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Electrodynamics 

Topics to be covered

Antennas:
Arrays, Impedance, Gain, Reciprocity

Radiation from Moving Charges

Notes Courtesy of Professor Phil Sprangle
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Center Fed Linear Antenna
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0

d /2

∫ d ′z 1−2
′z

d
⎛
⎝⎜

⎞
⎠⎟

cos(k ′z cosθ )
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Phased Array
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Antenna Directivity and Gain
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The total power radiated is PT =

S
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dΩ where dΩ = sinθ dθ dϕ

Antenna Efficiency: (Radiated power/Input power) ε = PT / Pin
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Antenna Gain     G(Ω) = εD(Ω)



EM Reciprocity
Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal 
symmetry of ME.

- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

V
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Defining Antenna Impedance
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Impedance and Admittance Matrices 
 
In this section we first discuss the ways in which the impedance (or admittance) 

matrix is defined for a port, and then discuss how its values are determined.  We 
generally identify three situations of interest, which we label the terminal case, the closed 
aperture case, and the open aperture case.  The precise definition of the impedance matrix 
will vary in these cases, as will the method of calculation of the matrix.  However, all 
three of these cases can still be treated within the Random Coupling Model. 

The terminal case applies to the situation where a port is excited through a single 
mode transmission line, and the excitation of the port can be prescribed by a single 
variable: the voltage, or current, or amplitude of the incident wave on the transmission 
line.  Our studies of the excitation of cavities by signals on cables are examples of this 
case.  In addition, a terminal or lead on an integrated circuit can be treated as an example 
of this case if one considers the input to the circuit as a lumped element and the 
conductors and dielectric material surrounding the integrated circuit as an antenna.  In the 
terminal case, determination of the radiation impedance becomes equivalent to solving 
for the fields surrounding an antenna that is driven by a transmission line.  It is thus 
important to account for the geometry and dielectric properties of the material 
surrounding, within several wavelengths, the terminal.  Calculation of the port impedance 
can be quite complicated as it involves the self-consistent determination of the current in 
all conductors and polarization of all dielectrics near the port.  A simple case is that of an 
antenna that is small compared with a wavelength.  In this case the current distribution in 
the antenna is fixed.  An example of this is that of a coaxial antenna in a two dimensional 
cavity [Zheng 1]   

 
The procedure for treating a pin on an integrated circuit in the terminal case is as 

follows.  One imagines that there is a fixed current source within the integrated circuit 
that excites the conductors surrounding the integrated circuit and that radiates energy 
away form the integrated circuit.  The voltage that appears at the terminal, divided by the 
fixed current defines the radiation impedance for that port.  When analyzing the statistics 
of the voltages that appear at that terminal when the integrated circuit is placed in the 
cavity it is necessary to account for the impedance seen looking into the integrated 
circuit.  In the Random Coupling Model one assumes that the port terminal is connected 
to a load with this impedance. 

 
One case where a closed-form expression can be obtained is the calculation of the 

impedance for a set of ports that can be modeled as fixed current distributions.  We 
assume the current density profile can be written as the product of a port current,  

I p , and 

a spatially dependent profile function,  
up(x) , 

   
J(x) = up(x)I p

p
∑ .     (X.1) 

here the sum is over ports.  The corresponding port voltage is then defined, 
 

   
Vp = − d 3x up(x) ⋅E(x)∫ .    (X.2) 

Suppose there are multiple antennas, 
each with its own current profile, up

We can define a voltage for each 
antenna, Vp
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With this definition power 
balance is preserved
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That is, if the induced electric field is doing positive work on the source current this 
power must be flowing from the fields, and thus, the product Re(VpI p

* )  is negative. 
 

To calculate the radiation impedance we insert expression (X.1) in Maxwell’s 
equations, Fourier transform in space, solve for the Fourier transform of the Electric field, 
take the inverse transform, and insert the expression for the electric field in Eq. (X.2). 
The result is, 
 

Vp = Zp !p
rad

!p
∑ (k0 )I !p ,      (X.3) 

 
where   k0 = w / c , and  wis he frequency of excitation.  A mathematical expression for the 
elements of the radiation impedance matrix is given in the appendix. 
 

If we repeat the process, but assume the antenna currents are in the interior of a 
cavity, rather than an infinite space, the radiation impedance is replaced by a cavity 
impedance.  In the appendix it is shown that under the assumptions that the eigenmodes 
of the closed cavity can be replaced by superpositions of random plane waves, and the 
spectrum of the cavity eigenmodes can be replaced by one corresponding to a random 
matrix from the Gaussian Orthogonal Ensemble, the statistical properties of the cavity 
impedance can be represented as follows: 
 

Zcav = i Im Zrad( )+ Rrad!" #$
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⋅ξ ⋅ Rrad!" #$

1/2
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where Rrad is the radiation resistance, i.e.  Z

rad = Rrad + i Im Zrad( ), and we have adopted 
the notation that a double underline indicates a matrix quantity.  The matrix 

 
x  is an 

element of the Lorentzian ensemble [Brouewer] and can be defined for a lossless cavity 
as  
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2  are the eigenvalues of a Gaussian random matrix, where the central eigenvalue is 
shifted to be close to k0
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Formal Expression of Reciprocity
Consider two solutions of Maxwell’s Equations in the same medium

!!!

∇× Ê2 = iωµ(x)Ĥ2

∇× Ĥ2 = −iωε(x)Ê2 + Ĵ2!!!

∇× Ê1 = iωµ(x)Ĥ1

∇× Ĥ1 = −iωε(x)Ê1 + Ĵ1
Can Show

!!!
d3x Ĵ2 ⋅Ê1 − Ĵ1 ⋅Ê2⎡⎣ ⎤⎦

V
∫ = dan ⋅ Ĥ2 × Ê1 − Ĥ1 × Ê2⎡⎣ ⎤⎦

S
∫

=0 if conducting BC
Or outgoing waves

E due to J1 at J2 same as
E due to J2 at J1
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−iω εE(k) = ik × H(k) − I pu p (k)

p
∑ ,   (A.1) 

and 
 

   iω µH(k) = ik × E(k) ,    (A.2) 
 
where the overbars indicate the Fourier transform of the fields and 
up(k) = d3x∫ u p(x)exp(−ik ⋅x)  is the Fourier transform of the port function.  Equations 
(A.1) and (A.2) can be combined to find the transform of the electric field, 
 

   
(k0

2 − k 2 )E + kk ⋅E = −ikη I
$p u

$p
$p
∑ ,    (A.3) 

 
where  η = µ / ε , and   k0 =ω εµ =ω / c .  We solve (A.3) for the transform of the 
electric field, inverse Fourier transform this expression, and calculate the voltage at port p 
using definition (X.2).  The result is Eq. (X.3) where 
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kk
k2k0

2 (k0
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The radiation impedance matrix is a complex quantity.  The residue at the pole  k = k0 in 
(X.3a) gives the radiation resistance, 
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rad( ) = µ
ε
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⋅u ′p   (A.6) 

 
where Ωk  is the two dimensional solid angle of the wave vector k .  The radiation 
resistance is frequency dependent through k0 =ω / c , and we note that there is an implicit 
k0  dependence through the Fourier transforms of the port functions where we set 

 k = k0 .  The imaginary part of (A.4), gives the radiation reactance.  Part of this can be 
expressed as a principle part integral of the radiation resistance.  However, there is an 
additional capacitive contribution ( Z ∝ k0

−1 ) coming from the last term in the parentheses 
in (A.5) that contains a factor that cancels the resonant denominator in (A.4), 

Xp !p
rad (k0 ) = Im Zp !p

rad( ) = P 2k0dk
π (k0

2 − k2 )0
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rad + Xp !p
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resistance is frequency dependent through k0 =ω / c , and we note that there is an implicit 
k0  dependence through the Fourier transforms of the port functions where we set 

 k = k0 .  The imaginary part of (A.4), gives the radiation reactance.  Part of this can be 
expressed as a principle part integral of the radiation resistance.  However, there is an 
additional capacitive contribution ( Z ∝ k0

−1 ) coming from the last term in the parentheses 
in (A.5) that contains a factor that cancels the resonant denominator in (A.4), 
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where 

   
−iω εE(k) = ik × H(k) − I pu p (k)

p
∑ ,   (A.1) 

and 
 

   iω µH(k) = ik × E(k) ,    (A.2) 
 
where the overbars indicate the Fourier transform of the fields and 
up(k) = d3x∫ u p(x)exp(−ik ⋅x)  is the Fourier transform of the port function.  Equations 
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electric field, inverse Fourier transform this expression, and calculate the voltage at port p 
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where Ωk  is the two dimensional solid angle of the wave vector k .  The radiation 
resistance is frequency dependent through k0 =ω / c , and we note that there is an implicit 
k0  dependence through the Fourier transforms of the port functions where we set 

 k = k0 .  The imaginary part of (A.4), gives the radiation reactance.  Part of this can be 
expressed as a principle part integral of the radiation resistance.  However, there is an 
additional capacitive contribution ( Z ∝ k0

−1 ) coming from the last term in the parentheses 
in (A.5) that contains a factor that cancels the resonant denominator in (A.4), 

Xp !p
rad (k0 ) = Im Zp !p

rad( ) = P 2k0dk
π (k0
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where 

Fourier transform 
in space

Ampere:

Faraday:

Solve for Electric 
field

Project Electric 
field onto current 
profile function



Radiation from transient currents
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Suppose we have a transient, time-dependent current,

J(x,t)

How do we treat that?

Fourier Transform in time

   
J(r,t) = 1

2π −∞

∞

∫ J(r,ω )e− iω t dω
   
J(r,ω ) =

−∞

∞

∫ J(r,t)eiω t dω

Everything follows from steady state equations
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Radiation from Moving (Accelerating) Charges

The fields and sources can be written in terms
of their Fourier transforms in time

1( , ) ( , )
2

i tt e dww w
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2In the 1kr rp
l

= >>far field zone

0( , ) ( , )
4

where ( , ) ( , )

i k r
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e
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d e

µw w
p

w t w ¢- ×¢ ¢= ò k r

A r C k
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!

Radiation from Moving (Accelerating) Charges
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source

x

y

z

¢r

r

( ), tA r

¢-r r

observation 
point

( ), rt¢J r
0 ( , ) ( , )

4
i k ri e

r
w w

p
= ´H r k C k

( )
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Poynting Flux (Far field zone)
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Energy radiated per unit frequency per unit solid angle
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Accelerating Charges Radiate 

3The current density of a moving charge is ( , ) ( ) ( ( ))t q t td¢ ¢= -J r v r r

In the far field zone 

( , ) ( , ) ( , )i i t i

Vol Vol

d e dt e d t eww t w t
¥

¢ ¢- × - ×
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¥
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ˆ( ) ( ( )/ )( , ) ( ) ( )i t i t i t t cdt q t e e dt q t ew ww
¥ ¥

- × - ×

-¥ -¥

= =ò òk r n rC k v v

trajectory
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Charges moving at constant velocity in vacuum do not radiate
However, a constant velocity charge can radiate in a 
medium if its velocity is greater than the 
phase velocity of light v > ω/k (Cherenkov radiation)

0ˆˆ (1 / )( ( )/ )
0( , ) ( ) i c ti t t cdt q t e q dt e www

¥ ¥
- ×- ×

-¥ -¥

= =ò ò n vn rC k v v

For constant velocity in vacuum 

0 0ˆ( , ) 2 ( (1 / )) 0q cw p d w= - × =C k v n v

argument of delta function can not be zero except for 0w =

Radiation from Constant Velocity Charges 
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If the velocity is nonrelativistic / 1c <<v
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The energy radiated per unit frequency per unit solid angle

Derivation of  Larmor’s Formula 
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Derivation of  Larmor’s Formula 

Total energy radiated by the nonrelativistic charge

20
3 ( , )

32
dU ZU d d d d
d d

w w w
w p

¥ ¥

-¥ -¥

æ ö
= W = W ´ç ÷W è ø
ò ò ò ò k C k



27

Derivation of  Larmor’s Formula 

2 2Parseval's Theorem states that ( ) ( )
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2
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Derivation of  Larmor’s Formula 
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by the accelerating charge
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2
20

2( ) ( )
6T
Z qP t t
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Larmor’s Formula 

ˆThe radiation is polarized in the plane defined by and ( )tn a

The total instantaneous power radiated 
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0
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µ
e e
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Radiation from Multiple Charges

Consider a beam of individual charges all having  the same trajectory 

 i i
 i

 i
 i
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We want to obtain the energy radiated per unit frequency
per unit solid angle

( , ) is the in space and time of the current densityF Tw -C k

chargesN
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Radiation from Multiple Charges

Since all the charges have the same trajectories 

letting jt tt = -
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Radiation from Multiple Charges

Consider the case were the charges flow in continuously not discretely 

1
( , ) ( ) ( ) ( ) ( ) ( )

where ( ) is the beam current (time rate of change of charge)

ji tN
i t

j
j j

et q dt I t e I
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I t

w
ww w w w w

=

= D ® =
Då òC k F F F

If ( ) varies slowly in time, ( ) will have only low frequency componentsI t I w

    C(k,ω ) = I (ω )F(ω ) ! 0 → little or no radiation

Things are very different if the charges are randomly 
distributed in entrance times 
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Consider the case were the charges have random entrance times    
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Radiation from Multiple Charges
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( )For random entrance times 0j ki t te w - =
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