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Abstract

The paper discusses some ways to strengthen (nonasymptotically) the Gilbert—Varshamov
bound for linear codes. The unifying idea is to study a certain graph constructed on vectors
of low weight in the cosets of the code, which we call the Varshamov graph. Various simple
estimates of the number of its connected components account for better lower bounds on the
minimum distance of codes, some of them known in the literature. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Let C be ag-ary linear code of length, dimensionk and minimum distance,
in short an[n, k, d],-code. The Varshamov bound [13] guarantees, for any given
q.n, k, the existence of a linedn, k, d], code with a certain relation between the
parameters:, k, d, g (see Proposition 12). Moreover, Varshamov [13] suggests a
greedy procedure of constructing a parity-check matrix for a code whose parameters
meet the bound. Gilbert [6] suggested a similar greedy algorithm that produces (not
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necessarily linear) codes whose parameters satisfy a similar relation. Asymptotically,
both bounds give the same function; therefore, it became common to join them into
the “Varshamov—Gilbert bound.”

To improve the Varshamov-Gilbert bound asymptotically is a notoriously difficult
task[11]. However, for any small valuesmafk, d, ¢, the best codes that we know are
usually better than this bound. Therefore, the question whether better nonasymptotic
bounds are possible seems to be a natural one. In Section 2, we introduce a graph on
the standard array of the code and relate its parameters to those of the code. Simple
estimates on the number of connected components of the graph lead to improvements
of the Varshamov—Gilbert bound given in Propositions 10 and 14 [7], Proposition 15
and Corollary 21 [4].

2. The Varshamov graph

Definition 1. The codeC is said to banaximalif it cannot be obtained by shortening
an[n 4+ 1,k + 1, d],-code.

The following is a useful characterization of maximal codes.

Proposition 2. The codeC is maximal if and only if its covering radiys(C) does
not exceed — 2.

Proof. If x € Fj has distance d — 1toC, then the cod€’ spanned byx, 1) and
{(c,0) | c € C} hasthe parametefs + 1, k + 1, d],, and shortenin€’ with respect
to the last coordinate position giv€s Conversely, ifC is obtained by shortening an
[n+1,k+1, d]q-codeC/, then any word irC’ which is nonzero in the shortening
position yields a vectax € F; at distancez d — 1 fromC. [

So an[n, k, d],-codeC with p(C) > d — 2 is not maximal. The following propo-
sition, a generalization of a result by Elia [5], extends this observation to codes with
arbitrary covering radius. The proof is completely analogous to that of the preceding
proposition.

Proposition 3. An|n, k, d],-codeC with p(C) > «, o < d, can be extended to an
[n+d—a—1k+1 d], -code.

Let C be an[n, k, d],-code.

Definition 4. The undirected graph with the vertex set

Vo :i={X|Xe FZ and wix) < a}
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and the edge set
E,:={{a,b}|abeV,anda—b e C\ {0O}}

is denoted byG, (C). The graphG(C) := G4_2(C) is called the Varshamov graph
of C.

Obviously, the number of vertices @, is equal to

|Wﬂ=§]q—h<?)
i=0

The number of edges will turn out to be a function of the weight distribution
(Ai(C))i=01....n Of C.

Letx,y e F; be any two vectors withl (x, y) = w. Then the integers

pii=HzeF, 1 d(X,2) =iandd(y, 2) = j}| (1)

are known to be independent of the choicexadndy. They are the so-calleith-
tersection numbersf the Hamming schem# (n, ¢). Sometimes the}", are also
called thdinearization coefficientsf the Hamming scheme (cf. Remark 6). See [3],
[9, Chapter 21] or [8, Chapter 30] for a detailed description of the Hamming scheme
and other association schemes. Finally, the numprsirise naturally in estimating
the error probability of bounded distance decoding oncHaey symmetric channel
[1].

In the sequel we need an explicit formula for m’é}

Proposition 5[1].
Li+j—w/2] w
wo_ o+ j—w=28,,, _ 1)\8
Pij = ;_O (g—2) (¢g—1 <j . 8)

j—29 n—uw
X(w—i+8>( 5 ) (2)

For g = 2, this reduces to
0 if i+ j—wisodd

P w now ifi +j — wiseven
w+i—p/2)\i+j-w/2 / :

Proof. In (1), we may assume that= 0 and wty) = w. SOp;f’j counts the number
of zwith wt(z) =i and wiz — y) = j. Put

o= {u| zu = Yu, zu # O},

B :=Wulzu# Yus2u # 0, yu # O},
vy i=Hulzu =0y, # 0},
§:=Nulzu #0, y. =0}l



122 A. Barg et al. / Linear Algebra and its Applications 307 (2000) 119-129

Then

“f,-=Z(q—2>ﬂ<q—1>5<’;’)(“’;“)(”‘5“’), ©)

where the sum is taken over all nonnegative integer solutions of the system

p

w=oa+p+y,
i=a+p+96,
J=B+y+4.

Solve fore, g andy, and substitute in (3 ). O

Remark 6. Another formula forp;‘fj is

p;‘fj = q_" Z Ki(M)Kj(M)Ku(w)
u=0
with

. - _amye, _px—m [ Y n—y
Ke(y) = ZO( D"q -1 <m> (x_m).
The K, (y) are polynomials of degreein y, the so-called Krawtchouk polynomials.
Again, we refer to the relevant sections of [3,8,9].

Proposition 7. The size of the edge s&f, of G, (C) is equal to

—ZA (@Zp

i,j=0
A more epr|C|t formula in the binary case is
20—w [v/2] " w
Eul = zAw«» 393 (+_)( )
v u

Proof. If c € Cis a codeword of weight» > 0, then the set
Xc:={{a,b}|a,be V,anda—b =c}

has S|zeZl =0 pl or; Zl j=o P! i depending on whetheris odd or even. By
definition, E is equal to

U x
ceC\{o}
Now observe thak. = X_cand thatX N X¢ =@ if c £ +c’. O

The graphG, (C) has a very simple structure: its components are complete graphs
whose vertices are the intersectionslgfwith the cosets of weigh « of C. Let
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¢« (C) be the number of components 6§, (C). It is also the size of the largest co-
clique inG. Applying Turan’s theorem ([10] or [12]) we get a relation betwegn
andk,.

Proposition 8. If ¢, < K, then
Va 1] Vg Va
Ey>|— -2 = —~Z|+1)K.
= ele-a R ()
Hence the integer
. \Z 1] Vy Va
K|Ey>|— -2 = Zl+1)K
mn{ > [ =3 e (e ) +2) o}
is a lower bound fog,.

Another useful invariant of the grafh, (C) is 11, (C), the size of Es largest com-
ponent (i.e. clique). Turdn’s theorem for the complementary giGptyields the
following lower bound foru, (C).

Proposition 9. If 4, (C) < M, then
V, \ 1| Vy Va
Eo < 2 )—-|=|Vu+=|-2 = l+1) M.
o< (%)~ sl (G )
Hence
. Vy Ve 1|V, Ve
miniM | Eq < —|—= |V - | — — 1M
{ = (2) {MJ "‘+2{M M
is a lower bound foy.

However, the next proposition shows that good upper boundsuf@) :=

na—2(C) are much more useful. What we really need are upper bounds for the

number of words of weight up 1@ — 2 in the cosets of.

Proposition 10. An{n, k, d],-codeC with

d-2
d(n)_LECI .
2= <i>_2u(0> =4

is not maximal.

Proof. Consider the Varshamov gragh(C). Fori = 1,2, ..., u := u(C), let y;
denote the number of components of §izEhen

n
c(©) =) v
i=1
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"
V=Y i,
i=1
" .
IE| =Z(’2>w.

i=1
Hencec(C) is upperbounded by the maximal vaIueEf‘:lx,- under the con-
straints

m

Y ixi = VI,

i=1
“ i
(2>Xi = |E]|,

)
i >0

1

=

1<i <.

We claim that
_|E|

=N
2
is an optimal solution. So the maximal valueof. , x; is equal to

|E| |E| |E]

(3) (5)

Indeed, the dual linear program

x x1=|V|—ux,, x; =0 otherwise

[VIz1+ |E|lz2 — min
i11+(;>zz>0, 1<i<n,
21,2220
has a feasible solution
2

=1 z=-——
I

that produces the same value of the objective functidn.

Remark 11. Following the idea of Proposition 3, we can generalize this result:
An [n, k, d],-codeC with

« () AE©
§,(4‘” <i>_2ua(0> =4

for somea < d — 1 can be extendedtoén+d — o — 1,k + 1, d], -code.
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3. Varshamov—Gilbert type results

The numbet, (C) of components of;, (C) cannot exceeg ¥, the total number
of cosets. Obvioushg is maximal if and only if the number of componentf) of
the Varshamov grap& (C) := G4_»(C) equalsg”™*.

Our goal is to find upper bounds @(C). For if such an upper bound is smaller
theng” ¥, thenC is not maximal. The simplest upper bound is

d-2
i[n
<C><|V|=§<q—1) <1)
which immediately gives the classical Varshamov—-Gilbert bound.

Proposition 12[13]. If

d—2
Y g-1 (’:) <q"
i=0

then no[n, k, d],-code is maximal.

Remark 13. By Proposition 3, we can generalize this:

If
Y- (’f) <q"*
i=0

for somea < d — 1, then any[n, k, d],-code can be extended to gn+d — o —
1,k +1,d],-code.
Fora = d — 3 this reduces to Elia’s result [5].

A general approach to find Varshamov—Gilbert type bounds would be to estimate
the number of components of specific subgraphs of the Varshamov graph. We discuss
two examples, basically due to [4,7], respectively.

The firstidea to considerfarest Fin G. If F’ O F is a spanning forest @, then

c(C) = V| = |[E(F)| < |V| = |[E(F)|. (4)
So if we can find a forest i with many edges, we have a good upper bound for
c(C).
An interesting example was found by Hashim. Put Ld—glj.

Proposition 14([7]. An[n, k, d],-codeC with
d—2+t t w d—2 "
Y _ . n—k
> (i)Aw<C>>Z<q 1) (l.)s q

w=d i=w—d+2 i=0
is not maximal.
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Proof. Consider the two disjoint subsets

Xi:={al|2<wt@ <1}, Xo:={b|t<wth) <d-2}
of F;. The bipartite graph ofiX1, X»} with the edge set

E :={{a,b} |a— Db e C and sup@mn suppb = @}

is a forestinG because all its vertices iXi; have degreeg 1. Indeed, if{a, b}, {a/, b}
€ E',then(a—b)— (@ —-b)=a—-a eCandwia—a) <2t < d, whencea=
a. Each word of weightvin C contributesy ;_, _,.» (“) to E’. Hence

d—2+t t
El=Y Y (?’)Aw(@

w=d i=w—d+2
and by (4),

d-2 n d—2+t t w
c(c><2(q—1)’<i)— > <i>Aw(C). O
i=0 w=d i=w—d+2

Hashim’s result admits a simple improvement.

Proposition 15. An([n, k, d],-codeC with

d—2+t t d-2 d-2 n
Yo D plAw© > (g - (i ) —q""
w=d i=w—d+2 j=w—i i=0

is not maximal.

Proof. Now consider the bipartite graph with the same vertex ¥gtsX» as in the
preceding proposition, but with edge set

E":={{a,b}|ae X1,b e X,anda—b e C}.

By the same reasoning, this bipartite graph is seen to be a forest. Its number of
edgesis

d—2+t t

d—2
Y > 2 pliAu©. (5)

w=d i=w—d+2 j=w—i
Again we apply (4). O

Remark 16. In thebinary case, Expression (5) takes the form

d+s )(n_5_8>Ad+8(C)~ (6)

t—21t—2-5v/2]
(d —24+u—v

2 ) 2

§=0 v=0 u=0
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Remark 17. Proposition 3 enables us to generalize Proposition 15 in the following
way:
An [n, k, d],-codeC with

o+t t o

oY > pﬁf’jAw<C>>;<q—1>"(’§>—q"—k

w=d i=w—o j=w—i

for somea < d — 1 can be extendedto én+d — o — 1,k + 1, d], -code.

Now we come to the second idea. First we fix some notationTls a subset
of the coordinate index sdt, 2, ..., n}. The projectionof anx € Fj to T is de-
noted byx; and the code obtained Ky throughshorteningwith respect tol by

C”. (HereT denotes the complement @fin {1,2, ..., n}.) We defines,(C) :=
co(C) — c4—1(C). Note that

5(€) < (g = 1" ( Z) )

with equality fore < ¢ = [452].
We need two obvious lemmas.

Lemma 18. If C := C1 & Co, then

ca(C) =) 5i(C1)ce—j(Co).

j=0

Lemma 19. If D C C, thenc, (D) > ¢4 (C).

The following relation between the values f for C, C’ and CT creates a
possibility of induction.

Proposition 20.

min(e,m) .
@) < Y si(Chea (CT). (8)

j=0

Proof. Note thatC” @ C7 is a subcode o€ and apply the preceding lemmas. In
fact, the right-hand side counts the components of the subgraphG (C) with the
same vertex séf, but with the edge set

E’::{{a,b}|aT—bTeCT/\a7—bfeCT]. O
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Corollary 21 [4]. From (7) we infer that

min(e,m)

i (") (T
ca(C) < ;0 (q 1>f(j>ca_j(0 )

We can embed aniy., k, d],-codeC in an[n + 1, k, d],-codeC’ by adding one
zero coordinate to each codeword. Let us call this construttizcial lengthening.
Corollary 21 withm = 1, immediately gives the bound

ca(C) < ¢a(C) + (¢ — Dea-1(C). 9)

If an[n, k, d],-codeC is not maximal, we can embed itin ém+ 1, k 4+ 1, d],-
codeC'. Let us call this &/arshame step The component sizas, (C') of the new
codeC’ satisfy the bounds

ca(C) < ¢ce(C) + (g — Dcg-1(C). (10)

Indeed, letn + 1 be the extra coordinate index @. We can split the vertex set
V4 (C’) of C’ into theq subsets

Wi :={u e Vo (C) | Upt1 =1}

Then the restriction of5, (C') to W; is isomorphic toG, (C) if i = 0, and isomor-
phictoGy,_1(C) if i # 0.

Now Edel’s idea in [4] is as follows. Start with &n;, k;, d],-codeCq and build
a sequence ofn;, k;, d],-codesC;, i =1, 2,..., of increasing length by taking
Varshamov steps when our information gn_2(C;) tells us that this possible. If
not, apply trivial lengthening until a Varshamov step again is possible. At each step,
estimate the, (C;) using (9), (10) and the trivial boung, (C;) < ¢ % By this
simple method, Edel improved quite a few lower bounds in Brouwer’s tables [2] on
bounds for optimal linear ternary and quaternary linear codes. Without doubt, the
method will work for larger alphabets as well.
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