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Outline

§ I. Brief recap: Linear codes, Weight distributions and duality, orthogonal
arrays

§ II. Applications of the ordered distance
§ Wireless
§ Reed-Solomon codes
§ Approximation theory

§ III. Results on linear ordered codes
§ Shape distributions and bounds on codes
§ Duality of linear codes for poset metrics
§ Channel models
§ Polar codes



I. Linear codes

A linear code C Ă Fn
q

G,H generator and parity-check matrices

Weight distribution Bi, i “ 0, 1, . . . , n, where
Bi “ 7tx P C : wpxq “ iu

Dual code C (dual) “ ty P Fn
q : px, yq “ 0 @x P Cu

Weight distribution of C (dual): B(dual)
i , i “ 0, 1, . . . , n

Weight enumerators:
BCpx, yq “

řn
i“0 Bixn´iyi; BC(dual) px, yq “

řn
i“0 B(dual)

i xn´iyi
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Linear codes and duality

The MacWilliams Theorem:

BCpx, yq “
1

|C (dual)|
BC(dual) px ` pq ´ 1qy, x ´ yq

Approach via Fourier analysis:

B(dual)
j “

1
|C|

n
ÿ

i“0

BiKjpiq, j “ 0, 1, . . . , n

where

Kjpiq “

i
ÿ

ℓ“0

p´iqℓ
ˆ

i
ℓ

˙ˆ

n ´ i
j ´ ℓ

˙

pq ´ 1qj´ℓ

is a Krawtchouk polynomial
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Linear codes and duality

The MacWilliams Theorem:

§ Linear algebraic approach:
Let A Ă t1, 2, . . . , nu, ρA “ rankpGpAqq, k “ dim C
Define ZCpx, yq “

ř

AĂrns xk´ρAy|A|´ρA. Then

ZCpx, yq “ ZC(dual) py, xq

ZCpx, yq is the Whitney rank-nullity function of C

§

BCpx, yq “ px ´ yqkyn´kZC

´ qy
x ´ y

,
x ´ y

y

¯

(Greene 1976)

§ This connection extends to higher support weights (B ’97)
(Wei ’91, Ozarow-Wyner ’84).

§ Codes and matroids: If the code is considered as an Fq-representation of
a matroid M on the set t1, 2, . . . , nu, then ZCpx, yq is the Whitney function
of M
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Orthogonal arrays

Consider a code C, and suppose that

dpC (dual)q “ t ` 1, i.e., B(dual)
i “ 0, i “ 1, 2, . . . , t

Then C is called an orthogonal array of strength t (C. R. Rao, 1946+)

OAp8, 4, 1, 3q :

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

OAs form an example of designs in association schemes (Delsarte ’73)
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Distances for codes

Different applications of codes give rise to various distance-like functions:

§ Hamming distance

§ Lee distance

§ Levenshtein (edit) distance

§ ℓ1 distance; Kendall tau metric; Chebyshev (ℓ8) distance

§ Subspace distance

§ Ordered metrics
(Niederreiter ’92; Brualdi et al., ’95; Rosenbloom-Tsfasman, ’97)

M.Deza and E. Deza, Encyclopedia of distances, Springer 2013
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II. Ordered metrics: Motivation

§ Universally optimal codes for slow-fading MIMO channels

§ Multiplicity codes

§ Approximation theory

§ Algebraic list decoding

§ Linear complexity of sequences



Ordered metrics

Slow-fading point-to-point MIMO channel (Tavildar-Viswanath, ’06)

Parallel fading channel with r diversity branches

yjrms “ hjxjrms ` wjrms, j “ 1, . . . , r

BA

2
1

r

j

Universally decodable matrices (see also Ganesan-Vontobel, ’07)
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RS codes

RS codes: Take n distinct points a1, a2, . . . , an P Fq

C “ tpf pa1q, f pa2q, ..., f panqq, f P Fqrxs, deg f ď k ´ 1u

7(zeros)ď k ´ 1, so dpCq ě n ´ pk ´ 1q

Multiplicity codes:

C2 “ tp

hkkkkkkkkkkikkkkkkkkkkj

f 2pa1q, f 1pa1q, f pa1q;

hkkkkkkkkkkikkkkkkkkkkj

f 2pa2q, f 1pa2q, f pa2q; . . . ;

hkkkkkkkkkkikkkkkkkkkkj

f 2panq, f 1panq, f panqqu

If f 1pa1q “ f pa1q “ 0, then a1 contributes 2 to the count of zeros. Thus what
matters is the location of the rightmost nonzero entry in each block of r
coordinates (Rosenbloom-Tsfasman, ’97)

Extension to RM codes: Kopparty-Saraf-Yekhanin ’11; Kopparty ’14
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NRT metric

r

n

0 0

0

00

0 0 0 0

0000

0

0

00

c

a b

a

c

d e

wNRTpxq “ 2 ` 3 ` 2 ` 4 “ 11



NRT metric

 1001101  00000
r

x=

Define wrpxq “ min ti : xi`1 “ ¨ ¨ ¨ “ xr “ 0u

Extending to n consecutive blocks of r elements: x P FN,N “ nr

0
0

0
0

0
0

r

n

0
0
0
0
0
0

wrpxq fi
řn

i“1 minpj : xi,j`1 “ ¨ ¨ ¨ “ xi,r “ 0q

(Niederreiter ’87-’91; Rosenbloom-Tsfasman ’97)



Approximation theory

Monte-Carlo integration: Let Kn :“ r0, 1sn, approximate
ż

Kn

f pxqdx «
1

|P|

ÿ

xiPP

f pxiq

for a well-chosen finite set of points P.

A set of points P P Kn is (approximately) uniformly distributed if the
discrepancy

DpP,Rq :“ max
RPR

´

vol pRq ´
|P X R|

|P|

¯

is small for all R in some class R of subsets of Kn (Weyl 1916; Van der Corput ’42)
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Approximation theory

Take R to be the set of “elementary intervals” (axes-parallel rectanges)
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pt,m, nq-nets

Definition
A net is a finite set of points such that every rectangle of some fixed volume
contains the same number of points.

For q P N consider an elementary interval of the form

J “

n
ź

i“1

” ai

qdi
,

ai`1

qdi

¯

, 0 ď ai ă qdi

A set P of size |P| “ qm forms a pt,m, nq-net in Kn if for every J, vol pJq “ qt´m

|P X J| “ qt
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pt,m, nq-nets and ordered metrics

Theorem (Lawrence ’96; Mullen-Schmid ’96)
There exists a pt,m, nq-net in r0, 1sn if and only if there exists a q-ary code of
length N “ npm ´ tq with dual NRT distance m ´ t ` 1 (i.e., an orthogonal array
of strength m ´ t).

See also
M. Skriganov, Coding theory and uniform distributions, 1999
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Other applications

§ List decoding of algebraic codes (Nielsen ’99; Guruswami-Wang ’13)

§ Linear complexity of sequences (Massey-Serconek, CRYPTO ’94)



A theory of ordered codes

Code C Ă FN
q ,N “ nr; for instance, a linear code

Weight (distance) distribution Martin-Stinson ’99
B.-Purkayastha ’09,’10; B.-Firer ’14

Duality of codes Hyun-Kim 2006-10; B-Firer ’13-’14

Channel models; polar codes B.-Park 2010-15
B.-Park ’13; Gulcu-Ye-B. ’16
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Weight distribution

Consider a pair of dual linear codes C, C (dual) P FN
q ,N “ nr

The NRT weight of x equals the sum of the ordered weights of the segments:

wpxq “

n
ÿ

i“1

wpxiq,where xi “ pxi,1, xi,2, . . . , xi,rq

The minimum (NRT) distance dpCq “ minxPCzt0u wpxq

Studies of bounds on codes in terms of dpCq

At the same time, the MacWilliams theorem for the weight distributions of
C, C (dual) does not hold: The dual weight distribution is not uniquely determined
by the weight distribution of the code C
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Weight distribution

What is the “correct” definition? Criteria:

§ It is a figure of merit for MAP decoding on some relevant channel model

§ It supports a MacWilliams-like theorem for a pair of dual codes



MacWilliams theorem

Answer in terms of Delsarte’s association schemes:
The “correct” invariant of the NRT space is the shape of the vector

shapepxq “ pe0, e1, . . . , erq, where ek “ 7ti : wpxiq “ ku, k “ 0, 1, . . . , r.

Reasons:

§ The group of linear isometries acts transitively on shape-spheres

Se :“ tx P Fn
q : shapepxq “ eu e “ pe0, e1, . . . , erq

and shape is the most coarse invariant with this property.

§ The set of pairs px, yq P pFN
q q2 forms a translation association scheme with

classes indexed by the shapes (Martin-Stinson ’99; B.-Purkayastha ’09)

§ There are natural channel models for which shapes form sufficient
statistics
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Linear isometries of the NRT space

Group of linear isometries of the NRT space was found by K. Lee, ’03

GLpHr,nq “ pTrq
n ¸ Sn

where Tr “

**
*

*
0

is the group of upper-triangular matrices with nonzero diagonal



MacWilliams theorem

Bpz0, z1, . . . , zrq “
ÿ

eP∆r,n

Bez0
e0 z1

e1 . . . zr
er ,

Theorem (Martin-Stinson ’99; Skriganov ’99)

Let C, C (dual) Ă FN
q be a pair dual linear codes in the ordered Hamming space.

Then
B(dual)pu0, u1, . . . , urq “

1
|C|

Bpz0, z1, . . . , zrq

where
z0 “ u0 ` pq ´ 1q

r
ÿ

i“1

qi´1ui,

zr´j`1 “ u0 ` pq ´ 1q

j´1
ÿ

i“1

qi´1uk ´ qj´1uj, 1 ď j ď r.



Implications: Bounds on codes

It is possible to relate the shape distributions of C and C (dual) :

Be “
1

|C (dual)|

ÿ

f P∆n,r

B(dual)
f Kepf q, e P ∆n,r

pKepf qq - r-variate discrete polynomials orthogonal w.r.t. a multinomial
distribution (eigenvalues of the ordered Hamming scheme)

Linear programming bounds on the size of codes
Plotkin bound (Bierbrauer ’07)
Elias bound; MRRW bound; asymptotics (B.-Purkayastha ’09)
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Computing the bounds: Rate vs relative distance

0.1 0.2 0.3 0.4 0.5 0.6 0.7
∆

0.2

0.4

0.6

0.8

1.0

R
r=3 q=2

Elias

GV

Plotkin

LP



Linear-algebraic perspective

Ordered matroids (Faigle, ’80; Wild, ’08)

The NRT case is realtively simple: Define independent sets in accordance
with the ordering (ideals of the poset)

Multivariate rank-nullity function:
Let x, y “ py1, . . . , yrq be a set of variables; define

Zpx, yq “
ÿ

eP∆r,n

ÿ

IPIpPq

shapepIq“e

!

px ´ 1qρE´ρIpyr ´ 1q|I|´ρI
r´1
ź

i“1

pyi ´ 1qei

)

.

Theorem: ZC(dual) px, y1, . . . , yrq “ ZCpyr, yr´1, . . . , y1, xq

(Work with Woomyoung Park, 2010-15)
A. Sokal, Multivariate Tutte polynomial ’05; work with A. Ashikhmin on “Binomial
moments” ’99
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Duality of linear codes

The dual code
C (dual) “ ty P FN : @xPCpx, yq “ 0u

distances in C

distances in C

Why are the distances in C (dual) measured differently than in C?

The distances are governed by the combinatorial structure of the space FN .

Linear-algebraic duality preserves the group but not the association scheme.
In other words, C and C (dual) live in different metric spaces (i.e., the metric
structure is a priori different)
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Metrics generated by partial orders

Let P be a partial order on FN . An ideal in P is a subset of rNs such that i P I
and j ă i imply that j P I.

Poset weight of x P P (Brualdi et al., ’95)

wPpxq “ |I|, where I is the smallest ideal s.t. supppxq Ă I

Dual order P(dual): i ă j in P(dual) iff j ă i in P

P is called self-dual if P – P(dual)

Theorem (with M. Firer, L. Felix, M. Spreafico ’14)

The dual code of C agrees with P(dual) if and only if P is self-dual.

(proof uses the language of association schemes)
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Simple channel models I

Ordered erasure channel
W : X Ñ Y, |X | “ 4, |Y| “ 7

Possible error events:

§ Correct transmission

§ 1st bit erased

§ Both bits erased

0ε
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2
ε

00

?0

10

??

01

?1

11

00

10

01

11



Simple channel models II

Definition (Ordered symmetric channel)
Let ϵ “ pϵ0, ϵ1, . . . , ϵrq, where 0 ď ϵi ď 1 for all i and

ř

i ϵi “ 1. Let
Wr : X Ñ Y, |X | “ |Y| “ qr be a memoryless vector channel defined by

Wrpy|xq “
ϵi

qi´1pq ´ 1q
, where dPpx, yq “ i, 1 ď i ď r,

and Wrpy|xq “ ϵ0 if y “ x.

(Probability of error events is monotone according to the shapes of the error vectors)

Extension: Ordered wiretap channels (connection to higher ordered weights
of linear codes)

(works with W. Park (2011-’15), P. Purkayastha (2010))
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Nonbinary polar codes: Multilevel polarization

Let W : X Ñ Y, |X | “ 2r. Consider the polarizing transform given by

rx1, x2s “ ru1, u2s

«

1 0
1 1

ff

Convergence to r ` 1 levels supported by monotone behavior of the
subchannels: If the ith bit in the symbol x P X is decoded reliably, then all the
bits xi`1, . . . , xr are also decoded reliably.

ZvpWq :“
1
2r

ÿ

xPX

ÿ

yPY

a

Wpy|xqWpy|x1q; ZipWq :“
1

2i´1

ÿ

vPXi

ZvpWq

Extremal configurations are of the form:

pZ1,8 “ 1,Z2,8 “ 1, . . . , Zj´1,8 “ 1, Zj,8 “ 0, . . . ,Zr,8 “ 0q
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Polar codes on ordered channels

Example for the ordered erasure channel (work with W. Park, 2013)
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Extensions - An infinite order?

Consider a total order given by a single chain: 1 ą 2 ą 3 ą ¨ ¨ ¨ ą n ą . . .

x “ px1, x2, . . . q P
ź

iě1

Z`
p

§ Group X: X “ X0 Ą X1 Ą X2 Ą ¨ ¨ ¨ Ą Xm Ą . . . ,
Ş

iě0
Xi “ t0u

§ Metric ρpxq “ maxtj P N0 : x P Xju, i.e., x1 “ ¨ ¨ ¨ “ xj´1 “ 0

§ Adjacency operators Ai on L2pX, µq : Aif pxq “
ş

X χipx ´ yqf pyqdµpyq

§ Eigenvalues of tAiu ô functions on X with properties of MRA on L2pX, µq

Extending Delsarte’s theory of Abelian association schemes to infinite spaces
(work with Maksim Skriganov, ’15)
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