
Introduction

A consequence of the laws of Physics is that certain quantities are conserved 
once a closed system has been properly defined.

Some of these are:

Charge
Energy (and mass via E=mc2)
Linear Momentum
Angular Momentum



Conservation Laws

  Conservation laws in physics are a direct consequence of symmetries in nature

 Conservation of energy(mass) → time invariance

 Conservation of linear momentum → translation invariance

 Conservation of angular momentum → rotation invariance

 Conservation of electric charge → gauge invariance (TBE)

Noether's Theorem



Emmy Noether (Wikipedia)



Example: conservation of kinetic + 
potential energy

!!!

d
dt
mv = q E+ v×B⎡⎣ ⎤⎦

Quasi−Static!Fields:!!!E!=!0∇Φ(x ,t)

v ⋅ d
dt
mv = d

dt
m v

2

2 = qv ⋅ E+ v×B⎡⎣ ⎤⎦ = −qv ⋅∇Φ

Rate!of!change!of!potential!following!a!trajectory
d
dt
qΦ(t ,x(t))= ∂

∂t
qΦ+qv ⋅∇Φ

d
dt

m v
2

2 +qΦ
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂
∂t
qΦ

Newton’s law of motion (F=ma)

Kinetic + Potential Energy is conserved 
only if potential is time independent



Conservation of Linear Momentum

!!!

d
dt
mivi = qiE(x i ,t)!!!!!!!!!!!E(x i ,t)=

qj x i − x j( )
4πε0 x i − x j

3
j≠i
∑

d
dt

mivi
i
∑ = d

dt
P=

qiqj x i − x j( )
4πε0 x i − x j

3
i , j≠i
∑ =0

Momentum P is constant, 
velocity of center of mass is constant

!!!

d
dt
Xcm =

d
dt

mix i
i
∑

mi
i
∑ = P

M
= constant

If P =0,  Xcm can not change

System is symmetric 
wrt translation in 3 
directions.  Three 
constants of motion: 3 
components of P.



Conservation of Angular Momentum

!!!

d
dt
mivi = qiE(x i ,t)!!!!!!!!!!!E(x i ,t)=

qj x i − x j( )
4πε0 x i − x j

3
j≠i
∑

d
dt
L = d

dt
x i ×mivi

i
∑ =

dx i
dt

×mivi + x i ×
d
dt
mivi

⎛

⎝⎜
⎞

⎠⎟i
∑

= x i ×
qiqj x i − x j( )
4πε0 x i − x j

3
i , j≠i
∑ =0 System is symmetric 

wrt rotation in 3 
directions.  Three 
constants of motion: 3 
components of L.



Linked Quantities
Energy

Time Frequency

! U = !ω

!!1= ΔtΔω

!!
U !const!if!
∂/∂t=0

Momentum

displacement Wave vector

! P= !k

!!1= ΔxΔk

!!

Pi !const!if!
∂/∂xi=0

!!!exp ik ⋅x− iωt( )
Sinusoidal waves



What does a conservation 
law for continuous systems look like?

 

dQ
dt

+ d
!
A ⋅
!
J =

S
∫ 0

  dA

Volume

:areaA

  dA

  dA
J

Q(t) Q = d 3r
V
∫ ρ(r,t)

 
d
!
A ⋅
!
J =

S
∫ d 3r

V
∫ ∇ ⋅

!
J

 

∂ρ
∂t

+∇⋅
!
J = 0

Conservation of charge



Conservation of Energy

 

∂
∂t

uE + uM[ ]+∇⋅
!
S = −

!
E ⋅
!
J

   
uE + uM =

ε0

2
E ⋅E+ 1

2µ0

B ⋅B

: Poynting vector= ´S E H

Rate at which energy is 
transferred to current J

Energy density in fields

Flow of local energy density



Conservation of energy

 
∇×
!
B = µ0

!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

 
∇×
!
E = − ∂

!
B
∂t

 
E ⋅∇ ×

!
B
µ0

=
!
E ⋅
!
J ⋅+ε0

!
E ⋅ ∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

 

!
B
µ0

⋅∇ ×E = −
!
B
µ0

⋅ ∂
!
B
∂t

 
ε0
!
E ⋅ ∂
!
E
∂t

+
!
B
µ0

⋅ ∂
!
B
∂t

+
!
B
µ0

⋅∇ ×E−E ⋅∇ ×
!
B
µ0

= −
!
E ⋅
!
J

 

∂
∂t

ε0
!
E

2

2
+

!
B

2

2µ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+∇⋅ E×

!
B
µ0

⎛
⎝⎜

⎞
⎠⎟
= −
!
E ⋅
!
J



Poynting’s Theorem

∂
∂t

ε0 E
2

2
+
µ0 H

2

2
⎛

⎝⎜
⎞

⎠⎟
+∇⋅ E×H( ) = −E ⋅J

Energy density Power Flux

ε0 E
2

2
+
µ0 H

2

2
⎛

⎝⎜
⎞

⎠⎟
S = E×H( )            E ⋅J

Rate of work done 
by E on J

Units:          Joules/m3 Watts/m2 Watts/m3



Poynting Example
I

a

d
Hθ =

I
2πa

Ez = Jz /σ = I / (πa2σ )

Sr = −EzHθ

= −I 2 / (2π 2a3σ )

Power in: P = 2πad Sr =

= I 2 / (π a2σ ) = RI 2

Area of side

Resistance

 
!
S =

!
E×
!
H( )



Only divergence of Poynting flux 
matters

Find S:
What direction?
What does it mean?

 
!
B = ẑ B0

Carge q at  r = 0



Poynting’s theorem addresses EM 
energy,  what about mechanical 

energy?

Rate of work done 
by E on J

Newton’s Law ma=F
m d
dt
v i = q E+ v i ×B[ ]

m
i
∑ v i ⋅

d
dt
v i =

i
∑ v i ⋅q E+ v i ×B[ ] =

i
∑ v i ⋅qE = d 3r

V
∫ v i ⋅qE

i
∑ d

dt
m v i

2

2
= d 3r

V
∫ v i ⋅qE = d 3r

V
∫ J ⋅E

∂
∂t

ε0 E
2

2
+
µ0 H

2

2
⎛

⎝⎜
⎞

⎠⎟
+∇⋅ E×H( ) = −E ⋅J



Combining EM and Mechanical Energy

d
dt

d 3r
V
∫

ε0 E
2

2
+
µ0 H

2

2
⎛

⎝⎜
⎞

⎠⎟
+

m v i
2

2i
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ dA

S
∫ ⋅ E×H( ) = 0

EM + Mechanical Energy EM  power flow



0 0
0 0

1 1 1Maxwell Stress Tensor: ( )
2

e e
µ µ

= + - × + ×T EE BB E E B B I

The total EM force on charges in a volume can be written as

Conservation of EM Momentum 

    

dPmech

dt
+

dPEM

dt
=

A
!∫ T ⋅ n̂da

   
Total EM linear momentum: PEM = ε0µ0

V
∫ E× H d 3r

   EM linear momentum density: ε0µ0E× H = S / c2

   

dPmech

dt
= q(E(x i )+ v i ×B(x i ))

i
∑ =

V
∫ (ρE+ J ×B)d 3r

 After some  Math

   Poynting vector: S = E× H, µ0ε0 = 1/ c2



Force on what’s inside

   dA = n̂dA

Volume

:areaA

  dA

  dA

    

dPmech

dt
+

dPEM

dt
= F

F =
A
!∫ T ⋅ n̂dA

   T ⋅ n̂dA

0 0
0 0

1 1 1Maxwell Stress Tensor: ( )
2

e e
µ µ

= + - × + ×T EE BB E E B B I

Analogy: pressure

   

T = − pI
T ⋅ n̂ = − pn̂



Viscous Fluid Stress

Stationary wall
Sheared fluid flow

Force in direction of flow is 
transferred toward the wall

Vy(x)

x

y

!!
Txy ∝ν

∂v y(x)
∂x



Energy and Momentum of Light

Energy density Power Flux
 

ε0 E
2

2
+
µ0 H

2

2
⎛

⎝⎜
⎞

⎠⎟
!
S =

!
E×
!
H( )        

Units:          Joules/m3 Watts/m2

Pulse
Moves at c

   EM linear momentum density: ε0µ0E× H = S / c2

 Power Flux = c Energy Density

  

Energy Density
Momentum Density

= S / c
S / c2 = c

A pulse of light carries energy and momentum: ratio = c

Pulse also contains momentum



Mass Energy Equivalence  E = mc2

Isolated box of mass M and length L in space.  
A light on the wall on one side sends out a pulse 
of energy E toward the right.  
The pulse has momentum p=E/c.  
The box recoils with velocity v=p/M to the left.
The pulse is absorbed on the other side after a 
time T=L/c.
The box absorbs the momentum and stops 
moving. 

pulse
v

L

Displacement of the box
 
Δx= vT =

EL
Mc2

Has the center of mass moved?
We would like to say no.  
The box should not be able to move its center of mass.

We can say that the CM has not moved if the pulse reduced the mass 
of the left side by m=E/c2 and increased the right side by the same 
amount.

 E = mc2

 Δx

 
ΔxM = L E / c2( )= Lm



Stress Tensor

  
T = ε0EE+ 1

µ0

BB − 1
2

(ε0E ⋅E+ 1
µ0

B ⋅B)I

    
F =

A
!∫ T ⋅ n̂daForce transmitted through surface

The component normal to the surface is like a pressure force

   
n ⋅T ⋅n = ε0

1
2

n ⋅E( )2
− 1

2
Et

2⎡

⎣⎢
⎤

⎦⎥
+ 1
µ0

1
2

n ⋅B( )2
− 1

2
Bt

2⎡

⎣⎢
⎤

⎦⎥

n

Remember BC’s
Et and Bn are continuous

Normal E pulls on surface
Tangential B pushes

  n ⋅T ⋅n = − p

   
n ⋅T ⋅n = ε0

1
2

n ⋅E( )2⎡

⎣⎢
⎤

⎦⎥
+ 1
µ0

− 1
2

Bt

2⎡

⎣⎢
⎤

⎦⎥

Surface of conductor



Forces on Conductor

-q

-q

-q

-q

+Q

Electric field force on surface charge pulls

Incident wave

reflected wave

+
+
+
+ B into page

Surface 
Current

F=JxB
F=-qE



Force of attraction between capacitor 
plates

+Q-Q

Area = A

!!

Surface!charge!density
σ=Q/A
En !=σ /ε0

    
F =

A
!∫ T ⋅ n̂da

   

n ⋅T ⋅n = ε0

1
2

n ⋅E( )2⎡

⎣⎢
⎤

⎦⎥
= 1

2
Q2

A2ε0

F = 1
2

Q2

A ε0

F

How much work must be done to separate plates a distance h?

  
Work = hF = h

2
Q2

A ε0

= 1
2

Q2

C capacitance



What is the force on the windings of a 
coil?

1

2

   
n ⋅T ⋅n = ε0

1
2

n ⋅E( )2
− 1

2
Et

2⎡

⎣⎢
⎤

⎦⎥
+ 1
µ0

1
2

n ⋅B( )2
− 1

2
Bt

2⎡

⎣⎢
⎤

⎦⎥



Maxwell’s Equations in Matter

 
!
E ⋅d
!
A"∫ =Q / ε0

 
!
B ⋅d
!
A"∫ = 0

 
Loop

!
B(!r) ⋅d

!
l ="∫ µ0 d

!
A ⋅
!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

S
∫

 
loop

!
E ⋅d
!
l"∫ = − d

!
A ⋅ ∂
!
B
∂tS

∫

 ∇⋅
!
B = 0

 
∇×
!
B = µ0

!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

 
∇ ⋅
!
E =

ρ
ε0

 
∇×
!
E = − ∂

!
B
∂t

Basic Equations (Vacuum)

Here     and J are the total charge and current densities

Includes charge and current densities induced in dielectric and magnetic materials

ρ



Separate charge and current densities 
into “free” and “induced” components

Somewhat arbitrary but very useful

!!J= J f + Jm + Jp
“Free” current

polarization current
magnetization current

!
ρ = ρ f + ρp

“Free” charge density

polarization charge density

!!!
Jp = ε0χ

∂E
∂t

!!Jm =∇×M

!!!ρp = −∇⋅ε0χE = −∇⋅P

magnetization density

polarization density

!!!M= µ0χmH



Maxwell’s Equations in Matter

 
!
D ⋅d
!
A"∫ =Qfree

 
!
B ⋅d
!
A"∫ = 0

 
Loop

!
H(!r) ⋅d

!
l ="∫ d

!
A ⋅
!
J free +

∂
!
D
∂t

⎡

⎣
⎢

⎤

⎦
⎥

S
∫

 
loop

!
E ⋅d
!
l"∫ = − d

!
A ⋅ ∂
!
B
∂tS

∫

 ∇⋅
!
B = 0

 
∇×
!
H =
!
J free +

∂
!
D
∂t

 ∇⋅
!
D = ρ free

 
∇×
!
E = − ∂

!
B
∂t

Equations in linear media

D = ε0E+ P = εE B = µ0H +M = µH

P = ε0χEE M = µ0χMH



Energy Density in a Linear Medium

Energy density Power Flux

 

ε0

!
E

2

2
+

!
B

2

2µ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

!
S =

!
E×
!
H( )            !E ⋅ !J

Rate of work done 
by E on J

Field Energy 

 

ε
!
E

2

2
+
µ
!
H

2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

!
S =

!
E×
!
H( )            !E ⋅ !J

 
!
B = µ

!
H           

!
D = ε

!
E

Energy density Power Flux Rate of work done 
by E on J

Almost always wrong
 

∂
∂ω

ωε
!
E

2

2
+
ωµ
!
H

2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟


