ENEE681

Topics to be covered

Scalar and Vector Potentials Green's functions

Notes Courtesy of Professor Phil Sprangle

Coulomb's Law

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho(\mathbf{r}')(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d^3r'$$

This can also be written in terms of a scalar potential

$$\mathbf{E}(\mathbf{r}) = -\nabla \phi(\mathbf{r})$$

where

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d^3r',$$

Show:

$$-\nabla \phi(\mathbf{r}) = \frac{-1}{4\pi\varepsilon_0} \int_{V} \frac{\partial}{\partial \mathbf{r}} \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d^3 r' = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho(\mathbf{r'})(\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3} d^3 r'$$

Maxwell's Equations for Vector and Scalar Potentials

$$\mathbf{B} = \nabla \times \mathbf{A} \qquad \mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \Phi$$

In the Lorentz gauge $\left(\nabla \cdot \mathbf{A} = -\mu_0 \varepsilon_0 \frac{\partial \Phi}{\partial t}\right)$ the vector and scalar potentials obey wave equations

$$\nabla^{2} \mathbf{A} - \mu_{0} \,\varepsilon_{0} \,\frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \,\mathbf{J}$$

$$\nabla^{2} \Phi - \mu_{0} \,\varepsilon_{0} \,\frac{\partial^{2} \Phi}{\partial t^{2}} = -\frac{\rho}{\varepsilon_{0}}$$

where **J** and ρ are the current and charge densities

The solutions to the wave equations (in the absence of boundaries) are

Solution to Wave Equations

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int_{Vol} d\tau' \frac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \bigg|_{t_r = t - |\mathbf{r}-\mathbf{r}'|/6}$$

$$\Phi(\mathbf{r},t) = \frac{1}{4\pi \,\varepsilon_0} \int_{Vol} d\tau' \frac{\rho(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \bigg|_{t_r = t - |\mathbf{r}-\mathbf{r}'|/6}$$

where $t_r = t - |\mathbf{r} - \mathbf{r}'| / c$ is the retarded time (earlier time)

$$d\tau' = dx'dy'dz'$$

Sinusoidal Dependence on Time

If we assume harmonic (sinusoid dependence on time)

for all the fields and sources

$$e^{-i\omega t_r} = e^{-i\omega t}e^{ik|\mathbf{r}-\mathbf{r}'|}$$

$$\mathbf{A}(\mathbf{r},t) = \operatorname{Re}\left[\hat{\mathbf{A}}(\mathbf{r})e^{-i\omega t}\right] \qquad \Phi(\mathbf{r},t) = \operatorname{Re}\left[\hat{\Phi}(\mathbf{r})e^{-i\omega t}\right]$$
$$\mathbf{J}(\mathbf{r},t) = \operatorname{Re}\left[\hat{\mathbf{J}}(\mathbf{r})e^{-i\omega t}\right] \qquad \rho(\mathbf{r},t) = \operatorname{Re}\left[\hat{\rho}(\mathbf{r})e^{-i\omega t}\right]$$

In phasor notation

$$\hat{\mathbf{A}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{Vol} d\tau' \frac{\hat{\mathbf{J}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} e^{ik|\mathbf{r} - \mathbf{r}'|} \qquad \hat{\Phi}(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int_{Vol} d\tau' \frac{\hat{\rho}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} e^{ik|\mathbf{r} - \mathbf{r}'|}$$

where
$$k = \omega / c = \frac{2\pi}{\lambda}$$
 is the wavenumber

Far Field Approximation

$$|\mathbf{r} - \mathbf{r'}| = \sqrt{r^2 + r'^2 - 2\mathbf{r} \cdot \mathbf{r'}} \simeq r - \mathbf{r} \cdot \mathbf{r'} / r$$

Assume that the source is localized and the observation point is far away (r >> r')

$$\hat{\mathbf{n}} = \frac{\mathbf{r}}{|\mathbf{r}|}$$
 unit vector

Far Field Potentials

Using
$$|\mathbf{r} - \mathbf{r'}| \simeq r - \hat{\mathbf{n}} \cdot \mathbf{r'}$$

$$\hat{\mathbf{A}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{Vol} d\tau' \frac{\hat{\mathbf{J}}(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} e^{ik|\mathbf{r} - \mathbf{r'}|} \simeq \frac{\mu_0}{4\pi r} e^{ikr} \int_{Vol} d\tau' \hat{\mathbf{J}}(\mathbf{r'}) e^{-i\mathbf{k} \cdot \mathbf{r'}}$$

$$\hat{\Phi}(\mathbf{r}) = \frac{1}{4\pi \,\varepsilon_0} \int_{Vol} d\tau' \frac{\hat{\rho}(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} e^{ik|\mathbf{r} - \mathbf{r'}|} \simeq \frac{e^{ikr}}{4\pi \,\varepsilon_0 \,r} \int_{Vol} d\tau' \,\hat{\rho}(\mathbf{r'}) e^{-i\mathbf{k} \cdot \mathbf{r'}}$$

where $\mathbf{k} = k \,\hat{\mathbf{n}}$

for
$$r >> r'$$
, $\frac{1}{|\mathbf{r} - \mathbf{r}'|} \approx \frac{1}{r}$ and $k|\mathbf{r} - \mathbf{r}'| \approx kr - k\,\hat{\mathbf{n}}\cdot\mathbf{r}'$ in exponent

Calculating Fields from Potentials

$$\hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_0}{4\pi r} e^{ikr} \int_{Vol} d\tau' \hat{\mathbf{J}}(\mathbf{r}') e^{-i\mathbf{k}\cdot\mathbf{r}'}$$

$$\nabla = \hat{\mathbf{n}} \frac{\partial}{\partial r} \to i\mathbf{k} \qquad \hat{\mathbf{B}}(\mathbf{r}) = \nabla \times \hat{\mathbf{A}}(\mathbf{r}) \qquad \hat{\mathbf{B}}(\mathbf{r}) = i\mathbf{k} \times \hat{\mathbf{A}}(\mathbf{r})$$

$$\hat{\mathbf{B}}(\mathbf{r}) = i \frac{\mu_0}{4\pi r} e^{ikr} \int_{Vol} d\tau' \mathbf{k} \times \hat{\mathbf{J}}(\mathbf{r}') e^{-i\mathbf{k}\cdot\mathbf{r}'}$$

 $\hat{\mathbf{B}}(\mathbf{r})$ is transvere to $\hat{\mathbf{J}}$, $\mathbf{k} = k\hat{\mathbf{n}}$ and $\hat{\mathbf{E}}(\mathbf{r})$

Ampere's law

$$\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D} / \partial t \qquad \hat{\mathbf{E}}(\mathbf{r}) = -\frac{1}{\varepsilon_0 \omega} \mathbf{k} \times \hat{\mathbf{H}}(\mathbf{r}) \qquad \mu_0 \hat{\mathbf{H}}(\mathbf{r}) = \hat{\mathbf{B}}(\mathbf{r})$$

$$\hat{\mathbf{E}}(\mathbf{r}) = -\frac{i}{\varepsilon_0 \mu_0 \omega} \mathbf{k} \times (\mathbf{k} \times \hat{\mathbf{A}}(\mathbf{r})) = -i \frac{e^{ikr}}{4\pi r} \frac{1}{\varepsilon_0 \omega} \int_{Vol} d\tau' \mathbf{k} \times (\mathbf{k} \times \hat{\mathbf{J}}(\mathbf{r}')) e^{-i\mathbf{k}\cdot\mathbf{r}'}$$

Simplify expressions for the fields

In the far zone $kr = 2\pi r/\lambda >> 1$

Define the Fourier transform of the current density

$$\hat{\mathbf{C}}(\mathbf{k}) = \int_{Vol} d\tau' \,\hat{\mathbf{J}}(\mathbf{r}') \, e^{-i\,\mathbf{k}\cdot\mathbf{r}'} \qquad d\tau' = dx' \, dy' \, dz'$$

The fields in terms of the F-T of the current density are

$$\hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_0}{4\pi r} e^{ikr} \hat{\mathbf{C}}(\mathbf{k}) \qquad \hat{\mathbf{B}}(\mathbf{r}) = i \frac{\mu_0}{4\pi r} e^{ikr} \mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k})$$

$$\hat{\mathbf{E}}(\mathbf{r}) = -i \frac{e^{ikr}}{4\pi r} \frac{1}{\varepsilon_0 \omega} \mathbf{k} \times (\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k}))$$

Where We Stand

$$\nabla \cdot \vec{\mathbf{D}} = \rho_f$$

$$\nabla \cdot \vec{\mathbf{B}} = 0$$

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

$$\nabla \times \vec{\mathbf{H}} = \vec{\mathbf{J}}_f + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$

Assume the following:

Linear, isotropic, instantaneous, media

Propagation in free space, no free charge or current.

$$\rho_f = 0, \quad \vec{\mathbf{J}}_f = 0$$

$$\vec{\mathbf{D}} = \varepsilon \vec{\mathbf{E}}$$

$$\vec{\mathbf{B}} = \mu \vec{\mathbf{H}}$$

Introduce Phasor Notation

$$\vec{\mathbf{E}}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}\exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \omega t\right)\right]\right\} \quad \mathbf{H}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{H}}\exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \omega t\right)\right]\right\}$$

Note: two new elements

- 1. Phasor amplitudes are vectors. Will be independent of space and time.
- 2. Space and time dependence contained in complex exponential
- 3. Wave number k is now wave vector \mathbf{k} .

$$\vec{\mathbf{E}}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}\exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \omega t\right)\right]\right\}$$

$$\lambda = 2\pi / k_{x}$$

$$\vec{\mathbf{E}}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}\exp\left[i\left(k_{x}x + k_{y}y - \omega t\right)\right]\right\}$$

When does this work?

$$\vec{\mathbf{E}}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}\exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \omega t\right)\right]\right\} \quad \mathbf{H}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{H}}\exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \omega t\right)\right]\right\}$$

Works when ε and μ are independent of space and time.

$$\nabla \times \vec{\mathbf{E}} = -\mu \frac{\partial \vec{\mathbf{H}}}{\partial t} -\mu \frac{\partial}{\partial t} \operatorname{Re} \left\{ \hat{\mathbf{H}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right\}$$

$$= \operatorname{Re} \left\{ \nabla \times \left(\hat{\mathbf{E}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right) \right\}$$

$$= \operatorname{Re} \left\{ i\mathbf{k} \times \hat{\mathbf{E}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right\}$$

$$= \operatorname{Re} \left\{ i\mathbf{k} \times \hat{\mathbf{E}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right\}$$

$$= \operatorname{Re} \left\{ -\mu \left(-i\omega \right) \left(\hat{\mathbf{H}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right) \right\}$$

$$= \operatorname{Re} \left\{ -\mu \left(-i\omega \right) \left(\hat{\mathbf{H}} \exp \left[i(\mathbf{k} \cdot \mathbf{x} - \omega t) \right] \right) \right\}$$

Relating phasor amplitudes

$$\operatorname{Re}\left\{i\mathbf{k}\times\hat{\mathbf{E}}\exp\left[i(\mathbf{k}\cdot\mathbf{x}-\omega t)\right]\right\} = \operatorname{Re}\left\{-\mu(-i\omega)\left(\hat{\mathbf{H}}\exp\left[i(\mathbf{k}\cdot\mathbf{x}-\omega t)\right]\right)\right\}$$

If the real parts of two complex variables are equal, and there is no restriction on the imaginary parts, then I can make the complex variables equal.

$$i\mathbf{k} \times \hat{\mathbf{E}} \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)] = -\mu(-i\omega)(\hat{\mathbf{H}} \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)])$$

Now cancel the exponential factor from both sides. Result must still hold for all x and t.

$$i\mathbf{k} \times \hat{\mathbf{E}} = -\mu(-i\omega)\hat{\mathbf{H}}$$

Linked Quantities

$$1 = \Delta t \Delta \omega$$

Sinusoidal waves

$$\exp(i\mathbf{k}\cdot\mathbf{x}-i\omega t)$$

$$1 = \Delta x \Delta k$$

Maxwell Eqs. Phasor Amplitudes

$$\nabla \cdot \vec{\mathbf{E}} = 0$$

$$\nabla \cdot \vec{\mathbf{H}} = 0$$

$$\nabla \cdot \vec{\mathbf{E}} = 0 \qquad \nabla \cdot \vec{\mathbf{H}} = 0 \qquad \nabla \times \vec{\mathbf{E}} = -\mu \frac{\partial \vec{\mathbf{H}}}{\partial t} \qquad \nabla \times \vec{\mathbf{H}} = \varepsilon \frac{\partial \vec{\mathbf{E}}}{\partial t}$$

$$\nabla \times \vec{\mathbf{H}} = \varepsilon \frac{\partial \vec{\mathbf{E}}}{\partial t}$$

To get equations for phasor amplitudes

$$\vec{\mathbf{E}}, \vec{\mathbf{H}} \Rightarrow \hat{\mathbf{E}}, \hat{\mathbf{H}} \qquad \frac{\partial}{\partial t}, \nabla \Rightarrow -i\omega, i\mathbf{k}$$

$$\frac{\partial}{\partial t}$$
, $\nabla \Rightarrow -i\omega$, $i\mathbf{k}$

$$i\mathbf{k} \cdot \hat{\mathbf{E}} = 0$$

$$i\mathbf{k}\cdot\hat{\mathbf{H}}=0$$

$$i\mathbf{k} \times \hat{\mathbf{E}} = i\omega\mu\hat{\mathbf{H}}$$

$$i\mathbf{k} \times \hat{\mathbf{E}} = i\omega\mu\hat{\mathbf{H}}$$
 $i\mathbf{k} \times \hat{\mathbf{H}} = -i\omega\varepsilon\hat{\mathbf{E}}$

Combine

$$i\mathbf{k} \cdot \hat{\mathbf{E}} = 0$$
 $i\mathbf{k} \cdot \hat{\mathbf{H}} = 0$ $i\mathbf{k} \times \hat{\mathbf{E}} = i\omega\mu\hat{\mathbf{H}}$ $i\mathbf{k} \times \hat{\mathbf{H}} = -i\omega\varepsilon\hat{\mathbf{E}}$

combine
$$i\mathbf{k} \times (i\mathbf{k} \times \hat{\mathbf{E}}) = i\omega\mu(i\mathbf{k} \times \hat{\mathbf{H}}) = i\omega\mu(-i\omega\varepsilon\hat{\mathbf{E}}) = \omega^2\varepsilon\mu\hat{\mathbf{E}}$$

Use "BAC CAB"
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

$$(\mathbf{k} \cdot \mathbf{k})\hat{\mathbf{E}} - \mathbf{k}(\mathbf{k} \cdot \hat{\mathbf{E}}) = k^2 \hat{\mathbf{E}} = \omega^2 \varepsilon \mu \hat{\mathbf{E}}$$

Plane waves in 3D

$$(k^2 - \omega^2 \varepsilon \mu)\hat{\mathbf{E}} = 0, \quad \mathbf{k} \cdot \hat{\mathbf{E}} = 0$$

E can be in any direction perpendicular to k,

Dispersion relation

$$\omega^{2} = \frac{k^{2}}{\epsilon \mu} = k^{2} v^{2} \qquad k^{2} = |\mathbf{k}|^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2}$$

Faraday's Law

$$\mathbf{k} \times \hat{\mathbf{E}} = \omega \mu \hat{\mathbf{H}}$$

Remember 1D

$$\omega = \pm kv$$

$$\lambda = v / f$$

$$\lambda = 2\pi / k$$

$$\omega = 2\pi f$$

$$\frac{\mathbf{k}}{|\mathbf{k}|} \times \hat{\mathbf{E}} = \frac{\omega \mu}{|\mathbf{k}|} \hat{\mathbf{H}} = \sqrt{\frac{\mu}{\varepsilon}} \hat{\mathbf{H}}$$

Superposition of Solutions

Maxwell's Eqs. are linear in E & H. Thus, separate solutions can be added together. Consider 2 solutions:

$$\vec{\mathbf{E}}_{1}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}_{1} \exp\left[i\left(\mathbf{k}_{1} \cdot \mathbf{x} - \boldsymbol{\omega}_{1}t\right)\right]\right\} \quad k_{1}^{2} = \boldsymbol{\omega}_{1}^{2} \boldsymbol{\varepsilon} \boldsymbol{\mu}$$

$$\vec{\mathbf{E}}_{2}(\mathbf{x},t) = \operatorname{Re}\left\{\hat{\mathbf{E}}_{2} \exp\left[i\left(\mathbf{k}_{2} \cdot \mathbf{x} - \boldsymbol{\omega}_{2}t\right)\right]\right\} \quad k_{2}^{2} = \boldsymbol{\omega}_{2}^{2} \boldsymbol{\varepsilon} \boldsymbol{\mu}$$

Then $\mathbf{E}_1 + \mathbf{E}_2$ is also a solution of Maxwell's Equations

$$\vec{\mathbf{E}}(\mathbf{x},t) = \text{Re}\left\{\sum_{j} \hat{\mathbf{E}}_{j} \exp\left[i\left(\mathbf{k}_{j} \cdot \mathbf{x} - \boldsymbol{\omega}(\mathbf{k}_{j})t\right)\right]\right\} \quad k_{j}^{2} = \boldsymbol{\varepsilon}\mu\boldsymbol{\omega}^{2}(\mathbf{k}_{j})$$

Turn the sum into an integral

$$\vec{\mathbf{E}}(\mathbf{x},t) = \text{Re}\left\{\sum_{j} \hat{\mathbf{E}}_{j} \exp\left[i\left(\mathbf{k}_{j} \cdot \mathbf{x} - \boldsymbol{\omega}(\mathbf{k}_{j})t\right)\right]\right\} \quad k_{j}^{2} = \varepsilon \mu \boldsymbol{\omega}^{2}(\mathbf{k}_{j})$$

Fourier Integral - used to solve diffraction and dispersion

$$\vec{\mathbf{E}}(\mathbf{x},t) = \text{Re}\left\{\int d^3k \ \hat{\vec{\mathbf{E}}}(\mathbf{k}) \exp\left[i\left(\mathbf{k}\cdot\mathbf{x} - \boldsymbol{\omega}(\mathbf{k})t\right)\right]\right\} \quad k^2 = \varepsilon\mu\omega^2(\mathbf{k})$$

1. A sinusoidal wave with frequency f and wavelength λ travels with wave speed $v_{\rm em}$.

Linearly Polarized Waves

Electric field vector lies in one plane

perpendicular to each other and to the direction of travel. The fields have amplitudes E_0 and B_0 .

3. \vec{E} and \vec{B} are in phase. That is, they have matching crests, troughs, and zeros.

Linear Polarizations

Linearly Polarized in X direction

Linearly Polarized in y direction

Linear Polarization

For a wave propagating in z direction, a linearly polarized wave has x and y components oscillating in **phase**

In phase superposition of two linearly polarized waves

Polarizations

We picked this combination of fields: $E_x - H_z$

Could have picked this combination of fields: $E_y - B_x$

These are called plane polarized. Fields lie in plane

Polarization

Polarization is determined by the direction of E field

The wave is linearly polarized if the electric field oscillates in one

plane

Linear polarization

Circular polarization

Polarization of Fields Consider two waves having the same frequency, same directions of propagation, but different orthogonal linear polarizations

Linear Polarization

For a wave propagating in z direction, a linearly polarized wave has x and y components oscillating in **phase**

z - plane

Polarization of Electric Fields

Three parameters determine the state of polarization

Consider a wave propagating in z direction

- 1. Field strength along *x* direction
- 2. Field strength along *y* direction
- 3. Relative phase shift between them

Elliptical Polarization

Elliptically polarized light has x and y field components **not**

oscillating in phase

Phase Relation between E_x and E_y

$$\mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{x}0} \cos(\omega t + \phi_{\mathbf{x}}) \hat{\mathbf{x}}$$

$$\mathbf{E}_{y} = \mathbf{E}_{y0} \cos(\omega t + \phi_{y}) \hat{\mathbf{y}}$$

$$\Delta \varphi = \varphi_{y} - \varphi_{x} \neq 0$$

Different States of Polarization

$$\Delta \phi = \phi_y - \phi_x$$

$$\Delta \varphi = \frac{\pi}{8}$$
os
os
os
os
elliptical

Problem

An electromagnetic wave travelling in vacuum in the +z direction has the real electric field at z=0,

$$\mathbf{E}(z=0,t) = E_{0x}\cos(\omega t + \pi/4)\hat{\mathbf{x}} + E_{0y}\cos(\omega t - \pi/4)\hat{\mathbf{y}}$$

Represent this wave in phasor form:

$$\mathbf{E}(z,t) = \operatorname{Re}\left\{\hat{\mathbf{E}}\exp\left[i\left(kz - \omega t\right)\right]\right\}$$
$$\mathbf{H}(z,t) = \operatorname{Re}\left\{\hat{\mathbf{H}}\exp\left[i\left(kz - \omega t\right)\right]\right\}$$

What is the polarization of the wave? Plane, circular, elliptical?

$$\mathbf{E}(z=0,t) = E_{0x}\cos(\omega t + \pi/4)\hat{\mathbf{x}} + E_{0y}\cos(\omega t - \pi/4)\hat{\mathbf{y}}$$

Elliptical Polarization

In primed coordinate system

$$E_{x'} = E_1 \cos(\omega t)$$

$$E_{y'} = E_2 \sin(\omega t)$$

In unprimed coordinate system

$$E_{x} = \left(\cos\alpha E_{x'} - \sin\alpha E_{y'}\right) = \left(\cos\alpha E_{1}\cos(\omega t) - \sin\alpha E_{2}\sin(\omega t)\right) = \left|E_{x}\right|\cos(\omega t + \phi_{x})$$

$$E_{y} = \left(\sin\alpha E_{x'} + \cos\alpha E_{y'}\right) = \left(\sin\alpha E_{1}\cos(\omega t) + \cos\alpha E_{2}\sin(\omega t)\right) = \left|E_{y}\right|\cos(\omega t + \phi_{y})$$

Given
$$|E_x|, |E_y|, \phi_x, \phi_y$$
 find: E_1, E_2, α

$$\begin{split} E_x &= \left(\cos\alpha E_1\cos(\omega t) - \sin\alpha E_2\sin(\omega t)\right) = \left|\hat{E}_x\right|\cos(\omega t + \phi_x) \\ E_y &= \left(\sin\alpha E_1\cos(\omega t) + \cos\alpha E_2\sin(\omega t)\right) = \left|\hat{E}_y\right|\cos(\omega t + \phi_y) \end{split}$$
 Time average $\langle . \rangle$

$$\langle E_{x}^{2} \rangle = \frac{1}{2} |\hat{E}_{x}|^{2} = \frac{1}{2} \left[\cos^{2} \alpha E_{1}^{2} + \sin^{2} \alpha E_{2}^{2} \right] = \frac{1}{4} \left[\left(E_{1}^{2} + E_{2}^{2} \right) + \cos 2\alpha \left(E_{1}^{2} - E_{2}^{2} \right) \right]$$

$$\langle E_{y}^{2} \rangle = \frac{1}{2} |\hat{E}_{y}|^{2} = \frac{1}{2} \left[\cos^{2} \alpha E_{2}^{2} + \sin^{2} \alpha E_{1}^{2} \right] = \frac{1}{4} \left[\left(E_{1}^{2} + E_{2}^{2} \right) - \cos 2\alpha \left(E_{1}^{2} - E_{2}^{2} \right) \right]$$

$$\langle E_{x} E_{y} \rangle = \frac{1}{2} |\hat{E}_{x}| |\hat{E}_{y}| \cos(\phi_{y} - \phi_{x}) = \frac{1}{2} \sin \alpha \cos \alpha \left(E_{1}^{2} - E_{2}^{2} \right) = \frac{1}{4} \left(E_{1}^{2} - E_{2}^{2} \right) \sin 2\alpha$$

So,

$$\left\langle E_x^2 \right\rangle + \left\langle E_y^2 \right\rangle = \frac{1}{2} \left(E_1^2 + E_2^2 \right), \quad \left\langle E_x^2 \right\rangle - \left\langle E_y^2 \right\rangle = \frac{\cos 2\alpha}{2} \left(E_1^2 - E_2^2 \right),$$

$$2 \left\langle E_x E_y \right\rangle = \frac{\sin 2\alpha}{2} \left(E_1^2 - E_2^2 \right)$$

$$\left\langle E_{x}^{2}\right\rangle + \left\langle E_{y}^{2}\right\rangle = \frac{1}{2}\left(E_{1}^{2} + E_{2}^{2}\right), \quad \left\langle E_{x}^{2}\right\rangle - \left\langle E_{y}^{2}\right\rangle = \frac{\cos 2\alpha}{2}\left(E_{1}^{2} - E_{2}^{2}\right),$$

$$2\left\langle E_{x}E_{y}\right\rangle = \frac{\sin 2\alpha}{2}\left(E_{1}^{2} - E_{2}^{2}\right)$$

$$\tan 2\alpha = \frac{2\langle E_x E_y \rangle}{\langle E_x^2 \rangle - \langle E_y^2 \rangle},$$

$$E_1^2 = \langle E_x^2 \rangle \left(1 + \frac{1}{\cos 2\alpha} \right) + \langle E_y^2 \rangle \left(1 - \frac{1}{\cos 2\alpha} \right)$$

$$E_2^2 = \langle E_x^2 \rangle \left(1 - \frac{1}{\cos 2\alpha} \right) + \langle E_y^2 \rangle \left(1 + \frac{1}{\cos 2\alpha} \right)$$