Introduction

A consequence of the laws of Physics is that certain quantities are conserved
once a closed system has been properly defined.

Some of these are:

Charge

Energy (and mass via E=mc?)
Linear Momentum

Angular Momentum



Conservation Laws

Noether's Theorem

Conservation laws 1n physics are a direct consequence of symmetries in nature

Conservation of energy(mass) — time invariance
Conservation of linear momentum — translation invariance
Conservation of angular momentum — rotation invariance

Conservation of electric charge — gauge mvariance (TBE)



Emmy Noether (Wikipedia)

Born Amalie Emmy Noether
23 March 1882
Erlangen, Bavaria, German
Empire

Died 14 April 1935 (aged 53)
Bryn Mawr, Pennsylvania,
United States

Nationality German
Alma mater University of Erlangen

Known for  Abstract algebra
Theoretical physics
Noether's theorem

Awards Ackermann—Teubner Memorial
Award (1832)

Scientific career
Fields Mathematics and physics

Institutions  University of Gottingen
Bryn Mawr College

Thesis On Complete Systems of
Invariants for Ternary
Biquadratic Forms (1907)




Example: conservation of kinetic +

potential energy
d

—mv:q[E+v><B]

dt Newton’s law of motion (F=ma)

Quasi—Static Fields: E =-VO(x,t)

2
v-%mv: c;lt m‘zv‘ :qv-[E+va]:—qv-V(I>

Rate of change of potential following a trajectory

d 0
—q®(t,x(t))= —qd Vb
dtq (&,x(¢)) atq +qv
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d mM 0 Kinetic + Potential Energy is conserved

il 2z TP 1? only if potential is time independent




Conservation of Linear Momentum

dim,-v,- =qE(x,,t) E(Xi’t)zz qj(Xi _Xj) 3
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Momentum P is constant,

velocity of center of mass is constant
2 mx. System is symmetric
d d i

—X = _ Y _ constant V\{I‘t trcjmslatlon in3
dt de ym M directions. Three

If P =0, X, can not change




Conservation of Angular Momentum
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Linked Quantities

Energy

U const if U=hao
9/9t=0 / \
Time ., Frequency
Momentum

1= AtA® Pfcons“f/ \ P=rik
d/0x.=0

. . displacement < Wave vector
Sinusoidal waves

exp(ik-x—ia)t) | — Ax Ak



What does a conservation
law for continuous systems look like?




Conservation of Energy

Rate at which energy is
transferred to current J

E |
u.+u. = —OE . E —+ —B . B Energy density in fields
E M
2 2u,

S = ExH : Poynting vector

Flow of local energy density



Conservation of energy
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Poynting’s Theorem

d (30|E|2 +uOIle}V.(EXH):_E-J

ot 2 2
Energy density Power Elux Rate of work done
by E on J
2 2
2 2

Units: Joules/m3 Watts/m?2 Watts/m3



Poynting Example

P — //

LE =J. /o=1/(mwa’c)
gL || S.=—-EH,
0 =
271'61 :_12/(271-26136)

Area of side
v

Powerin: P =27mad|S,
=1°/(wt a’°c)=RI’

Resistance



Only divergence of Poynting flux
matters

T\ bAoA 4 Find S:
B=2 B, What direction?
What does it mean?

Cargeqat r=0




Poynting’s theorem addresses EM
energy, what about mechanical
energy?

o[ & |E” wu|H _ Rate of work done
at( 2 N 2 +V-(ExH)=-E-J by E on |

Newton’s Law ma=F d
md—vi = Q[E—Fvi XB]
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Combining EM and Mechanical Energy

o[ & L B ) 5 v | _
dt{jdr( SRR +2;‘ - +:!-dA (ExH)=0

EM + Mechanical Energy EM power flow




Conservation of EM Momentum

The total EM force on charges in a volume can be written as

dl:Zech =Y g(E(x,)+v,xB(x,)) = j (PE+J xB)d’r

I

mech EM ‘N d a

After some Math

Total EM linear momentum: P, =g, ,LLOJ ExHdr

EM

EM linear momentum density: €y EXH=S8/ ¢’

Poynting vector: S=ExH, pe =1/c’

= ] ] ] =
Maxwell Stress Tensor: T=¢ EE+—BB-—(¢,E-E+—B-B)I

Ky 2 Ky




Force on what’s inside

dP

mech 4 EM — F

dt dt

— ] ] —
Maxwell Stress Tensor: T = ¢, EE +—BB - 5 (¢,E-E+—B-B)I
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H H



Viscous Fluid Stress

Sheared fluid flow

Stationary wall t N

{ I V, (x)

>

X

,ﬁ
Force in direction of flow is
transferred toward the wall
—
ov (x)
T ocy—=

4 0X



Energy and Momentum of Light

g, |E|’ N 1, |H|’ S _ (Exﬁ) Pulse
2 o) Moves at ¢

Energy density Power Flux

| Power Flux = ¢ Energy Density
Units: Joules/m3 Watts/m?2

Pulse also contains momentum

EM linear momentum density: €y EXH=S/ ¢’

Energy Density ~ S/c

= =C
Momentum Density S/ ¢’

A pulse of light carries energy and momentum: ratio =c



Mass Energy Equivalence E = mc?

Isolated box of mass M and length L in space.

A light on the wall on one side sends out a pulse

of energy E toward the right. oulse
The pulse has momentum p=E/c. v * —
The box recoils with velocity v=p/M to the left. -
The pulse is absorbed on the other side after a
time T=L/c.
The box absorbs the momentum and stops
moving. o A\x
: EL
Displacement of the box  Ax =T =
Mc?
Has the center of mass moved? L3
We would like to say no.
The box should not be able to move its center of mass.

AxM = L(E/cz): Lm

We can say that the CM has not moved if the pulse reduced the mass
of the left side by m=E/c? and increased the right side by the same E = mc?
amount.



Stress Tensor

= | | | =
T=¢EE+—BB-—(¢,E-E+—B-B)I
‘u’O 2 0
Force transmitted through surface F = Cﬁ ’T“ ‘Nda
A j—
The component normal to the surface is like a pressure force n-T-n

1

1 2

n-T-n=¢

Remember BC’s
E. and B, are continuous

Normal E pulls on surface
Tangential B pushes

1 i}
(n°E)2_5‘Et‘2
n —_—
— > n-T-n=

_|__
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Surface of conductor
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Forces on Conductor

Electric field force on surface charge pulls

Incident wave

Surface
Current



Force of attraction between capacitor

plates
-Q +Q
K« = =
N Mt F=¢ Tida
¢ A
- F
€ - ] 2
p = 1 ] 10
Surface charge density n.T.n:&‘O E(HE) _EAzg
0=Q/A - - 0
E =0/¢, ] 2
=1
24¢

0

How much work must be done to separate plates a distance h?

h QO 10°
Work = hF = = S
24¢, 2C apacitance




What is the force on the windings of a
coil?




Maxwell’s Equations in Matter

Basic Equations (Vacuum)

—
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Here O and J are the total charge and current densities

Includes charge and current densities induced in dielectric and magnetic materials



Separate charge and current densities
into “free” and “induced” components

Somewhat arbitrary but very useful

magnetization current .
J=J,+],

“Free” current

+] — polarization current

leolarlzatlon charge density

P Py TP, polarization density
“Free” charge den5|ty _ V. __v.
e P,="VEQE=-VP
é é ——~O o o l/leu{erq
C.TD ). =VxM RS ~JE— o AR

é é magnetization density 57/“ P @t_ e AT

ED @ o Metecwles ——



Maxwell’s Equations in Matter

Equations in linear media

D=¢E+P=¢cE B=pu H+M=yuH
P=¢g,xE M=u,x,H
@]_j dA:eree V ]_j_pfree
$B-dA=0 V-B=0
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—_ i VXE=——
P oy B-d1 =~ [ dA - =
5 — —
. [. 9D . . 3D
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Energy Density in a Linear Medium

Field Energy
Energy density Power Elux Rate of work done
2 1 by EonJ
&|E |8 L L
+ S =(ExH) E-J
2 2u,
B = uH D= ¢E
Energy density Power Elux Rate of work done
R i
+ S =(ExH) E-J
2 2
— 12 — |2
o 0)8|E| N a),u|H|
Almost always wrong dw > >



