
HW 3: List Ranking and Tree Rooting

Course ENEE651/CMSC751

Title List Ranking and Tree Rooting

Date Assigned Mar 15 2018

Date Due April 05 11:59pm

Contact Ananth Hari - ahari1@terpmail.umd.edu

1. Assignment Goal

Identify The direction of the edges of a tree T(V,E) and a root r using the Euler tour and pointer

jumping algorithms discussed in sections 9.1 and 9.2 respectively.

2. Problem Statement

Given a tree T(V, E) and some specified vertex r ϵ V, where V is the set of vertices and E the set

of edges. The problem is to select a direction for each edge in E such that the resulting directed

graph T′(V, E′) is a (directed) rooted tree whose root is vertex r. Namely, all the edges are

directed towards the root.

Brief algorithm description: you will need to perform Euler tour algorithm from section 9.1.

For list ranking step, you will use the pointer-jumping algorithm from section 9.2.

3. Hints and Remarks

Separating concurrent reads and writes: Consider the pointer-jumping algorithm that you will

use for list ranking step. In this step, for each edge (u, v), we will do an in-place update for all

edges in parallel (Next[e] = Next [Next[e]]). This means that it will read ‘next’ for the next edge,

to update its own. The same thing goes for the distance calculation. In a PRAM algorithm, the

execution proceeds in synchronous manner, where first all processors read Next[Next[e]] before

any of them write Next[e].

The XMT platform, on other hand, implements a less-synchronous PRAM platform where the

order in which the TCUs execute the above assignment is not determined. This can result in a

mix of concurrent reads and writes to the elements of the arrays Next and Distance. Depending

on the implementation of the memory read and write operations, this can cause the pointer

graph to be left in an inconsistent or invalid state.

To avoid this issue, we propose the following scheme for your XMTC, use two arrays to store the

pointer graph, e.g. Next_read and Next_write; perform all the read operations from the first

array and all the write operations into the second one. For example, the above assignment can

be rewritten as: Next_write[i] = Next_read[Next_read[i]]. Note that you need to ensure that the

updated pointer graph is stored in the appropriate array at the end of each iteration.

4. Assignment

Write an XMTC implementation of the tree-rooting algorithm using Euler tours and

pointer jumping for ranking. Name your code rooting.c.

Note: a binary implementation of the serial algorithm will be provided with the files given

to you. You are not required to do a serial implementation of this problem.

4.1. Setting up the environment

To get the Makefile for compiling programs, log in to your account in the class server and

extract the rooting.tgz file using the following command:

$ cp /opt/xmt/class/xmtdata/rooting.tgz ~

$ tar xzvf rooting.tgz

This will create the directory rooting which contains the Makefile and binary files of the

serial algorithm.

Data files are located at a common location in the server (/opt/xmt/class/xmtdata/rooting).

If you use the Makefile system explained in Section 4.4, you will not need to explicitly refer

to this location. The provided Makefile utilizes command line options to pass the paths to

the header and data files to the compiler.

4.2. Input Format

The Input is provided as the following:

#define N The number of vertices in the tree

#define M The number of edges in the tree (each edge counts twice)

#define NIL This is the null node, its value is -1

Int root The root vertex ID

int E[M][2] The start and end vertex of each edge. Edges are provided as incidence list

int V[N] The index in the edges array, where the edges incident to the vertex begin

int deg[N] The degree of each vertex

int ptr[M] The indices of the corresponding antiparallel edge

Int used[M] Result array: The edges that are picked in the end

Declaration of temporary/auxiliary arrays: You can declare any number of global arrays and

variables in your program as needed. For example, this is valid XMTC code:

#define T 16384

int temp1[16384];

int temp2[2*T];

int main() {

 //...

}

4.3. Data Sets

The following data sets are provided:

Dataset N M Header file Binary File

t1 64 126 $DATA/t1/rooting.h $DATA/t1/rooting.xbo

t2 1024 2046 $DATA/t2/rooting.h $DATA/t2/rooting.xbo

t3 32768 65534 $DATA/t3/rooting.h $DATA/t3/rooting.xbo

$DATA is /opt/xmt/class/xmtdata/rooting. Note that each edge is listed twice in the input

file. For example, the undirected tree t1 has only 63 edges. A data set can be chosen by

passing a DATA argument to the Makefile. See Section 4.4 for examples.

4.4. Compiling and Executing

For your convenience, a Makefile is provided with the homework distribution. You can use

the provided makefile system to compile and run your XMTC programs. To run the parallel

rooting on the t1 data set, use the following command in the src directory:

> make run INPUT=rooting.p.c DATA=t1

This command will compile and run the rooting.p.c program with the t1 data set. For other

programs and data sets, change the name of the input file and the data set. If you need to

just compile the input file (no run):

> make compile INPUT=rooting.p.c DATA=t1

You can get help on available commands with

> make help

Note that, you can still use the xmtcc and xmtfpga commands as in the earlier assignments.

You can run with the makefile system first to see the commands and copy them to command

line to run manually. In case of the example we used above, the commands will look like:

> xmtcc -include ${DPTH}/t1/rooting.h ${DPTH}/d1/rooting.xbo rooting.p.c -o rooting.p

Where $DPTH is defined as /opt/xmt/class/xmtdata/rooting. If the program compiles

correctly a file called rooting.p.b will be created. This is the executable you will run on the

FPGA using the following command:

> xmtfpga rooting.p.b

5. Output

The array ‘used’ will have the edges used indicated with a value of 1.

Prepare and fill the following table: Create a text file named table.txt in doc. Remove any printf

statements from your code while taking these measurements. Printf statements increase the

clock count. Therefore the measurements with printf statements may not reflect the actual time

and work done.

Dataset t1 t2 t3

Parallel tree rooting clock cycles

Serial tree rooting clock cycles

Note that a part of your grading criteria is the performance of your parallel implementation on

the largest dataset (t3). Therefore you should try to obtain the fastest running parallel program.

As a guideline, for the larger dataset (t3) our Serial tree rooting runs in 270489217 cycles, and

our Parallel Sample runs in 13647910 cycles (speedup ∼19.8x) on the FPGA computer.

Submission: The use of the make utility for submission ‘make submit’ is required. Make sure that

you have the correct files at correct locations (src and doc directories) using the make

submitcheck command. Run following commands to submit the assignment:

$ make submitcheck

$ make submit

 Validation of output data: Check the output of your program against result.txt placed in /opt/xmt/

class/xmtdata/rooting/t(1,2,3). The file contains one edge per line (per vertex, except the root).

Each line contains an edge that starts from a vertex and ends at a neighboring vertex closest to the

root.

