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Lecture 3
Displacement Current
Fields in Matter
Boundary Conditions



Maxwell’s Displacement Current

It is not really a current. It just acts like one.

Maxwell determined the static Ampere’s Law could not be correct.
Inconsistent with charge conservation
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Remember for Faraday’s Law
Any surface with the same
perimeter gave the correct
answer.
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From Gauss’ Law




Conservation of Charge
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Faraday: time varying B makes an E

Ampere-Maxwell: time varying E makes a B
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Put together, fields can sustain themselves - Electromagnetic Waves




Induced E

0!

> >

| :

4

Increasing solenoid current & Increasing B

Faraday’s law describes an induced electric field.

Induced B
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Increasing capacitor charge 7 Increasing £

The Ampére—Max{Nell law describes
an induced magnetic field.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



The magnetic field line is a circle concentric B-dl=p,(I+¢, dr )
with the capacitor. The electric flux through
this circle is wr°E.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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Conduction current, Displacement
current, Polarization current
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Dielectric Terminology
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D=¢, (1+y, )E=¢E
D Electric flux density

E=E, (1 + )(E) Dielectric contant

(1+ )(E) Relative Dielectric constant



Maxwell’s Equations in Matter

Basic Equations (Vacuum)
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Here P and J are the total charge and current densities

Includes charge and current densities induced in dielectric and magnetic materials




Separate charge and current densities
into “free” and “induced” components

Somewhat arbitrary but very useful

magnetization current

. polarization current
J=J.+] +]
f"m 7p

polarization charge density
“Free” current

P=P,tP, polarization density
“Free” charge density —_V. -_V.
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Maxwell’s Equations in Matter

Equations in linear media
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Maxwell's Equations in Matter

V-D=p, VXE:—a—B V-B=0 V><H:Jf+a—D

ot ot
(linear and 1sotropic matter)
1 1

H=  BoM= B =M e E+P=¢E, p,=—V.P

M = y,H: Magnetization field P =¢,y E: Polarzation field
u=u,(1+ y,): permeability E=€&,(1+ y,) :permittivity
U =1+ y :relative permeability €. =1+y, :relative permittiity
X, . magnetic susceptibility X, : electric suscepibility

In a good conductor — Ohms’ Law (point version)

szc(E+v><B)



Boundary Conditions

Medium #1 Medium #2
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How are components E E
of the fields on one 5 D
side of the boundary

related to those on B, B,
the other side? H H




General Comments

Tangential components of E are always equal.

Normal components of B are always equal.

Normal component of E discontinuous implies a surface
charge density.

Normal components of D discontinuous implies a free
surface charge density

Tangential components of B discontinuous implies a
surface current density.

Tangential components of H discontinuous implies a free
surface current density.




Induced surface charge density
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Dielectric Sphere
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Magnetized Rod




Conducting Sphere




Tangential Component of E

Boundary Conditions

Applying Stokes’s theorem j (VXE)- da——_[ —-da = <_|5 E-dl

E / boundary ETzAl +E,. (-A)=0
Al
- / I b0 J —da%O since 7 — 0
- )
C:contour E, — | E,=E,

p—

* The tangential component of electric field E is continuous
across a boundary



Normal Component of D
Consider the electric flux field: D=¢E =¢,(1+ ¥,)E (linear/isotropic matter)
V-D=p, p, =free charge density
Applying the Divergence theorem f D-nda = J p,(r)d’r
A V

” ﬁT I Dy pd’r=0,da

o) JL x
/ ‘ - N | I h—0 o, - free surface

< charge density
E i ! p, Aa:arca

(DNz—DNl)-ﬁAa:Qf:O'an - | &Ey,—gEy =0,

* The normal component of the electric flux field D 1s discontinuous by the
free surface charge density



Normal E?

V- E=p, p, =total charge density
Applying the Divergence theorem j e,E-nda = J. p,(r)d’r
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2 nT I E,, P, d r=0da
) L .
—1 N charge density
E n Vo g, Aa:area

EO(EN2 _Em) ‘NAa = Q=0Aa —| gk,  — eE, =
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* The normal component of the electric field E is discontinuous by the total
surface charge density/ €,



Tangential Component of H

. oD D=¢E (linear/isotropic matter)
Magnetic field: VXH=J  +—

ot H=B/u (linear/isotropic matter and nonferromagnetic

Applying Stokes’s theorem 4) H-dl :j J, -da+_[ aa—lt)-da
C A A

ij-da — J,Ah — KAl

C:contour f boundary y
\ Al t HT2 as h—0
- I oD |
7_; h—0 j —-da—0 since h—0
— y ot
v, H;, .
K, fi H,,Al+H, (-Al) = AIK , x#

free surface
HT2 —HT1 =Kf><n

n : outward normal to the surface boundary

current density

* The tangential component of magnetic field H is discontinuous by the free
surface current



Tangential B

H,,-H, =K, xi

B,,—B, =K X n

* The tangential component of magnetic flux density B is discontinuous by
the total surface current X[l



Normal Component of B

V-B=0 Magnetic flux density: B
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Normal compontent of H V. H=-V-M
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* The normal component of the magnetic flux field B 1s
continuous across boundary



Boundary Condition Summary

Tangential Components

E.,=E, HTZ_HTl:KfXﬁ B,,-B, =uK, xn

Normal Components

Dy, =Dy nAa=Q0,=0,Aa — | &E,,-¢E,, =0,

SO(EN2 _Em) ‘NAa = Q=0Aa —| ¢k, —€E, =0

t

(By,-By,)-nAa=0 — |B,, =B,

HNz _HNl :_(MNz _MNI)




Let’s play the boundary condition

game!
A No free surface charge of current
O—>"
Y
Medium #1 Medium #2
g =2¢,1, =1,0, =0 g, =4e,u,=21 ,0,=0
E =2x+4y+6Z E = x+ y+ Z
D /e, = X+ y+ z D, /e, = X+ y+ z
B /u,=6x+7y+8z B,/u=x+y+ z
H=x+y+ Z H = x+y+ Z




Boundary Conditions in a Capacitor

vV, Q vV, Q
| . |
h, €
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Which boundary Conditions Apply?



Boundary Conditions in a Capacitor

V, Q
|
£, & h
|
A, Ay
Case #1 Case #1
E =E =V /h tangential E Q=0 +Q, :[A181 ‘;Azgz )V
Q=AD =AeV /h

_ _ Ae +AE
Q,=4,D,=4¢,V /h C :£ 11 p e < j Capacitors in parallel



Boundary Conditions in a Capacitor

V,Q
|
h, g,
Case #2 . hy | =
No free surface charge on boundary
between €, and &,. A

D,=D,=Q/A
E, =D, /e,=Q/(¢A
E,=D,/€,=Q/(&,A)

Case #2

A€ A82

1

hl h2
V=hE +hE =Q +

C_l _ h1 + hz C . . .
= apac1tors 1n series
Ae,  Ag,



Let’s play the boundary condition
game! With conductivity!!

Medium #1
€= 280,/11 =H,,0,=0

E =2x+4y+6Z

D /e = x+ y+ Z

B, /i, =6X+7y+8Z

H=x+y+ Z

J /o= X+ y+ Z
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Medium #2



