General Comments

Tangential components of E are always equal.

Normal components of B are always equal.

Normal component of E discontinuous implies a surface
charge density.

Normal components of D discontinuous implies a free
surface charge density

Tangential components of B discontinuous implies a
surface current density.

Tangential components of H discontinuous implies a free
surface current density.




Boundary Condition Summary

Tangential Components

E.,=E, HTZ_HTl:KfXﬁ B,,-B, =uK, xn

Normal Components
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Let’s play the boundary condition

game!
A No free surface charge of current
O—>"
Y
Medium #1 Medium #2
g =2¢,1, =1,0, =0 g, =4e,u,=21 ,0,=0
E =2x+4y+6Z E = x+ y+ Z
D /e, = X+ y+ z D, /e, = X+ y+ z
B /u,=6x+7y+8z B,/u=x+y+ z
H=x+y+ Z H = x+y+ Z




Let’s play the boundary condition

game!

Medium #1

X

No free surface charge of current

z

a
N
y

€= 280’“1 =0, = 0

E =2X+4y+6Z

D, =¢E =(2¢,)E,

D /e, =2E = 4x+ 8y+ 12z
B /u,=6X+7y+8Z

I-11:]31/‘1'L1:]31/‘LL0
H=6x+7y+ 8z
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Medium #2

D, /e, = x+ y+ Z
B, /u= x+ y+ z
H= x+ y+ z



Boundary Conditions in a Capacitor

vV, Q vV, Q
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Which boundary Conditions Apply?



Boundary Conditions in a Capacitor

V, Q
|
£, & h
|
A, Ay
Case #1 Case #1
E =E =V /h tangential E Q=0 +Q, :[A181 ‘;Azgz )V
Q=AD =AeV /h

_ _ Ae +AE
Q,=4,D,=4¢,V /h C :£ 11 p e < j Capacitors in parallel



Boundary Conditions in a Capacitor

V,Q
|
h, g,
Case #2 . hy | =
No free surface charge on boundary
between €, and &,. A

D,=D,=Q/A
E, =D, /e,=Q/(¢A
E,=D,/€,=Q/(&,A)

Case #2

A€ A82
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hl h2
V=hE +hE =Q +

C_l _ h1 + hz C . . .
= apac1tors 1n series
Ae,  Ag,



Let’s play the boundary condition
game! With conductivity!!

Medium #1
€= 280”“1 =Hl,0,=0

E =2x+4y+6z

D /e,= X+ y+ Z
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Introduction

A consequence of the laws of Physics is that certain quantities are conserved
once a closed system has been properly defined.

Some of these are:

Charge

Energy (and mass via E=mc?)
Linear Momentum

Angular Momentum



Conservation Laws

Noether's Theorem

Conservation laws in physics are a direct consequence of symmetries in nature

Conservation of energy(mass) — time invariance
Conservation of linear momentum — translation mvariance
Conservation of angular momentum — rotation invariance

Conservation of electric charge — gauge mvariance (TBE)



Emmy Noether (Wikipedia)

Born Amalie Emmy Noether
23 March 1882
Erlangen, Bavaria, German
Empire

Died 14 April 1935 (aged 53)
Bryn Mawr, Pennsylvania,
United States

Nationality German
Alma mater University of Erlangen

Known for  Abstract algebra
Theoretical physics
Noether's theorem

Awards Ackermann—Teubner Memorial
Award (1932)

Scientific career
Fields Mathematics and physics

Institutions  University of Gottingen
Bryn Mawr College

Thesis On Complete Systems of
Invariants for Ternary
Biquadratic Forms (1907)




Example: conservation of kinetic +

potential energy
d

—mV:q[E+v><B}

dt Newton’s law of motion (F=ma)

Quasi—Static Fields: E =-V®(x,t)

d__dmy
V.- —mv=—
dt dt 2

:qv-[E+v><B]:—qv-VCI)

Rate of change of potential following a trajectory

d 0
—q®(t,x(t)) = —qgd VO
ol (£,x(t)) atq +qV

2
d mM 0 Kinetic + Potential Energy is conserved
+q® |=—qd . C . . :
de| 2 ot only if potential is time independent




Conservation of Linear Momentum

dim,-vi = qiE(Xi’t) E(Xi't) = 2 . (Xi - Xj) 3

t L Ame X —X .
o i j

d ”__ —Z ( X):()

dt ’17”477:8 X x

Momentum P is constant,

velocity of center of mass is constant
2 mx. System is symmetric

d wrt translation in 3

d .
—X = ’ = —=constant

de " dt Ym

If P =0, X_, can not change




Conservation of Angular Momentum

Doy —qE(xt)  E(x,)=Y %)

3

dt # 4e X —X,

d d dx. d
—L=—7) X Xmv = —LXmMV.+X X—mJV,
ac ™ g X xmY, z,-‘(dt T ]

qiqj(xi—xj)

=D X, % ;=0 System is symmetric
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Linked Quantities

Energy
U const if U=hao
d/0t=0
Time Frequency
Momentum
1=Atho  Lconstit P=1k
d/ox =0
displacement Wave vector

Sinusoidal waves

exp(ikox—ia)t) 1 — Ax Ak



What does a conservation
law for continuous systems look like?

d_Q_|_J‘d;&j:O
dr

0= [d'rp(r.n)

dA
e 3 -
Conservation of charge JdA . J _Jd r V ' J
S vV



Conservation of Energy

—|u, +u, |+V-S=-E-]J
al‘ Rate at which energy is
transferred to current J

E |
u . +u. = —OE . E + —B . B Energy density in fields
E M
2u,

S = EXH : Poynting vector

Flow of local energy density



Conservation of energy

. OB OE
VXE=—— VxB= + £
ot ‘u"[J ° at}
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Poynting’s Theorem

0 (80|E|2 +“0|H|2J+V.(E><H)=—E'J

ot 2 2
Energy density Power Flux Rate of work done
R R by Eon
& | E H
[ 0|2| +'u0|2 | j S=(E><H) E-J

Units: Joules/m3 Watts/m? Watts/m3



Poynting Example

E.=J. /o=1/(ra’c)
F S=(ExH)
S, =—E_H,

=—1°/(2n’a’c)

‘LArea of side
P=2mad|S,
=1°/(w a°c)=RI"

Power in:

Resistance



Only divergence of Poynting flux
matters

A A A A Find S:
What direction?

What does it mean?

!
|
N>

oy

Cargegat r=0




Poynting’s theorem addresses EM
energy, what about mechanical
energy’?

o[ & |E” wu|H B Rate of work done
at[ >t TV (EXH)=ET e

Newton’s Law ma=F d
md—vi = Q[E-FVZ- XB]
A

my. vi-%vl:z v, q[E+v,xB|=> Vi-qE:J-d3rvl.-qE
i i i \%

dm|vi|2_ 3 _ _ 3 _
Z‘ dr 2 _idrvl‘ qE_ld’”JE



Combining EM and Mechanical Energy

\%

d |t [ &lEL | polH mlv | | _
dt{jdr( SRR +Z - +_£dA (ExH)=0

EM + Mechanical Energy EM power flow



Conservation of EM Momentum

The total EM force on charges in a volume can be written as

% =) g(E(x,)+v,xB(x )= j (PE+J XB)d’r

i 4

P dP _
After some Math mech | M =§]S T -nda
at  dt 4

E

Total EM linear momentum: P, = Eo:“oj ExHdr
V
EM linear momentum density: € u EXH=S/ ¢’

Poynting vector: S=ExH, pe =1/¢’

— ] 1 ] =
Maxwell Stress Tensor: T=¢,EE+—BB - 5 (¢,E-E+—B-B)I

pon M



Force on what’s inside

dA A:area dt dt

— ] 1 ] =
Maxwell Stress Tensor: T=¢,EE+—BB - 5 (¢,E-E+—B-B)I

pon M



Viscous Fluid Stress

Sheared fluid flow

Stationary wall

V,(x)

X

Force in direction of flow is
transferred toward the wall

avy (x)
w =V X

D




Energy and Momentum of Light

2 2
[80|E| +.Uo|H| j §=(E><ﬁ) —/_\‘ Pulse
9) 9) Moves at c

Energy density Power Flux

Power Flux = ¢ Energy Density

Units: Joules/m?3 Watts/m?

Pulse also contains momentum

EM linear momentum density: €y EXH=S/ ¢’

Energy Density ~ §/c

— =C
Momentum Density S/ ¢’

A pulse of light carries energy and momentum: ratio =c



Mass Energy Equivalence E = mc?

Isolated box of mass M and length L in space.
A light on the wall on one side sends out a pulse of

\ 4

A

pulse

energy E toward the right.
The pulse has momentum p=E/c. v
The box recoils with velocity v=p/M to the left. |
The pulse is absorbed on the other side after a
time T=L/c.
The box absorbs the momentum and stops
moving. <
, EL
Displacement of the box Ax =vT =
Mc?
Has the center of mass moved? 3
We would like to say no.
The box should not be able to move its center of mass.

AxM:L(E/cz):Lm

We can say that the CM has not moved if the pulse reduced the mass

of the left side by m=E/c? and increased the right side by the same

amount.




Stress Tensor
= 1 1 1

T=¢EE+—BB-—(¢E-E+—B-B)I
'UO 2 :u()
Force transmitted through surface F = Cﬁ ,T, ‘Nda

A J—
The component normal to the surface is like a pressure force n- T ‘N=—p
= 1 1 1]1 1
n-T-n=¢g,|=(n-E) —2[E| |[+—|=(n-B) —=[B[
2 2 u |2 2

Remember BC’s
E, and B, are continuous

n
Normal E pulls on surface > n-: T ‘N = 80 |:%(H-E)2:|+ i|:—l B

Tangential B pushes




Forces on Conductor

Electric field force on surface charge pulls

F=JxB

Incident wave

Surface
Current



Force of attraction between capacitor
plates

-Q +Q

A o Toida
A

F

€ 2

= 1 2 1 Q

Surface charge density Il'T'IlZEO |:§(Il E) :|:5A28

o=Q/A 0
E =0 /¢, 2
=0 /¢ F:l Q
24¢

How much work must be done to separate plates a distance h?

2 2
Work:hF:ﬁ ¢ _1¢
24, 2C

capacitance



What is the force on the windings of a
coil?




Energy Density in a Linear Medium

Field Energy
Energy density Power Flux Rate of work done
.2 ) by E on J
&|E B L L
+ S=(ExH) E-J
2 2u,
B =yl D= ek
Energy density Power Flux Rate of work done
by Eon)
B wE) L H
+ S=(ExH) E-J
2 2
.12 _. 12
o | we E‘ a),u|H|
Almost always wrong dw 2 M 2



