
Linear Algebra and its Applications 307 (2000) 119–129
www.elsevier.com/locate/laa

Strengthening the Gilbert–Varshamov bound

Alexander Barga, Sugi Guritmanb, Juriaan Simonisb,∗
aLucent Technologies, Bell Labs, 600 Mountain avenue 2C-375, Murray Hill, NJ 07974-0636, USA

bFaculty of Information Technology and Systems, Delft University of Technology, P.O. Box 5031,
2600 GA Delft, Netherlands

Received 12 October 1998; accepted 10 December 1999

Submitted by R.A. Brualdi

Abstract

The paper discusses some ways to strengthen (nonasymptotically) the Gilbert–Varshamov
bound for linear codes. The unifying idea is to study a certain graph constructed on vectors
of low weight in the cosets of the code, which we call the Varshamov graph. Various simple
estimates of the number of its connected components account for better lower bounds on the
minimum distance of codes, some of them known in the literature. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Let C be aq-ary linear code of lengthn, dimensionk and minimum distanced,
in short an[n, k, d]q -code. The Varshamov bound [13] guarantees, for any given
q, n, k, the existence of a linear[n, k, d]q code with a certain relation between the
parametersn, k, d, q (see Proposition 12). Moreover, Varshamov [13] suggests a
greedy procedure of constructing a parity-check matrix for a code whose parameters
meet the bound. Gilbert [6] suggested a similar greedy algorithm that produces (not
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necessarily linear) codes whose parameters satisfy a similar relation. Asymptotically,
both bounds give the same function; therefore, it became common to join them into
the “Varshamov–Gilbert bound.”

To improve the Varshamov–Gilbert bound asymptotically is a notoriously difficult
task [11]. However, for any small values ofn, k, d, q, the best codes that we know are
usually better than this bound. Therefore, the question whether better nonasymptotic
bounds are possible seems to be a natural one. In Section 2, we introduce a graph on
the standard array of the code and relate its parameters to those of the code. Simple
estimates on the number of connected components of the graph lead to improvements
of the Varshamov–Gilbert bound given in Propositions 10 and 14 [7], Proposition 15
and Corollary 21 [4].

2. The Varshamov graph

Definition 1. The codeC is said to bemaximalif it cannot be obtained by shortening
an[n + 1, k + 1, d]q-code.

The following is a useful characterization of maximal codes.

Proposition 2. The codeC is maximal if and only if its covering radiusρ(C) does
not exceedd − 2.

Proof. If x ∈ Fn
q has distance> d − 1 toC, then the codeC′ spanned by(x, 1) and

{(c, 0) | c ∈ C} has the parameters[n + 1, k + 1, d]q, and shorteningC′ with respect
to the last coordinate position givesC. Conversely, ifC is obtained by shortening an
[n + 1, k + 1, d]q-codeC′, then any word inC′ which is nonzero in the shortening
position yields a vectorx ∈ Fn

q at distance> d − 1 fromC. �

So an[n, k, d]q -codeC with ρ(C) > d − 2 is not maximal. The following propo-
sition, a generalization of a result by Elia [5], extends this observation to codes with
arbitrary covering radius. The proof is completely analogous to that of the preceding
proposition.

Proposition 3. An [n, k, d]q -codeC with ρ(C) > α, α < d, can be extended to an
[n + d − α − 1, k + 1, d]q -code.

Let C be an[n, k, d]q -code.

Definition 4. The undirected graph with the vertex set

Vα := {x | x ∈ Fn
q and wt(x) 6 α}
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and the edge set

Eα := {{a, b} | a, b ∈ Vα anda − b ∈ C \ {0}}
is denoted byGα(C). The graphG(C) := Gd−2(C) is called the Varshamov graph
of C.

Obviously, the number of vertices inGα is equal to

|Vα| =
α∑

i=0

(q − 1)i
(

n

i

)
.

The number of edges will turn out to be a function of the weight distribution
(Ai(C))i=0,1,...,n of C.

Let x, y ∈ Fn
q be any two vectors withd(x, y) = w. Then the integers

pw
i,j := |{z ∈ Fn

q | d(x, z) = i andd(y, z) = j }| (1)

are known to be independent of the choice ofx andy. They are the so-calledin-
tersection numbersof the Hamming schemeH(n, q). Sometimes thepw

i,j are also
called thelinearization coefficientsof the Hamming scheme (cf. Remark 6). See [3],
[9, Chapter 21] or [8, Chapter 30] for a detailed description of the Hamming scheme
and other association schemes. Finally, the numberspw

i,j arise naturally in estimating
the error probability of bounded distance decoding on theq-ary symmetric channel
[1].

In the sequel we need an explicit formula for thepw
i,j .

Proposition 5 [1].

pw
i,j =

bi+j−w/2c∑
δ=0

(q − 2)i+j−w−2δ(q − 1)δ
(

w

j − δ

)

×
(

j − δ

w − i + δ

)(
n − w

δ

)
. (2)

For q = 2, this reduces to

pw
i,j =




0 if i + j − w is odd,

(
w

(w + i − j)/2

) (
n − w

(i + j − w)/2

)
if i + j − w is even.

Proof. In (1), we may assume thatx = 0 and wt(y) = w. Sopw
i,j counts the number

of z with wt(z) = i and wt(z − y) = j. Put

α := |{u | zu = yu, zu /= 0}|,
β := |{u | zu /= yu, zu /= 0, yu /= 0}|,
γ := |{u | zu = 0, yu /= 0}|,
δ := |{u | zu /= 0, yu = 0}|.
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Then

pw
i,j =

∑
(q − 2)β(q − 1)δ

(
w

α

) (
w − α

γ

)(
n − w

δ

)
, (3)

where the sum is taken over all nonnegative integer solutions of the system


w = α + β + γ,

i = α + β + δ,

j = β + γ + δ.

Solve forα, β andγ , and substitute in (3 ). �

Remark 6. Another formula forpw
i,j is

pw
i,j = q−n

n∑
u=0

Ki(u)Kj (u)Ku(w)

with

Kx(y) :=
x∑

m=0

(−1)m(q − 1)x−m

(
y

m

) (
n − y

x − m

)
.

TheKx(y) are polynomials of degreex in y, the so-called Krawtchouk polynomials.
Again, we refer to the relevant sections of [3,8,9].

Proposition 7. The size of the edge setEα of Gα(C) is equal to

1

2

2α∑
w=d

Aw(C)

α∑
i,j=0

pw
i,j .

A more explicit formula in the binary case is

|Eα| = 1

2

2α∑
w=d

Aw(C)

2α−w∑
v=0

bv/2c∑
u=0

(
w

α + u − v

) (
n − w

u

)
.

Proof. If c ∈ C is a codeword of weightw > 0, then the set

Xc := {{a, b} | a, b ∈ Vα anda − b = c}
has size

∑α
i,j=0 pw

i,j or 1
2

∑α
i,j=0 pw

i,j , depending on whetherq is odd or even. By
definition,Eα is equal to⋃

c∈C\{o}
Xc.

Now observe thatXc = X−c and thatXc ∩ Xc′ = ∅ if c /= ±c′. �

The graphGα(C) has a very simple structure: its components are complete graphs
whose vertices are the intersections ofVα with the cosets of weight6 α of C. Let
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cα(C) be the number of components ofGα(C). It is also the size of the largest co-
clique in G. Applying Turán’s theorem ([10] or [12]) we get a relation betweencα

andEα .

Proposition 8. If cα 6 K, then

Eα >
⌊

Vα

K

⌋
Vα − 1

2

⌊
Vα

K

⌋ (⌊
Vα

K

⌋
+ 1

)
K.

Hence the integer

min

{
K | Eα >

⌊
Vα

K

⌋
Vα − 1

2

⌊
Vα

K

⌋ (⌊
Vα

K

⌋
+ 1

)
K

}

is a lower bound forcα.

Another useful invariant of the graphGα(C) is µα(C), the size of its largest com-
ponent (i.e. clique). Turán’s theorem for the complementary graphGα yields the
following lower bound forµα(C).

Proposition 9. If µα(C) 6 M, then

Eα 6
(

Vα

2

)
−

⌊
Vα

M

⌋
Vα + 1

2

⌊
Vα

M

⌋ (⌊
Vα

M

⌋
+ 1

)
M.

Hence

min

{
M | Eα 6

(
Vα

2

)
−

⌊
Vα

M

⌋
Vα + 1

2

⌊
Vα

M

⌋ (⌊
Vα

M

⌋
+ 1

)
M

}

is a lower bound forµα.

However, the next proposition shows that good upper bounds forµ(C) :=
µd−2(C) are much more useful. What we really need are upper bounds for the
number of words of weight up tod − 2 in the cosets ofC.

Proposition 10. An [n, k, d]q -codeC with

d−2∑
i=0

(q − 1)i
(

n

i

)
− 2

|E(C)|
µ(C)

< qn−k

is not maximal.

Proof. Consider the Varshamov graphG(C). For i = 1, 2, . . . , µ := µ(C), let νi

denote the number of components of sizei. Then

c(C) =
µ∑

i=1

νi,
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|V | =
µ∑

i=1

iνi,

|E| =
µ∑

i=1

(
i

2

)
νi .

Hencec(C) is upperbounded by the maximal value of
∑µ

i=1 xi under the con-
straints

µ∑
i=1

ixi = |V | ,
µ∑

i=1

(
i

2

)
xi = |E| ,

xi > 0, 1 6 i 6 µ.

We claim that

xµ = |E|(
µ

2

) , x1 = |V | − µxµ, xi = 0 otherwise

is an optimal solution. So the maximal value of
∑µ

i=1 xi is equal to

|V | − µ
|E|(
µ

2

) + |E|(
µ

2

) = |V | − 2
|E|
µ

.

Indeed, the dual linear program

|V | z1 + |E| z2 → min

iz1 +
(

i

2

)
z2 > 0, 1 6 i 6 µ,

z1, z2≷0

has a feasible solution

z1 = 1, z2 = − 2

µ

that produces the same value of the objective function.�

Remark 11. Following the idea of Proposition 3, we can generalize this result:
An [n, k, d]q -codeC with

α∑
i=0

(q − 1)i
(

n

i

)
− 2

|Eα(C)|
µα(C)

< qn−k

for someα 6 d − 1 can be extended to an[n + d − α − 1, k + 1, d]q -code.
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3. Varshamov–Gilbert type results

The numbercα(C) of components ofGα(C) cannot exceedqn−k, the total number
of cosets. Obviously,C is maximal if and only if the number of componentsc(C) of
the Varshamov graphG(C) := Gd−2(C) equalsqn−k.

Our goal is to find upper bounds onc(C). For if such an upper bound is smaller
thenqn−k, thenC is not maximal. The simplest upper bound is

(C) 6 |V | =
d−2∑
i=0

(q − 1)i
(

n

i

)
,

which immediately gives the classical Varshamov–Gilbert bound.

Proposition 12[13]. If

d−2∑
i=0

(q − 1)i
(

n

i

)
< qn−k,

then no[n, k, d]q -code is maximal.

Remark 13. By Proposition 3, we can generalize this:
If

α∑
i=0

(q − 1)i
(

n

i

)
< qn−k

for someα 6 d − 1, then any[n, k, d]q -code can be extended to an[n + d − α −
1, k + 1, d]q-code.

Forα = d − 3 this reduces to Elia’s result [5].

A general approach to find Varshamov–Gilbert type bounds would be to estimate
the number of components of specific subgraphs of the Varshamov graph. We discuss
two examples, basically due to [4,7], respectively.

The first idea to consider aforest Fin G. If F ′ ⊇ F is a spanning forest ofG, then

c(C) = |V | − |E(F ′)| 6 |V | − |E(F)|. (4)

So if we can find a forest inG with many edges, we have a good upper bound for
c(C).

An interesting example was found by Hashim. Putt := b d−1
2 c.

Proposition 14[7]. An [n, k, d]q-codeC with

d−2+t∑
w=d

t∑
i=w−d+2

(
w

i

)
Aw(C) >

d−2∑
i=0

(q − 1)i
(

n

i

)
s − qn−k

is not maximal.
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Proof. Consider the two disjoint subsets

X1 := {a | 2 6 wt(a) 6 t}, X2 := {b | t < wt(b) 6 d − 2}
of Fn

q . The bipartite graph on{X1,X2} with the edge set

E′ := {{a, b} | a − b ∈ C and suppa ∩ suppb = ∅}
is a forest inG because all its vertices inX2 have degree6 1. Indeed, if{a, b}, {a′, b}
∈ E′, then(a − b) − (a′ − b) = a − a′ ∈ C and wt(a − a′) 6 2t < d, whencea =
a′. Each word of weightw in C contributes

∑t
i=w−d+2

(
w

i

)
to E′. Hence

|E′| =
d−2+t∑
w=d

t∑
i=w−d+2

(
w

i

)
Aw(C)

and by (4),

c(C) 6
d−2∑
i=0

(q − 1)i
(

n

i

)
−

d−2+t∑
w=d

t∑
i=w−d+2

(
w

i

)
Aw(C). �

Hashim’s result admits a simple improvement.

Proposition 15. An [n, k, d]q -codeC with

d−2+t∑
w=d

t∑
i=w−d+2

d−2∑
j=w−i

pw
i,jAw(C) >

d−2∑
i=0

(q − 1)i
(

n

i

)
− qn−k

is not maximal.

Proof. Now consider the bipartite graph with the same vertex setsX1,X2 as in the
preceding proposition, but with edge set

E′′ := {{a, b} | a ∈ X1, b ∈ X2 anda − b ∈ C}.
By the same reasoning, this bipartite graph is seen to be a forest. Its number of

edges is

d−2+t∑
w=d

t∑
i=w−d+2

d−2∑
j=w−i

pw
i,jAw(C). (5)

Again we apply (4). �

Remark 16. In thebinarycase, Expression (5) takes the form

t−2∑
δ=0

t−2−δ∑
v=0

bv/2c∑
u=0

(
d + δ

d − 2 + u − v

) (
n − d − δ

u

)
Ad+δ(C). (6)
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Remark 17. Proposition 3 enables us to generalize Proposition 15 in the following
way:
An [n, k, d]q -codeC with

α+t∑
w=d

t∑
i=w−α

α∑
j=w−i

pw
i,jAw(C) >

α∑
i=0

(q − 1)i
(

n

i

)
− qn−k

for someα 6 d − 1 can be extended to an[n + d − α − 1, k + 1, d]q -code.

Now we come to the second idea. First we fix some notation. LetT be a subset
of the coordinate index set{1, 2, . . . , n}. The projectionof an x ∈ Fn

q to T is de-
noted byxT and the code obtained byC throughshorteningwith respect toT by

CT . (HereT denotes the complement ofT in {1, 2, . . . , n}.) We definesα(C) :=
cα(C) − cα−1(C). Note that

sα(C) 6 (q − 1)α
(

n

α

)
(7)

with equality forα 6 t = b d−1
2 c.

We need two obvious lemmas.

Lemma 18. If C := C1 ⊕ C2, then

cα(C) =
α∑

j=0

sj (C1)cα−j (C2).

Lemma 19. If D ⊆ C, thencα(D) > cα(C).

The following relation between the values ofcα for C, CT and CT creates a
possibility of induction.

Proposition 20.

cα(C) 6
min(α,m)∑

j=0

sj (C
T )cα−j

(
CT

)
. (8)

Proof. Note thatCT ⊕ CT is a subcode ofC and apply the preceding lemmas. In
fact, the right-hand side counts the components of the subgraphG′ of G(C) with the
same vertex setV, but with the edge set

E′ :=
{
{a, b} | aT − bT ∈ CT ∧ aT − bT ∈ CT

}
. �
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Corollary 21 [4]. From (7) we infer that

cα(C) 6
min(α,m)∑

j=0

(q − 1)j
(

n

j

)
cα−j

(
CT

)
.

We can embed any[n, k, d]q -codeC in an [n + 1, k, d]q -codeC′ by adding one
zero coordinate to each codeword. Let us call this constructiontrivial lengthening.
Corollary 21 withm = 1, immediately gives the bound

cα(C′) 6 cα(C) + (q − 1)cα−1(C). (9)

If an [n, k, d]q -codeC is not maximal, we can embed it in an[n + 1, k + 1, d]q-
codeC′. Let us call this aVarshamov step. The component sizescα(C′) of the new
codeC′ satisfy the bounds

cα(C′) 6 cα(C) + (q − 1)cα−1(C). (10)

Indeed, letn + 1 be the extra coordinate index inC′. We can split the vertex set
Vα(C′) of C′ into theq subsets

Wi := {u ∈ Vα(C′) | un+1 = i}.
Then the restriction ofGα(C′) to Wi is isomorphic toGα(C) if i = 0, and isomor-
phic toGα−1(C) if i /= 0.

Now Edel’s idea in [4] is as follows. Start with an[ni, ki, d]q -codeC0 and build
a sequence of[ni, ki, d]q -codesCi , i = 1, 2, . . . , of increasing length by taking
Varshamov steps when our information oncd−2(Ci ) tells us that this possible. If
not, apply trivial lengthening until a Varshamov step again is possible. At each step,
estimate thecα(Ci ) using (9), (10) and the trivial boundcα(Ci ) 6 qni−ki . By this
simple method, Edel improved quite a few lower bounds in Brouwer’s tables [2] on
bounds for optimal linear ternary and quaternary linear codes. Without doubt, the
method will work for larger alphabets as well.
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