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Lecture-18
Radiation
Simple Antennas



Goal for Today

observation E(r,t), H(r,?)
pOint I

localized charge/current
source

Assume current and charge densities
are sinusoidal and given. Calculate E

and H far away. Find radiated power
density S = E x H.



Preview of Results ;
Z 1 (r,0.0) ;'L;)

Total Radiated Power

In spherical coordinates da = 1> d Q
where dQ =sin@d0de is the solid angle s —
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Radiated Power Flux

Define the Fourier transform of the current density

CK)= | & Ix)e™

Vol
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Time Dependent Fields

Introduce Vector Potential
V-B=0
B=VxA
VxE L .
ot Insert in Faraday's Law
VXEZ—EBz—VXiA
V-E=p/e, ot o
VX(E+§AJ=O, E+£A:—V¢
_ E)E at at
VXB:‘UO(J—FEOE)
0

E=-Vo-— A




Time Dependent Fields

B=VXxA
0
E=-Vo——A
? ot
V-E=p/g,

V><B=,u0(]+go

JE

ot

)

V-E=p/g,

V. E:—qub—%V-A:p/eo

—Vz(p—%V-A:p/EO

VxB:uo(j+eO%—?)
%) %)

V x VXA::LLO(]_‘CJOE(V¢+§A))

0 ~ d
\% (V-A+,u0£0 —¢j—V2A = Uod - U,E, ?A

ot
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Now Pick Lorenz Gauge

—V%—%V-A:p/so

2

0 = 0
vV (V-A+,u080 §¢j—V2A = ,LLOJ-,UOEO ?A

Lorenz Gauge: V-A+pu,¢, %(p =0

( , 92
—\V ¢—Hogo¥ =plg,
Same Equation

( 2 . ,
—\VzA—uOEO%A) = u,J Wave Equation




Time-retarded potentials

A(r,t), ®(r,1)

observation
oint ~—  *
P e RIGRS
A(r,t)=—| dr :
— 4 Vol ‘r_r ,
B=Vx A(I‘) i =t —|r—r ‘/c
1 r’,¢
-y ey =—— [ arPL)
x & p(l’,l‘r) J(r’t") 47[80 Vol ‘l‘—l“ t.=tqr—r/c
localized charge/current
source where ¢ =t —|r—r’|/c is the

retarded time (earlier time)

dr’ = dx"dy’ dz’



Sinusoidal Dependence on Time
If we assume harmonic (sinusoid dependence on time)

for all the fields and sources
A(r,t) = Re[A(r)e‘iw’] d(r,t) = Re[(i)(r)e_iw’]

(') =Re[J)e™™ | p(r'it)=Re[ p(r)e” |

where k = /c =2m/ A is the wavenumber

e—ia)tr — e—ia)teik‘r—r"

In phasor notation

A J iklr—r’ A ,
A(r):&j g I e ()= ] ja,r,p(r)e,,”_r

47tV0[ ‘r r‘ dre, ‘r r|



Far Field Approximation

:\/r2 +77=2r-v’ =r—-r-r’'/r

Assume that the source is localized and the
observation point is far away (7>>r")

observation A (r, t) ’ (I)(r,t)
point T (I)(r) —

J dr; P(r ) zk‘r—r"

472780” ‘r r‘

far zone kr = 275%>>1

‘r—r" ~r—n-r forr>r

localized charge/current
source

n= r unit vector
r|



Far Field Potentials

Using ‘r—r" =r—n-r

N

A U ’ J(r,) ikr—r u ikr ? F(o?N —ikT’
A(r)=—"| dr ~ -0 dr’ J(r
(r) 4 j ‘r—r’ © 47tre I (r)e

ikr
J‘ dr/ p(l' ) zk|r—r‘ ~ e J dr'ﬁ(r')e_ikr

d(r) =
0 Vol ATE T 3

dre

where k = kn

1 1

for r>>r’ |
r— r‘

= kr — kn-r’ in exponent




Calculating Fields from Potentials

Ay =" [ ariye ™
Tr
Vzﬁai%ik B(r) = VXA(r) B(r) = ik X A(r)
r
B(r) = [ arkxdr)e™

47zr b

B(r) is transvere to J , k = kn and E(r)

Define the Fourier transform of the current density

C(k) = j AT’ J(o)e ™ dr’ =dx'dy'dZ’
Vol

A 2!
A(r) =
(r) drr

" C(k) B(r) =0 o ik x €(k)
Adrr



Electric Field

Ampere’s law

V><H=/f+8£0E/8t N ikxH=—io ¢ E
: L B(r) =10 ¢i* ik x C(k)
E(l‘)=—g kxH(r) Ay

0

1, H(r) = B(r)

. eikr 1
l

E(r) = -
A4wr €,

kx(kx C(k) )



Summary

In the far zone kr =27xr/ A >> 1

Define the Fourier transform of the current density

C(k) = j AT’ J()e ™ dr’ =dx'dy'dZ’

Vol

The fields in terms of the /' —T of the current density are

A | n
A(r) = o ikr ¢ H(r)=i—¢" kxC(k
A(r)_4me C(k) (r) - (k)
ikr
Bry=-;i% 1 kx(kx C(k) )

drwr e, @



Radiation

In the far field zone Direction of energy flow,
Poynting’s vector

E k=kFKn . |7 A
AN A(r) = 20 g% ¢(k)
Ay
o
H

A 1 ]
J H(r)=i—é"" kxC(k)
Adrtr
‘ . eikr 1 "
o E(r)=—i kx(kx C(k) )
drwr g, @

H(r) is transverse to J , k=kn and E



Radiation

Radiation intensity [W/m?]
(average over time of Poynting’s vector)

(S)= %Re (E x ﬁ*) Radiation intensity is KS>‘

The average is over an optical period

a ikr n A . 1 ikr A
B(r) = —iS——kx(kx €))  H@E) =i—" kxC(K)
drr g, drr

<S>:1Re[_iem ! (kx(kx C(k)))x s (kxé*(k))}

dmtr

€9

(S>:_l[ 1 ]2 lee((kx(kxé(k)))xkxé*(k))



Radiated Power Flux
using the vector 1dentity (bXxc)xa =c(a-b) — b(a-c)

(kx(kx C(k) ) ) (ka (k) = ‘ka(k)‘

(S) =

The power flux falls off like 1/7* and is in the direction of k=k1

L
3271:2800) v

k

2

— 0 ~
S)=p7 7 0

1
II’lO 1 : —
/. = = = 377CQ mmpedance of vacuum C
O & C& ? v €o Mo
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Total Radiated Power 2] (r.e.(b)T;'{p
0 I\"
¢
P :25 <S>-a’a:§£ n <S>da — .
|/ ‘
X — (b_ _\ v
In spherical coordinates da = 1> d Q d £
where dQ =sinfdOde 1s the solid angle N
dP
P =0 a(S)r’dQ= ¢ —LdQ o
=§ w(s)rin=§ o
Power radiated into the solid angle d<2 g
dPT A 2 Z A 2
—L =n(S)r = —-kxC(k
dQ (S) 327 ‘ ( )‘
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Electric Dipole Radiation

Poynting vector [W/m?]

| A A,
H, /(S) (S)zERe(ExH )
7 NE
q r
J I Radiation intensity 1 ‘
y 1S (S)‘

The dipole moment is p = j r’ p(r)dt’
Vol
The charge density 1s p(r,t) = Re [ p(r)e ™ ]
Conservation of charge, dp/dt+ V-J =0, gives V-J(r) = i w p(r)

19



Electric Dipole Radiation

The dipole moment 1s

p = J ' p(r)dr = —— j r'V.-J(')dt
0

Vol Vol

Integrating by parts gives (V’'-r' =1)

p=—[ J@r)ar
Q

Vol



Electric Dipole Radiation
Power radiated into the solid angle dQ (da = r’dQ)
dP, 4 A P
s Oszcmg‘ p:45iidg
749)

—L =1-(S)r’ =
4o 2 =4

where é(k) = j dr’J (r'Ye ™™™ is F-T of the current density

Vol

If the wavelength 1s large compared to the dimensions of the dipole
k-r|<<l, k=27/A

C(k) ; j dr'Jx)  CK); —iwp

Vol

P, 7, o'
dQ 327° ¢

— ZO a)4
327 ¢

2 2

N N

nxp sin @ ~ o'

p
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Antenna Pattern of a Hertzian Dipole

E-plane pattern 2 Y
q H-plane pattern
f
3 X
1 0 1
Radiation Pattern of the Dipole Antenna.
= For a dipole of length
L =001 (.
+
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EM Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal
symmetry of ME.

- Direct calculation of receiving pattern requires many simulations

- Instead, calculate sending pattern and invoke reciprocity

‘/\4},55 L

Receiving

SJJ

Sending



Effective Area — Antenna Gain

dpP,
Kl Vi a0

V
Receiving
Power Power per
> & Incident
received P,=A ()] intensity G(Q)— T / (/ unltlsohd
angle
Effective A’G(Q)%” gain <P >= J—Td @)
=>4,(Q)= Tl dQ

area AT



Example From “Classical Electrodynamics”

by J. D. Jackson,
Problems 1.12 and 1.13

A charge g is placed at an arbitrary point, x
electrodes.

relative to two grounded, conducting

o/

What is the charge q, on the surface of electrode 1?

Repeat for different x,




Solution - Green’ s Reciprocation Theorem

- Jd'x(y¥*o-9Vy )= [dan-(yVo- V)
d’ d’ d d

d
When the dust settles: [qu)_q)@W]:E(wagb_q)aW)




George Green 1793-1841
The Green of Green Functions

In 1828, an English miller from Nottingham published a

mathematical essay that generated little response. George
Green’s analysis, however, has since found applications in

areas ranging from classical electrostatics to modern
qguantum field theory.

Lawrie Challis and Fred Sheard Physics Today Dec. 2003

Born in Nottingham (Home of Robin Hood)
Father was a baker
At age 8 enrolled in Robert Goodacre’s Academy

his family built a house next to the
mill, Green spent most of his days and
many of his nights working and indeed
living in the mill. When he was 31,

Jane Smith bore him a daughter. They

had seven children in all but never
married. It was said that Green's fa-
ther felt that Jane was not a suitable
wife for the son of a prosperous trades-
man and landowner and threatened to
disinherit him

Left after 18 months (extent of formal education pre 40)

Worked in bakery for 5 years
Sent by father to town mill to learn to be a miller



Taught himself math

Fell in love with Jane, the miller’s daughter.
Green’s father forbade marriage.

Had 7 children with Jane.

Self published work in 1828

With help, entered Cambridge 1833,
graduated 1837.

“Discovered” by Lord Kelvin in 1840.
Theory of Elasticity, refraction, evanescence
Died of influenza, 1841 (age 48)

Green’s Mill: still functions



Features of Problems Suited to Adjoint
Approach

1. Many computations need to be repeated. (many
different locations of charge, q)

2. Only a limited amount of information about the
solution is required. (only want to know charge on
electrode #1)



EM Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal
symmetry of ME.

- Direct calculation of receiving pattern requires many simulations

- Instead, calculate sending pattern and invoke reciprocity

‘/\4},55 L

Receiving

SJJ

Sending



Effective Area — Antenna Gain

K

Receiving
Power : «— Power per
-> p — & Incident dP . :
received = AR intensity G(Q)zd— /P, unltlsohd
angle
dP
i ‘G(Q - P =|—dQ
Effective | A (Q):l G(€2)€" gain r J 10

arca
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Higher Order Moments of the Fields

Include both electric and magnetic dipole contributions

In the far field zone

A(r) ; j dr'J(x)e

7Z'7'

1y : K’
A(r) " k”J dT'J(r')(l—zkn r——(n-r) +. )
Tr b 2

terms fall off rapidly



Electric and Magnetic Dipole Radiation

A(r) = o gt [ ari@ye™ = By gitr [ ard@)a-ika-r)
471-7' Vol 47'[7' Vol
electric magnetic
‘LL dipole dipole
A(r)=—"¢""{—iwp — ikmxh |
4drr

The F-T of the current density including both the

electric and magnetic dipole contributions 1s

Ck)= [ dr'J(r)e™ =-iw(p+mxh/c)

Vol
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Electric and Magnetic Dipole Radiation

Power radiated into the solid angle d<2

dP . Z A 2
=St =2 kx C(k))
4 .
an _ _Z : 0)2 hx(p + 1if1><ﬁ/c)\2 Far field
dQ 327 c Zone

p and m are the electric and magnetic dipole moments

Shorter wavelengths scatter more (blue sky)

34



Scattering at Long Wavelengths

Scattered

" ) radiation
Incident /
radiation
. O

Scatter
dimensions small
compared to A

/

- The incident radiation induces an oscillating electric
and magnetic dipole moment in the scatter

- The induced dipole moments radiate (scattered radiation)

- The scattered radiation is a function of the polarization and direction of
both incident and scattered radiation

- If the wavelength is large compared to the size of the scatter the
induced electric and magnetic dipole moments are sufficient to
describe the scattered radiation (opposite case is called Mie scattering)



Coherent vs Incoherent Scattering

Scatterers

Incident Plane Wave (y{ﬂecules)
[
[

Eexp[ikz] | \ .

o —t—

17

Amplitude due to ensemble of spatially distributed scatterers

é(k) = J. dT’j(l") e—ik-r' _ _ia)zﬁie_ik.ri

Vol

Dipole moment proportional to p = yﬁlexp[ikz.]

local electric field
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Radiated Power

2

daP. 7. o* -
40 " nr i)z AxyEY explikz,— ik 1]
dp, _dF,
N
a0~ aa &N

Radiation due to single dipole Form factor

Tl __

dP Z, 0)4‘A
dQ 3271




Three cases

2

f=

Zexp[ikzi —ik-r]

Dipoles localized to a volume smaller than a wavelength
Dipoles distributed randomly in a volume larger than a wavelength

Dipoles in an ordered array



Cases

Dipoles localized to a volume
smaller than a wavelength -
coherent

Dipoles distributed randomly
in a volume larger than a
wavelength - incoherent

Terms with i an j different
average to zero. Only j=i
survive

f=

2

f=

Zexp[ikzl. —ik-r]

2 exp[ik(zi —z, ) —ik- (rl. -r )]

i,j




Ordered array 1D

2

f:|ZeXp[ikzl. —ik-r]

2

r=di f:|ZeXp[i(kdcos9—k-d)i]

f peaks when

(kdcos@—k-d) =27n



Center Fed Linear Antenna

| cos@ =n-z n

d/?2 _Tg In short antennas current
3 varies ~ linearly with z

. d
Current density J(r) = 1, 0(x)( y)(1—2§) Z ‘z‘ < Py

for r>>r’

A U
A(r) = -
(r) drr

2 ’
d/ z

eikr ]0 2 J dz'(l—27) e—ikz'cosQ

—-d/2

H,
dir

eikr J dT/j(r/)e—ik-r' —

Vol



Center Fed Linear Antenna

d/2
Z,

A =12 | dz'(1—27)e—f’”’0‘>59

—d/2

use Euler’s equ.

’

i even odd
A
=17 J dZ’[l—Zj)(COS(kZ’COSQ) —isin(k 0039))

0
—d/2

d/2 ’
A(r) =21, ZJ. dz’(l—2%jcos(kz’cos@)

0



Center Fed Linear Antenna

kdcos@
2

To carry out the integration, let p” = kz'cos@ and p, =

Py ’
A(r):yozij a’p’(l—p—jcosp’
pO 0 pO

using J XCosxdx =cosx + xsinx

A . d
A(r)=1,2—(1-cosp,) where p, = kdcos® rmdcost
Py 2 A




Antenna in the Dipoles Limit

In the dipole limit A>>d (p, << 1)
‘LLO :u()

. d i A
A(r) = ””] —7 ~ ikr

(r) 2 S D3 A(r) . C(k)
hence, C(k) =/, %i #  E-plane pattern

Power radiated into the solid angle d(€2
2 72
ar; i-(S)r? Zo kzldsinzﬁ

327 4

= 1N r =

e ‘ka(k)‘

322
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Total Power Radiated and Radiation Resistance

The total power radiated 1s P, = Cﬁ e —LdQ

where d€2 =smBdOde 1s the solid angle

dry _ 2y 421 Iyd’ i’ 9 [7 do| sin30d9=2ﬂ%
dQ 327’ 4 ’
P = Lo p2 g I; = lzmdl2
437 2
where the radiation resistance is Z_, = —>-k*d’ [Q]

247
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Time Dependent Fields

Introduce Vector Potential
V-B=0
B=VxA
VxE L .
ot Insert in Faraday's Law
VXEZ—EBz—VXiA
V-E=p/e, ot o
VX(E+§AJ=O, E+£A:—V¢
_ E)E at at
VXB:‘UO(J—FEOE)
0

E=-Vo-— A




Time Dependent Fields

B=VXxA

SN

V-E=p/¢g,

VxB:uo(j+£O%—]fj

V-E=p/g,

V. E:—qu)—%V-A:p/eo

—V%—%V-Azp/eo

VXBZ/,LO(j-I-EO%—E;)

0

V x VxA:,uo(]—goi(VqH—AD

ot ot

—

\% (V-A+,uoeog¢j—V2A=qu—

5

82
Ho€g ?A




Now Pick Lorenz Gauge

—V%—%V-A:p/so

2

0 = 0
vV (V-A+,u080 §¢j—V2A = ,LLOJ-,UOEO ?A

Lorenz Gauge: V-A+pu,¢, %(p =0

( , 92
—\V ¢—Hogo¥ =plg,
Same Equation

( 2 . ,
—\VzA—uOEO%A) = u,J Wave Equation




Time Dependent Fields

Introduce Vector Potential
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Time Dependent Fields

B=VXxA

SN

V-E=p/¢g,

VxB:uo(j+£O%—]fj

V-E=p/g,

V. E:—qu)—%V-A:p/eo
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0
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—
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Now Pick Lorenz Gauge

—V%—%V-A:p/so

2

0 = 0
vV (V-A+,u080 §¢j—V2A = ,LLOJ-,UOEO ?A

Lorenz Gauge: V-A+pu,¢, %(p =0

( , 92
—\V ¢—Hogo¥ =plg,
Same Equation

( 2 . ,
—\VzA—uOEO%A) = u,J Wave Equation




