequencies of the waves that
must be superimposed to broadcast a radio-wave pulse lasting
0.800 ws?



EXAMPLE 40.4 Creating radio-
frequency pulses

MODEL A pulse of radio waves is an electromagnetic wave packet,
hence it must satisty the relationship AfAr = 1.



EXAMPLE 40.4 Creating radio-
frequency pulses

VISUALIZE FIGURE 40.15 shows the pulse.

FIGURE 40.15 A pulse of radio waves.

E
T = 0.100 us
f NAANR S
0 {
VvV VUV J
J A7 = 0.800 s '




EXAMPLE 40.4 Creating radio-
frequency pulses

SOLVE The period of a 10.000 MHz oscillation is 0.100 us. A
pulse 0.800 ws in duration is 8 oscillations of the wave. Although
the station broadcasts at a nominal frequency of 10.000 MHz, this
pulse is not a pure 10.000 MHz oscillation. Instead, the pulse has
been created by the superposition of many waves whose frequen-
cies span

1 l

Af = — = — = 1.250 X 10°Hz = 1.250 MHz
AT 0.800 X 1070

This range of frequencies will be centered at the 10.000 MHz
broadcast frequency, so the waves that must be superimposed to
create this pulse span the frequency range

9.375 MHz = f = 10.625 MHz



FIGURE 40.16 Two wave packets with
different Ar.

(a) i
These two wave

packets have the
—/\ J\' same average

frequency f, but

A
R . S— different spreads in
This wave packet has a large
frequency uncertainty Af. frequency Af.
(b)
‘ At

This wave packet has a small
frequency uncertainty Af.



What minimum bandwidth must a
medium have to transmit a
100-ns-long pulse?

A.100 MHz
B. 0.1 MHz
C.1 MHz
D.10 MHz
E. 1000 MHz



Which of these particles, A or B,
can you locate more precisely?

Pr(x) /\ P(x)
~/ _— % VKHHHH“H“W *
A B
A A
B.B

C. Both can be located with same precision.



The Heisenberg Uncertainty

Principle
* The quantity Ax 1s the length or spatial extent of a wave
packet.

Ap. 1s a small range of momenta corresponding to the small
range of frequencies within the wave packet.

* Any matter wave must obey the condition

h
2

—

AxAp, = (Heisenberg uncertainty principle)

This statement about the relationship between the position
and momentum of a particle was proposed by Heisenberg in
1926. Physicists often just call it the uncertainty principle.



EXAMPLE 40.5 The uncertainty

of a dust particle
QUESTION:

EXAMPLE 40.5 The uncertainty of a dust particle

A 1.0-pm-diameter dust particle (m == 10~ " kg) is confined within
a 10-um-long box. Can we know with certainty if the particle is at
rest? If not, within what range is its velocity likely to be found?



EXAMPLE 40.5 The uncertainty
of a dust particle

MODEL All matter is subject to the Heisenberg uncertainty
principle.



EXAMPLE 40.5 The uncertainty
of a dust particle

SOLVE If we know for sure that the particle 1s at rest, then p, = 0
with no uncertainty. That is, Ap, = 0. But then, according to the
uncertainty principle, the uncertainty in our knowledge of the par-
ticle’s position would have to be Ax — . In other words, we
would have no knowledge at all about the particle’s position—it
could be anywhere! But that 1s not the case. We know the particle
is somewhere in the box, so the uncertainty in our knowledge of its
position is at most Ax = L =10 um. With a finite Ax, the uncer-
tainty Ap, cannot be zero. We cannot know with certainty if the
particle is at rest inside the box. No matter how hard we try to
bring the particle to rest, the uncertainty in our knowledge of the
particle’s momentum will be Ap, = h/(2Ax) = h/2L.



EXAMPLE 40.5 The uncertainty
of a dust particle

We’ve assumed the most accurate measurements possible so that
the = in Heisenberg’s uncertainty principle becomes =.
Consequently the range of possible velocities is

Ap,
m 2mlL

Av, ~ 30 X 10 “ m/s

This range of possible velocities will be centered on v, = 0 m/s if
we have done our best to have the particle be at rest. Thus all we
can know with certainty is that the particle’s velocity 1s somewhere
within the interval —1.5 X 107" m/s = v = 1.5 X10™" m/s.



EXAMPLE 40.5 The uncertainty
of a dust particle

ASSESS For practical purposes you might consider this to be a sat-
isfactory definition of “at rest.” After all, a particle moving with a
speed of 1.5 X 107" m/s would need 6 X 10" s to move a mere
I mm. That is about 2000 years! Nonetheless, we can’t know if
the particle is “really™ at rest.



EXAMPLE 40.6 The uncertainty

of an electron
QUESTION:

EXAMPLE 40.6 The uncertainty of an electron
What range of velocities might an electron have if confined to a 0.10-nm-wide region,
about the size of an atom?



EXAMPLE 40.6 The uncertainty
of an electron

MODEL Electrons are subject to the Heisenberg uncertainty principle.



EXAMPLE 40.6 The uncertainty
of an electron

SOLVE The analysis is the same as in Example 40.5. If we know that the electron’s posi-
tion is located within an interval Ax =0.1 nm. then the best we can know is that its veloc-
ity is within the range

Ap.  h

Ay, = — = ~ 4 X 10°m/s
m 2mL

Because the average velocity is zero, the best we can say is that the electron’s velocity is
somewhere in the interval —2 X 10°m/s = v = 2 X 10° m/s. It is simply not possible to
know the electron’s velocity any more precisely than this.



EXAMPLE 40.6 The uncertainty
of an electron

ASSESS Unlike the situation in Example 40.5, where Av was so small as to be of no practi-
cal consequence, our uncertainty about the electron’s velocity 1s enormous—about 1 % of
the speed of light!



General Principles

Wave Functions and the Probability Density

We cannot predict the exact trajectory of an atomic-level particle such as an electron. The
best we can do is to predict the probability that a particle will be found in some region of /\

ir(x)

space. The probability is determined by the particle’s wave function ¢s(x).

* ri(x) is a continuous, wave-like (i.e., oscillatory) function.

The probability that a particle will be found in the narrow interval dx at position x is
Prob(in ox at x) = Il,l/(..\')|28..\‘
|s(x)|? is the probability density P(x).

ol

For the probability interpretation of s(.x) to make sense, the wave function must
satisfy the normalization condition:

j P(x)dx = J |1[/(.\')|2dx =]

That is. it is certain that the particle is somewhere on the x-axis.

* For an extended interval

R
Prob(xy =x = xp) = J |d/(.\') |2(I.x = area under the curve
AL



General Principles

Heisenberg Uncertainty Principle

A particle with wave-like characteristics does not have a precise value
of position x or a precise value of momentum p,.. Both are uncertain.
The position uncertainty A x and momentum uncertainty Ap, are related
by AxAp, = h/2. The more you try to pin down the value of one, the
less precisely the other can be known.

ifr(x)

N
1] | Ik

Wave packet length Ax




Important Concepts

The probability that a particle is
found in region A is
I’VA 'S « w .

PA=I|m\ - VA ok
Vi % Ny

If the probability is known, the .
expected number of A outcomes
in N trials is Ny = NP, -

P
Region A



Important Concepts

A wave packet of W or E
duration Af can be
created by the ﬂ n n
superposition of many i
waves spanning the i F ﬂ ~

frequency range Af. o U \
These are related by U J
U

AfAt = |

IR

Wave packet duration Af




