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Lecture 2
Displacement Current
Fields in Matter
Boundary Conditions



Maxwell’s Displacement Current

It is not really a current. It just acts like one.

Maxwell determined the static Ampere’s Law could not be correct.
Inconsistent with charge conservation
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Remember for Faraday’s Law
Any surface with the same
perimeter gave the correct

o From Gauss’ Law
_. B-dA=0
lOOpE di:— d;&%_I: S;+S,
S
dS, =dS
dgz = —dS

| B-aS=0= [B-dS = [B.dS,
S, S,

Si+S,



Conservation of Charge
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Faraday: time varying B makes an E

Ampere-Maxwell: time varying E makes a B
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Put together, fields can sustain themselves - Electromagnetic Waves




Induced E
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Increasing solenoid current 7 Increasing B

Faraday’s law describes an induced electric field.
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Increasing capacitor charge 7 Increasing E

The Ampére—MaxWell law describes
an induced magnetic field.
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The magnetic field line is a circle concentric

with the capacitor. The electric flux through
. . . g o

this circle 1s wr'E.
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Conduction current, Displacement
current, Polarization current

In vacuum VxB= HL]_I_E
Flow of charge Displacement

“real” current

“current”
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Dielectric Terminology

B 0
B d
VX‘u—O:]f-l-gD

D=¢, (1+y, |E=¢E
D Electric flux density

E=E, (1+ )(E) Dielectric contant

(1+ )(E) Relative Dielectric constant



Maxwell’s Equations in Vacuum

L =_ P
PE-dA=Q/¢, V-E=-"—
0
$B-dA=0 V-B=0
R Y _ oB
et VXE=——
q.)loop l j A a ~ 8t
s
. - oE _ oE
<J.)LoopB(r)’dl =.UJ. dA - [J‘FE §:| VXB:Uo[J"'S §:|
s

Here O and J are the total charge and current densities

Includes charge and current densities induced in dielectric and magnetic materials



Separate charge and current densities
into “free” and “induced” components

Somewhat arbitrary but very useful

magnetization current .
J=J,+],

“Free” current

+] — polarization current

leolarlzatlon charge density

P Py TP, polarization density
“Free” charge den5|ty _ V. __v.
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Maxwell’s Equations in Matter

Equations in linear media

D=¢E+P=¢cE B=pu H+M=yuH
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Maxwell's Equations in Matter

OB oD
V-D=p,  VxE=-—  V.B=0 VxH=J, +—
ot Ot
(linear and 1sotropic matter)
1 1
H=—B-M=—B, J, =VxM
n L ’ D=¢E+P=c¢E, p =-V-P
M = y,H: Magnetization field P = ¢,y E: Polarzation field
u=u,(1+ y, ): permeability &=¢,(1+ y,) :permittivity
u. =1+ y :relative permeability g.=1+y, :relative permittiity
X, . magnetic susceptibility X, : electric suscepibility

In a good conductor — Ohms’ Law (point version)

szcs(E+V><B)



Boundary Conditions

Medium #1

81'”1’61

How are components
of the fields on one
side of the boundary
related to those on the
other side?

Medium #2

€, 1,,0,



General Comments

Tangential components of E are always equal.

Normal components of B are always equal.

Normal component of E discontinuous implies a surface
charge density.

Normal components of D discontinuous implies a free
surface charge density

Tangential components of B discontinuous implies a
surface current density.

Tangential components of H discontinuous implies a free
surface current density.




Induced surface charge density
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Dielectric Sphere
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Magnetized Rod




Conducting Sphere




Tangential Component of E

Boundary Conditions

oB
Applying Stokes’s theorem j (VXE)-da= —f v da = <j> E-dl
4 C

A

boundary E. Al+E.(-Al)=0

E
Al T2 /
- 4 a—B-da—>0 since 7 —0
I h—0 J o
/ h
C:contour E_, —>| Lk, =E,

* The tangential component of electric field E is continuous
across a boundary



Normal Component of D
Consider the electric flux field: D = ¢E = ¢,(1 + y,)E (linear/isotropic matter)
V-D=p, p, =free charge density

Applying the Divergence theorem _[ D-fda = _[ p,(r)d’r

&) ﬁT I D, P d3r— o ,da
—
GZ ‘ '} | I h—>0 o, :free surface
—+ < charge density
& n Vo D Aa:area

(Dy,-Dy)nAa=0,=0,Aa — | §E,,-¢E,, =0,

* The normal component of the electric flux field D is discontinuous by the
free surface charge density



Normal E?

V-g E=p, p, =total charge density
Applying the Divergence theorem J ¢,E-nda= J p,(r)d’r

g A V
A 3
2 IIT I EN2 ptd V:tha

O P! x
_I_Pé_ I h—>0 o, : total surface
: 4

AN charge density
& ﬁl | E Aaq :area

N1

e(E ,—E )nAa=0Q0 =0Aa —|¢eE —-¢E =0

t

* The normal component of the electric field E 1s discontinuous by the total
surface charge density/ £,



Tangential Component of H

D D=c¢E (linear/isotropic matter)
Magnetic field: VxH=J , +— &

ot H=B/u (linear/isotropic matter and nonferromagnetic

Applying Stokes’s theorem 95 H- dl—_[ J, da+f ~—.da

ij-da — J,Ah — KAl

C:contour § boundary y
T H as h—0
\ w] Mo
I h—o0 j —da—)O since 7 — 0
—
\ Hp )
K, fi H,,Al+H, (-Al) = AIK , xi
free surface
current density H,,-H, =K X

n : outward normal to the surface boundary

* The tangential component of magnetic field H is discontinuous by the free
surface current



Tangential B

H,,-H,, =Kf><ﬁ

B,-B, =K, X n

* The tangential component of magnetic flux density B is discontinuous by
the total surface current X[l



Normal Component of B

V-B=0 Magnetic flux density : B

i IBM Aa:area
t v

"
A1

(B,,-B,)-fAa=0 — |B

Cj) B-nda=0
A

N1

N2 — NI

Normal compontent of H V-H=-V-M

—> HN2_HN1:_(MN2_MN1)

* The normal component of the magnetic flux field B 1s
continuous across boundary



Boundary Condition Summary

Tangential Components
E., =E, HT2_HT1:fon B,,-B, =uK, Xn

Normal Components

Dy, =Dy mAa=Q,=0,Aa — | &k, -¢E, =0,

g (E,, _Em) ‘NAa = O=0Aa —| ¢k —-¢E, =0

t

(By,—B,,)-nAa=0 — | B,, =B,

HNz _HNI — _(MNz _MNI)




Let’s play the boundary condition

game!
A x No free surface charge of current
(O—>"
y
Medium #1 Medium #2
g =2¢,u,=U,0, =0 g ,=4¢e,u,=2u ,0,=0
E =2x+4y+6Z E = x+ y+ Z
D /e = X+ y+ Z D, /e = X+ y+ Z
B /u,=6x+7y+8z B, /u=x+y+ z
H=x+y+ z H=x+y+ z




Boundary Conditions in a Capacitor

Vv, Q V, Q
| e = |
hl 81
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A, A, A

Which boundary Conditions Apply?



Boundary Conditions in a Capacitor

Vv, Q
|
A
82 81 h
| v
\ ) l
i !
A Ay
Case #1 Case #1
E =E =V /h tangential E Q=Q1+Q2=[A181 +A282)
Q,=AD =AeV/h f

_ _ Ae +AE€
Q,=4,D,=AV /h C :[ L ; : 2] Capacitors in parallel



Boundary Conditions in a Capacitor

V, Q
. |
h; £,
——

h, £
Case #2 Y
No free surface charge on boundary \ Y /
between € and ¢.. A
D=b,=0Q/4 Case #2
E =D, /e,=Q/(e,A) P
E,=D,/¢,=Q/(&,A) R T e e,

C_1 _ h1 + hz C . . .
= apac1tors 1IN Series
Ae  Ag,



Let’s play the boundary condition
game! With conductivity!!

Medium #1
€= 280'”1 =H,,0,=0

E =2X+4y+62
D /e, = X+ y+ z
B /u =6x+7y+8z

H=x+y+ z

J /o= X+ y+ Z
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