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Topics to be covered

Scalar and Vector Potentials
Green’s functions

Notes Courtesy of Professor Phil Sprangle



Coulomb’s Law

E(r) — 1 p(r')(r:r') d37",
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This can also be written in terms of a scalar potential

E(r)=-Vo(r)

where
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Maxwell’s Equations for Vector and Scalar Potentials

0A
B=VxA E=——-VO®
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In the Lorentz gauge [V A = — U8, E) the vector and scalar potentials
obey wave equations
0’A
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where J and p are the current and charge densities

The solutions to the wave equations (in the absence of boundaries) are



Solution to Wave Equations

A(r,1), O(r,0)

T

observation
point

t.=t—r—r/c

o(rz) J(r't) Are, r—r
localized charge/current
source where ¢, =t —|r—r’

t, =1 —r—r'/c

/ ¢ 1s the

retarded time (earlier time)

dt' =dx'dy' dz’



Sinusoidal Dependence on Time
If we assume harmonic (sinusoid dependence on time)

for all the fields and sources ¢ /" = g /@'l -1
A(r,1) = Re| A(r)e ™" | d(r,t) = Re| d(r)e " |
J(r,0) = Re| J(r)e ' | p(r,1) = Re[ p(r)e”"" ]

In phasor notation

J(r lk‘r—l’" d)(r)

j 77 PO ik
r-r]

A(r)— o j dr' ——
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where k£ = w/ ¢ = — 1s the wavenumber



Far Field Approximation

=\/r2 +7”? =2r-v" =r—r-r’'/r

Assume that the source is localized and the
observation point is far away (7>>r")

observation A (r, t) , D(r,1)
point — — CD(r)

j dT’ ,0(1') ezk|r—r’|

47180,,[ |r r|

far zone kr = 272%>>1

. J(r',t) p(r',t)

localized charge/current
source

‘r—r" ~pr—n-r forr>r’

N r
n = — unit vector
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Far Field Potentials

Using ‘r—r" =r—n-r

“:(rr)‘ zk|r—r’| :4‘u_ﬂ§)reikrj dT/j(r/)e—ik-r’

A=t Ho j dr’

ikr
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where K = kn
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for r>>r" , =kr —kn-r’ in exponent




Calculating Fields from Potentials

N . au() kr ’ o\ _—ikr’

A=t | ari@)e

V=ﬁai—>ik B(r)=VxA(r)  B(r)=ikxA(r)
B(r)=i j dr'kx J(r')e ' "

B(r) is transvere to J , k = kn and E(r)

Ampere’s law

VxH=V+0oD/o¢r E@) =-

LA i) = Ber)
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E(r) :_EO,UOCOkX(kXA(r)): — :7?7”800);[[ dr kx(kx J(r))e «



Simplify expressions for the fields

In the far zone kr =27zr/ A >> 1

Define the Fourier transform of the current density

Ck)= [ dr'd@)e ™™ di'=dx'dy'd:

Vol

The fields in terms of the /' —T of the current density are

A _ ‘LLO ik A ]’;r :l ll’lO eikr kxék
A(r) = e C(K) (r)=i—~ (k)
. . eikr 1 .
E(r)=—i kx(kx C(k))

drr &,



Where We Stand

Assume the following:

Linear, isotropic,
instantaneous, media

Propagation in free
space, no free charge or
current.

p,=0, J, =0
=¢E
uH

= O
I



Introduce Phasor Notation

E(x,t)= Re{ﬁexp[i(k X — a)t)]} H(x,7) = Re{ﬁexp[i(k X — a)t):l}
Note: two new elements

1. Phasor amplitudes are vectors. Will be independent of space and time.
2. Space and time dependence contained in complex exponential
3.  Wave number k is now wave vector k.

Y, Wave crests

AN Kk




E(x,t)=Re{Eexp[i(k-x-or)]]

Wave crests

A:Zn/ky \1\

A=2r [k

E(x,t)= Re{ﬁexp[i(kxx +k,y— a)t)}}




When does this work?

E(x,t)= Re{]:lexp[i(k X — a)t)]} H(x,t) = Re{ﬁexp[i(k X — a)t):l}

Works when eand u are independent of space and time.

oH
VxE‘_“E _“aatRe{HeXp[ kx—on)]]
o TR

— Re{Vx(Bexpli(k-x-o1)])]

_ Re{ik y Eexp[i(k - a)t):|} = Re{—,u(—la) (Hexp[i(k ‘X — a)t)])}



Relating phasor amplitudes

Re{ik X Eexp[i(k ‘X — a)t)]} = Rf?{—.u(—ia’)(ﬁeXP[i(k R a)t):l)}

If the real parts of two complex variables are equal, and
there is no restriction on the imaginary parts, then | can
make the complex variables equal.

ik x Bexp[[i(k-x—or)]=—u(-io)(Aexp[i(k-x— ar)])

Now cancel the exponential factor from both sides. Result
must still hold for all x and t.

A

ik xE =—p(—iw)H




Linked Quantities

Energy

U const if U=hao
9/9t=0 / \
Time ., Frequency
Momentum

1= AtA® Pfcons“f/ \ P=rik
d/0x.=0

. . displacement < Wave vector
Sinusoidal waves

exp(ik-x—ia)t) | — Ax Ak



Maxwell Egs. Phasor Amplitudes

_ ) I 5§
V.E=0 V.H=0 VxE=-uZ" vxf-E
ot ot

To get equations for phasor amplitudes E, ﬁ — E, ﬁ i V= -io, ik

ik-E ik-H=0 ikxE=iou kxH=-iweE
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Combine

ik-E=0 ik-H=0 kxE=ioul ikxH=—iweE

ik % (z’k X E) = ia),u(ik X ﬁ) = iw,u(—iwgﬁ) = 0’euE

combine

Use “BAC CAB” A X(BxC)=B(A-C)-C(A-B)

(k-k)E-k(k-E)=E=o’guk




Plane waves in 3D

A

(kz—a)ze,u)ﬁlzo, k-E=0

E can be in any direction perpendicular to k,
Remember 1D
Dispersion relation

o =tkv
. A=v/f
0 =—=kV 1= =k +k+ K
gil
) A A=2r/k
Faraday’s Law k X E=ouH a)=27tf
K k= h- M

KK £




Superposition of Solutions

Maxwell’s Egs. are linear in E & H. Thus, separate solutions
can be added together. Consider 2 solutions:

E, (x,1)= Re{lﬁj1 exp[i(k1 ‘X — a)lt):|} ki =wm el
E, (x,t)= Re{]::2 exp[i(k2 ‘X — a)zt)]} k: =w;eu

Then E; + E, is also a solution of Maxwell’s Equations

E(X,t):Re{Z Ej exp[i(kj -X—a)(kj)t)}} k? =8,ua)2(kj)



Turn the sum into an integral

E(x,r)= Re{z xp| i(k; x-o(k, )tﬂ} K = g’ (k)

J

Fourier Integral - used to solve diffraction and dispersion

B(x,/) = Re{ [ @k Eoexp[[i(k-x- a)(k)t)]} k% = euw* (k)



1. A sinusoidal wave with frequency f and
wavelength A travels with wave speed v

em’

X
B Wavelength A
EO\ E\
Linearly Polarized -
Waves E
Electric field vector B0

lies in one plane

2. E and B are
perpendicular to
each other and to - b
the direction of 3. E and B are in phase.
travel. The fields That 1s, they have
have amplitudes matching crests,

E, and B,,. troughs, and zeros.
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Linear Polarizations

Linearly Polarized in X direction _ o o
Linearly Polarized in y direction

y y

S=ExH=5Z



[Linear Polarization

For a wave propagating in z direction, a linearly polarized wave has x
and y components oscillating in phase

Z - plane

Direction of oscillating
electric field

E, =Esin(0)cos(otte)y
E=E cos(ott+o) [sin(é’)& + cos(é’)f(]

X

E_=E cos(0) cos(ot+p)x

v




In phase superposition of two linearly
polarized waves




Polarizations

We picked this combination of fields: Could have picked this combination of
E,.-H, fields: E, - By
(a) Vertical polarization (b) Horizontal polarization
E H
o Plane of e Plane of
E / polarization B E y / polarization
o \

E\

of]

€m

E

These are called plane polarized. Fields lie in plane



Polarization
Polarization 1s determined by the direction of E field

The wave 1s linearly polarized if the electric field oscillates in one
plane

m

Linear polarization

Circular polarization




2/9/22

Polarization of Fields
Consider two waves having the same frequency,

same directions of propagation, but different
orthogonal linear polarizations

AEy cos( @t —kz)y

> E cos(or—h)x

1
propagation
direction

27



Linear Polarization
For a wave propagating in z direction, a linearly

polarized wave has x and y components oscillating in

phase
Z - plane
y

Direction of oscillating
electric field

E, =E sin(0)cos(wtto)y - A

E=E cos(ot+g)[sin(A)y +cos(0)x]
0

» X

E =E cos(6) cos(wt+)x




Polarization of Electric Fields
Three parameters determine the state of polarization

Consider a wave propagating in z direction

1. Field strength along x direction

2. Field strength along y
direction

3. Relative phase shift between
them



Elliptical Polarization
Elliptically polarized light has x and y field components not

oscillating in phase

Ap=¢, -0, #0

direction of electric
field changes in
time

Ey=Eyocos(a)t+¢y )y

E =E_cos(ot+¢ )X




Phase Relation between E, and E,

E =E_cos(wt+¢ )X E =E cos(ott¢ )y Ap=0,—-¢, #0




Different States of Polarization ~ A9=¢ -,

EX =Ey‘ A([)ZO A(P:% A(p:% Ex():EyO
/
/ g
linear elliptical elliptica
A(p:% A(p:3% Ap=m
-
\
\
circular elliptical inear




Problem

An electromagnetic wave travelling in vacuum in the +z direction has the real
electric field at z=0,

E(z=0,t)=E, cos(wt+7 /4)§(+Eoy cos(wt—rm /4)y

Represent this wave in phasor form:
E(z,t):Re{ﬁexp[i(kz—wt)]}

H(z,t)= Re{flexp[i(kz — wt)}}

What is the polarization of the wave? Plane, circular, elliptical?



E(z=0,t)=E, cos(wt+r /4)§(+Eoy cos(wt—rm /4)y



Elliptical Polarization

In primed coordinate system

E , = E cos(wt)
E, =E, sin(wt)

In unprimed coordinate system

(cos o E , —sin oE, ) = (cos o E cos(wr)—sinak, sin(a)t)) = Ex‘ cos(wt+¢_)

Ex
E
y

(sin QFE, +cosaE, ) = (sin o E cos(wt)+cosak, sin(a)t)) = Ey‘ cos(wt + (py)

Given |Ex

E
v

0.9, find: £, E, , o

b

35



Ex cos(wt+¢.)

E = (cos o E cos(wr)—sinak, sin(a)t))

E cos(wt + ¢y)

E = (sin o E cos(wt)+cosak, sin(a)z)) =|E,

Time average <>

(£2)=|B[ =2 [cos* a +sin* abi |= [ (B} + B2 )+ cos2a (£ - E).
(E*)= %‘Eyr - %[cosz oE? +sin’ aE} | :%:(Ef + E})—cos2a(E} - E7)
<ExEy> = %‘ExHEy‘COS(% —¢ )= %sinozcosoz(El2 —~ E22) = i(Ef —~ Ezz)sin2oc
So,

(E)(E)=5(EvE). (E)~(8) =37 - E2)

2<ExEy> _ sin2206(E12 B Ezz)



()4 (B2)= (B2 4 B2), (E2)-(E2)="522 (52— E2),

1 2
2(EE, )= Sinzzo‘ (E2- E2)
tan2o = 22<EXEy>2 ;
(£2)-(E2)
( 1) ( 1)
Elz :<Ej>\1+cosZa)+<Ej>\l_cos2a)
E22=<Ej>(l— : \+<E2>(1+ L




