Electrodynamics

Topics to be covered

Antennas:
Arrays, Impedance, Gain, Reciprocity

Radiation from Moving Charges

Notes Courtesy of Professor Phil Sprangle



Radiation
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Radiated Power Flux
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The power flux falls off like 1/7° and is in the direction of k=k fi
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Center Fed Linear Antenna
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Center Fed Linear Antenna
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Center Fed Linear Antenna

To carry out the integration, let p’ = kz'cos@ and p, = k d;os@
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Antenna in the Dipoles Limit

In the dipole limit A>>d (p, << 1)
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Total Power Radiated and Radiation Resistance

The total power radiated 18 P, = CJ'D 70 —LdQ

where dQ) = smnéfdOdgp 1s the solid angle
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Phased Array
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N — identical antennas displaced by distance d and driven with different phases
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Radiated Power
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Radiation Pattern
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Antenna Directivity and Gain
The total power radiated 1s P. = 4) —L dQ  where dQ =sinfd0dg

r Radiation Pattern of the Dipole Antenna.
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Antenna Efficiency: (Radiated power/Input power) e=P /P
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EM Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal
symmetry of ME.

- Direct calculation of receiving pattern requires many simulations

- Instead, calculate sending pattern and invoke reciprocity
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Effective Area — Antenna Gain
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Defining Antenna Impedance

Suppose there are multiple antennas, I -
each with its own current profile, u, (x) = ;“p X4,
We can define a voltage for each v = —fd3x up(x) - E(x) .
antenna, V,

With this definition power
balance is preserved
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Formal Expression of Reciprocity

Consider two solutions of Maxwell’s Equations in the same medium
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Expression for Impedance Elements

Fourier transform _|
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Radiation from transient currents

Suppose we have a transient, time-dependent current,
J(x,t)
How do we treat that?

Fourier Transform in time
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Everything follows from steady state equations



Radiation from Moving (Accelerating) Charges

The fields and sources can be written 1n terms

of their Fourier transforms in time
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Radiation from Moving (Accelerating) Charges

In the far field zone kr = 277[1/ >> ]
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Poynting Flux (Far field zone)
S(r,t) = a-(E(r,t) x H(r, 1))
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Radiated Energy
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Accelerating Charges Radiate
The current density of a moving charge is J(r',¢) = g v(¢) 8 (r'—r(¢))

In the far field zone trajectory

Ckw) = | dr'J(r,@)e™ =Of dte” | dr' I, t)e ™"
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Radiation from Constant Velocity Charges

Charges moving at constant velocity in vacuum do not radiate
However, a constant velocity charge can radiate in a

medium if its velocity is greater than the

phase velocity of light v > w/k (Cherenkov radiation)

For constant velocity in vacuum

(_:(k, C()) — I dtQV(f) eia)(z‘—ﬁ-r(t)/c) _ quj At eia)(l_ﬁ'Vo/C)f
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argument of delta function can not be zero except for w=0



Derivation of Larmor’s Formula

If the velocity 1s nonrelativistic ‘V / c‘ <<1

Ck,w) = | digv()e™ " = [ digv(t)e'™
The energy radiated per unit frequency per unit solid angle
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Derivation of Larmor’s Formula
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Derivation of Larmor’s Formula
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Derivation of Larmor’s Formula

Using Parseval’s theorem
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Larmor’s Formula

The total instantaneous power radiated

P.(f) =
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Radiation from Multiple Charges

Consider a beam of individual charges all having the same trajectory

t, 1s the entrance time of the ; thcharge

X, (1) =x(t—-t)

%) X, (1) X, (1) v.(t)=v(—1)

We want to obtain the energy radiated per unit frequency

per unit solid angle dU Z,
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Radiation from Multiple Charges

Since all the charges have the same trajectories

— N 0 | A
Ck,w) =)’ j dtgv(t—t;)e "' "
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letting 7 = ¢—1,

_ N . % . R N .
Ck.o) = €"q [ drv(r)e” " =3 g¢""F(w)
Jj=1 — 00 Jj=1
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Radiation from Multiple Charges

Consider the case were the charges flow in continuously not discretely

1t

At

N
C(k,0) =) At,g=—F(w) > [ dt I(t)e'” F(w) = T () F(e)
j=1
where (¢) 1s the beam current (time rate of change of charge)
If I(¢) varies slowly in time, I (@) will have only low frequency components

Ck,w)= I(w)F(w)=0 — little or no radiation

Things are very different if the charges are randomly
distributed in entrance times



Radiation from Multiple Charges

Consider the case were the charges have random entrance times

N .
Ck,w) =) ge” F(w)
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Energy radiated per unit frequency per unit solid angle

dU Z, _ 2
dodQ 327 ke C(k, o)
dU ZO Cz)2 21 A 2 Al iw(t,—t,)
= nxF(o e
d0dn a1 X F©) JZ' 2
dU Z a)2 A 2 iw(t;—t,
T0d0 325 &1 F@ [N + N(V-1) (™" )ﬂ

j=k Jj#k



Radiation from Multiple Charges

For random entrance times <e’w(tf_t")> =0 Jj#k

Energy radiated per unit frequency per unit solid angle
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