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Plane Waves in 3D,
Polarization, Reflection,



Topics

Phasor Representation of Fields
Solving Maxwell’s Equations
Polarization



Where We Stand

Assume the following:

Linear, isotropic,
instantaneous, media

Propagation in free
space, no free charge or
current.
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Introduce Phasor Notation

E(X,t) = Re{ﬁexp[i(k X — a)t)]} H(x,?)= Re{ﬁ exp[i(k X — a)t)]}
Note: two new elements
1. Phasor amplitudes are vectors. Will be independent of space and time.

2. Space and time dependence contained in complex exponential
3.  Wave number k is now wave vector k.

Y A Wave crests




E(x,t) = Re{ﬁexp[i(k ‘X — a)t)]}

V A Wave crests
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E(x,t) = Re{]:lexp[i(kxx +k,y-— a)t)]}




When does this work?

E(x,r)= Re{ﬁexp[i(k X — a)t)]} H(x,7) = Re{ﬁ exp[i(k X a)t)]}

Works when €and y are independent of space and time.

oH
VxE_—/,La— —U— L Re{Hexp[z (k-x— a)t)]}

VXRG{EeXPI: k.x—a)t):l} _ Re{_‘u%(ﬁexp[i(k.x—a)t)])}

=Re{VX(EeXp[i(k-X—a)t)])} o |
= Re{ik X Eexp[i(k ‘X — wt)]} l Re{_u(_lw)(HeXp[l(k T a)t)])}




Relating phasor amplitudes

Re{ik X Eexp[i(k ‘X — a)t)]} = Re{_‘u(—ia))(ﬁexp[i(k X a)t)])}

If the real parts of two complex variables are equal, and
there is no restriction on the imaginary parts, then | can
make the complex variables equal.

ikxﬂexp[i(k-x—wt)] = —,u(—ia))(I:IeXp[i(k-x—a)t)])

Now cancel the exponential factor from both sides. Result
must still hold for all x and t.

A

ik xE = —p(—io)H




Linked Quantities

Energy
U const if U=hao
d/0t=0
Time Frequency
Momentum
1=Atho  Lconstit P=1k
d/ox =0
displacement Wave vector

Sinusoidal waves

exp(ikox—ia)t) 1 — Ax Ak



Maxwell Egs. Phasor Amplitudes

oH .
V-E=0 V-H=0 VXE:—,UE Vtzga_E
5
To get equations for phasor amplitudes E,ITI:>]AE,I/-\I 3 V = -im. ik
ot ’

ik-E=0 ik-H=0 kxE=ioguf ikxH=—iweE




Combine

ik-E=0 ik-H=0 kxE=ioufl ikxH=—iweE

ik X (ik X E) = ia),u(ik X ﬁ) = iwu(—iwgﬁ) = euE

combine

Use “BACCAB” A X(BXC)=B(A-C)-C(A-B)

(k k)E-k(k-E)=k"E =0 cuR




Plane waves in 3D

A
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E can be in any direction perpendicular to k,
Remember 1D

Dispersion relation
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Faraday’s Law kXEszH a):277:f
K B-%%a_ |Hh

LU €




Superposition of Solutions

Maxwell’s Egs. are linear in E & H. Thus, separate solutions
can be added together. Consider 2 solutions:

E (x,)= Re{]AEJ1 exp[i(k1 X — a)lt)]} ki=w el

E,(x,t)= Re{]AE2 exp[i(k2 ‘X — (ozt)]} ki =w;eu

Then E, + E, is also a solution of Maxwell’s Equations

E(x,t)zRe{E Ejexp[i(kj-x—a)(kj)t)]} ki =euw’ (k)



Turn the sum into an integral

E(x,t)= Re{z EJ. exp[i(kj X — a)(kj)t)}} k? = 8/1@2(kj)

Fourier Integral - used to solve diffraction and dispersion

B(x,1) = Re{ [ @k Eoexp[[i(k-x- a)(k)t)]} K% = e’ (k)



Linearly Polarized
Waves

Electric field vector
lies in one plane

1. A sinusoidal wave with frequency f and
wavelength A travels with wave speed v

o Wavelength A
EO\ E\

E

em°*

2. E and B are
perpendicular to
each other and to - B,
the direction of 3. E and B are in phase.
travel. The fields That 1s, they have
have amplitudes matching crests,
E,; and B, troughs, and zeros.
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Linear Polarizations

Linearly Polarized in X direction ' o o
Linearly Polarized in y direction

y y
H
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[Linear Polarization

For a wave propagating in z direction, a linearly polarized wave has x
and y components oscillating in phase

Z - plane

Direction of oscillating
electric field

E, =Esin(0)cos(otte)y
E=E cos(ot+)[sin(6)y + cos(0)x |

X

E _=E cos(0) cos(ot+p)x

v




In phase superposition of two linearly
polarized waves




Polarizations

We picked this combination of fields: Could have picked this combination of
E, - H, fields: E, - B,
(a) Vertical polarization (b) Horizontal polarization
E H

o Plane of . Plane of
E / polarization B E ) / polarization
= E

&5

These are called plane polarized. Fields lie in plane



Polarization

Polariation 1s determined by the direction of E field

The wave is linearly polarized if the electric field oscillates in one
plane

Linear polarization

Circular polarization




Polarization of Fields
Consider two waves having the same frequency,
same directions of propagation, but different
orthogonal linear polarizations

AEy cos(@r—kz)y

> E cos(@t-kz)X

1
propagation
direction

10/15/20 20



Linear Polarization .
For a wave propagating in z direction, a linearly

polarized wave has x and y components oscillating in

phase
z - plane

Direction of oscillating
electric field

E,=E sin(0)cos(ot+¢)y
E=E cos(ot+g)|sin(f)y +cos(9)X]

v
X

E =E cos(0) cos(otto)x



Polarization of Electric Fields

Three parameters determine the state of polarization

Consider a wave propagating in z direction

1. Field strength along x direction

2. Field strength along y
direction

3. Relative phase shift between
them



Elliptical Polarization
Elliptically polarized light has x and y field components not

oscillating in phase

Ap=0,-0, #0

Ey=EyOCOS(a)t+¢y )y direction of electric
field changes in

time

E =E_cos(ot+¢ )X




Different States of Polarization Ag = P, —0,

E =Ey‘ Ap=0 A(P=% ‘ A(P:%
, /
T 0 1 U
linear elliptical elliptical
_ =3 =
A(p-% ” Ap= % | Ap=T1
\
\
I~

S 4:5 o : = ) EE 05 . 05 . 15 . r
circular elliptical linea



Problem

An electromagnetic wave travelling in vacuum in the +z direction has the real
electric field at z=0,

E(z=0,t)=E, cos(wt+m /4)X+ E, cos(wt—7 /4)y

Represent this wave in phasor form:
E(Z,t):Re{ﬁexp[i(kz—wt)]}
H(Z,t):Re{flexp[i(kz—wtﬂ}

What is the polarization of the wave? Plane, circular, elliptical?



E(z=0,t)=E  cos(ot+r /4)§(+Eoy cos(wt—m /4)y



Reflection at an interface

incident
Impedance =====m———e=—- >
€ty
— ﬁ — Z1 reflected
£, €—mmmm e
Generic Rules
reflected _ p _ Zz B Zl
incident ZZ t Zl
P Voltage Reflection Coefficient

Note, if

€M, Impedance
transmitted
---------- > | _
n,= g_ - Zz
2
Et itted ZZZ
ransmitte = ,z- — 1 + p —
o /. +7
incident 2 1

T Voltage Transmission Coefficient

Z,=Z p=0,r=1



Normal Incidence Linear Polarization

incident
‘LL ____________ > 82"“2
n = |- transmitted u
1 81 81““1 ____________ > T]Z = [—=2
E
reflected 2
k1 = 81“1 €=——mmmmmm—— k =
2—60 82'”2
z=0
E :Re{(EA' eiklZ+EA' fe_lklz) —iwt} Ex:Re{( Atrans IkZZ)e_iwt}
X Iinc re

At z=0 tangential E and tangential H are continuous



At z=0 tangential E and tangential H are continuous

Region 1 Region 2
E = Re{(l:? e 4 E e_iklz)e‘i“’t} E = Re{( e ZZ _""t}
X inc ref trans
1/~ ik,z - ~ik,z \ —iot 1 ik,z \ _—iwt
H =Re<—|E eV —E e e H Re— e |e
y inc ref trans
nl nZ
At z=0 A
TangentialE  F. +Eref =E solve E 1n,+7n
TangentialH  E__ —Eref _ E > E _ n, _r—14p
n, n,



Reflected and Transmitted Power

1 Ag A
S,=E,H, = 5Re{ExHy}
Region 1:

" :%Re{nil(ﬁ;c+E;;f)(ﬁ,.m_Eref)}zz—(\émc\z_\ﬁ:ref‘z)
P (1-100")

Region2:
S - EH :lRe{i\@mr}:L\Tgmr
‘2

2
_p n| 2n, =P 1_(772_771] :Pinc(1_|p|2)
n,+1,] n, +1,

inc
n,




Diamond Window

Incident Power =1 MW Transmitted
frequency = 170GHz > Power

1. Calculate the power CVD Diamond window

reflection coefficient at the £=>5.7¢,
first surface.

2. Is that acceptable?

3. What are we missing?






