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Abstract—Minimum distances, distance distributions, and error expo-
nents on a binary-symmetric channel (BSC) are given for typical codes from
Shannon’s random code ensemble and for typical codes from a random
linear code ensemble. A typical random code of length and rate is
shown to have minimum distance (2 ), where ( ) is the
Gilbert–Varshamov (GV) relative distance at rate , whereas a typical
linear code (TLC) has minimum distance ( ). Consequently, a
TLC has a better error exponent on a BSC at low rates, namely, the ex-
purgated error exponent.

Index Terms—Distance distributions, exponential error bounds, min-
imum distance, random codes, random linear codes, typical linear codes,
typical random codes.

I. INTRODUCTION

The performance of random codes is one of the earliest topics in
information theory, dating back to Shannon’s random code ensemble
(RCE). Our interest in this topic has been reawakened recently by the
development of “random-like” capacity-approaching codes.

In this correspondence, we consider binary codes from Shannon’s
random code ensemble and also from a random linear code ensemble
(LCE), used over a binary-symmetric channel (BSC). We derive the
minimum distance, distance distribution, and error exponent of a typ-
ical random code (TRC) from the RCE, and of a typical linear code
(TLC) from the LCE, and also averages over these ensembles. Most of
these results were previously known and have appeared in the literature
in some form or another.

Many of our results are stated in terms of the relative Gilbert–Var-
shamov (GV) distance�GV(R), which for 0 � R � 1 is defined as
the root� � 1

2
of the equationH(�) = 1 � R, whereH(�) is the

binary entropy function. Thus,�GV(0) = 1

2
, and�GV(R) decreases

monotonically to0 asR ! 1. WhenR > 1, we define�GV(R) = 0.
It is well known that for0 � R � 1, asN !1 there exists a binary
code of lengthN , rateR, and minimum distanceN�GV(R). More-
over,�GV(R) is the best such asymptotic lower bound known.

It is known that, with probability approaching1 asN ! 1, the
minimum distance of a binary linear code of lengthN and rateR drawn
from a standard random LCE is at leastN�GV(R). In other words, the
minimum distance of a TLC meets the GV bound. The earliest result
of this type that we know of appears in [5, Sec. 2.1].

We show that, with probability approaching1 asN !1, the min-
imum distance of a binary code of lengthN and rateR from Shannon’s
RCE is approximatelyN�GV(2R). Thus, a TRC has poorer minimum
distance than a TLC for0 < R < 1. Moreover, the minimum distance
of a TRC is positive only whenR <

1

2
.
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Fig. 1. Error exponentsE (R),E (R), andE (R) for a BSC with
p = 0:007.

It is well known that on a BSC with crossover probabilityp, the
channel capacity isC = 1 � H(p). The random coding exponent
Er(R) is positive for0 � R < C and given by [5], [6]

Er(R) =
R0 �R; 0 � R � Rcrit

Esp(R); Rcrit � R < C

where the pairwise exponentR0 (sometimes called the “cutoff rate”),
the critical rateRcrit, and the sphere-packing exponentEsp(R)will be
defined later. Moreover, Gallager [7] has shown that the random coding
exponent is the true error exponent for the RCE on the BSC (and, more
generally, on any discrete memoryless channel).

The random coding exponent may be improved at low rates by a
process called “expurgation,” which yields an “expurgated exponent”
Ex(R) that exceedsEr(R) for 0 � R < Rx, whereEx(R) andRx

will also be defined later [6]. Many have conjectured (e.g., [9]) that the
combination of the expurgated and the random coding exponents is the
best possible error exponent—i.e., that the expurgated/random coding
exponent is the “reliability function” of the BSC.

We argue that the relative minimum distance�GV(R) and complete
distance distributionNTLC(d); d = 1; 2; . . .N of a TLC imply
that on a BSC its true error exponentETLC(R) is equal to the
expurgated/random coding exponent; i.e., TLCs achieve the best lower
bound on error exponent at all rates, without expurgation.

Similarly, we find the complete distance distributionNTRC(d)
of a TRC, and from this distribution derive the true error exponent
ETRC(R) of a TRC on a BSC. (All of the error exponents that we give
are the true exponents, not merely bounds.)ETRC(R) lies between the
random coding exponentEr(R) and the expurgated exponentEx(R);
it is equal toEr(R) for R � Rx=2, and is equal toEx(0) atR = 0.

Fig. 1 showsEr(R); Ex(R) and ETRC(R) for a BSC with
crossover probabilityp = 0:007, which is representative of the
general case.
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Finally, we derive the typical number of channel errors and typical
distance from the transmitted codeword to the decoded codeword in
typical decoding error events. We observe that errors are typicallynot
made to minimum-distance codewords whenR > Rx, even though
pairwise analysis and the union bound give the true error exponent
whenR � Rcrit.

II. RANDOM CODE ENSEMBLES AND TYPICAL CODES

In this section, we introduce the appropriate ensembles of random
codes for a BSC. We then discuss the properties of the typical random
code (TRC) from the random code ensemble (RCE), and the typical
linear code (TLC) from the linear code ensemble (LCE). In particular,
we note that whereas the distance distributions of the RCE or LCE and
the TRC or TLC are exponentially identical for distances above the GV
distance, they differ radically for small distances.

A. Preliminaries

We will be concerned with code parameters (such as the error prob-
ability and distance distribution) that behave as exponential functions
of the code lengthN asN ! 1. For any two functionsa(N); b(N)
we writea(N)

:
= b(N) if

lim
N!1

N�1 log(a(N)=b(N)) = 0:

We say that the exponent ofa(N) is jEaj if a(N)
:
= 2NE .

As usual, for any two nonnegative functions the expressionf(N) =

(g(N)) means that there exist positive constantsN0 andc such that
f(N) � cg(N) for everyN � N0.

From the viewpoint of large-deviation theory, it is natural to express
exponents in terms of the binary Kullback–Leibler (KL) divergence
D(pkq), defined as

D(pkq) = p log
p

q
+ (1� p) log

1� p

1� q
:

All logarithms will be to the base2. The KL divergenceD(pkq) is a
strictly convex function ofp andq that has a minimum of0 when and
only whenp = q. Note that

D p
1

2
= 1�H(p)

whereH(p) = �p log p � (1 � p) log(1 � p) is the binary entropy
function.

B. Random Binary Codes

A binary codeC of lengthN and rateR bits per symbol is a (multi)set
of M = 2NR binaryN -tuplesxxxi; 0 � i � M � 1.

Because of the symmetry of a BSC, the appropriate RCE is the
equiprobable ensemble in which each of theM bits in each of theN
codewords is chosen independently at random with equal probability of
being a0 or a1. Equivalently, each of the2NM possible binary codes
of lengthN and rateR in the RCE is assigned probability2�NM .

In this case, the probability that a given random codewordxxxi of
lengthN will be at Hamming distanced = N� from an arbitrary bi-
naryN -tuplebbb is independent ofbbb and equals

PrfdH(xxxi; bbb) = dg =
N

d

1

2

d
1

2

N�d

:
=2�N(1�H(�)) = 2�ND(�k ):

Under this RCE, two distancesdH(xxxi; xxxj) anddH(xxxi ; xxxj ) are in-
dependent random variables unlessfi; jg = fi0; j0g or fi; jg =
fj0; i0g.

Consider the number of unordered pairs of codewords(xxxi; xxxj) with
i 6= j in C at distanced apart

SC(d) =

M�1

i=0

i�1

j=0

�fdH(xxxi; xxxj) = dg

where�fdH(xxxi; xxxj) = dg is the indicator of the event in the brackets;
i.e.,�fdH(xxxi; xxxj) = dg is equal to1 if dH(xxxi; xxxj) = d and to0 oth-
erwise. ThenSC(d) is a sum of M

2
pairwise-independent, identically

distributed random variables�fdH(xxxi; xxxj) = dg, each with mean

� = PrfdH(xxxi; xxxj) = dg

and variance

Var[�] = �2 � ( �)2 = �� ( �)2 < �

where we have observed that�2 = � since� is af0; 1g-valued func-
tion. Thus, we have

SC(d) =
M

2
�

:
= 2N(2R�1+H(�))

and, since the variance of a sum of uncorrelated random variables is
equal to the sum of their variances

Var(SC(d)) =
M

2
Var(�) < SC(d):

The minimum distancedmin(C) of the code is equal to the minimum
d such thatSC(d) 6= 0. The following theorem shows that the rela-
tive minimum distance of a random code is highly likely to be near
�GV(2R) asN !1, and moreover, that the exponent of the distance
distribution is highly likely to be near that of the average distribution
wherever the exponent is positive.

Theorem 2.1:For 0 � R < 1
2

and any" > 0, the probability that
a code of lengthN and rateR from the RCE has relative minimum
distance less than�GV(2R)�" goes to zero exponentially asN !1.
For 0 � R < 1, if d = N� is such that

�GV(2R) + " � � � 1� �GV(2R)� "

then the probability that the number of codeword pairs at distanced
satisfiesSC(d)

:
= 2N(2R�1+H(�)) goes to one asN ! 1.

Proof: For a given value of the code rateR, choosed so that
d

N
! � � �GV(2R)� ". Then

PrfSC(d) � 1g � SC(d)
:
= 2�N(1�H(�)�2R) ! 0:

In other words, with probability differing from1 by an exponentially
falling quantity there will be no pairs at distanced. Conversely, if
�GV(2R)+ " < � < 1� �GV(2R)� ", then1�H(�) < 2R, and the
average number of pairsSC(d) at distanced is exponentially large.
By the Chebyshev inequality, for any� > 0, we have

Pr jSC(d)� SC(d)j �
M

2
� �

�
M

2
�2

:

If we choose�
:
= 2�N(1�H(�)+�) < � for any� > 0, then we

obtain

Pr jSC(d)� SC(d)j >
M

2
�

�
2 �

M(M � 1)�2
:
= 2�N(2R�1+H(�)�2�): (2.1)
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Fig. 2. Exponents of average distance distributionsN (d) andN (d)
for the RCE and the random LCE, and of distance distributionsN (d) and
N (d) for a TRC and a TLC.

The exponent on the right-hand side can be made positive by
choosing� small enough. This establishes the fact thatSC(d)

:
=

2N(2R�1+H(�)) for the chosen value ofd with probability tending to
one asN!1:

We can express this result succinctly as follows.

• With probability1� 2�
(N) asN !1, the relative minimum
distance of a code drawn from the RCE will be approximately
�GV(2R) for 0 � R � 1

2
and0 for 1

2
� R � 1.

Define thedistance distributionof C as

NC(d) =
2

M
SC(d) (d = 0; 1; . . . ; N):

Thus,NC(d) is the average over theM codewordsxxxi of the number of
other codewordsxxxj ; j 6= i, at Hamming distanced from xxxi.

We have shown that the complete average distance distribution over
the RCE is

NRCE(d) =
2

M
SC(d)

:
=2N(R�1+H(�)) (d = 0; 1; . . . ; N): (2.2)

Since the probability in (2.1) tends to zero exponentially and since there
are onlyN +1 different values of the distanced, Theorem 2.1 implies
that for almost all codes in the RCENC(d)

:
= NRCE(d) for all d

such that�GV(2R) + " � � � 1 � �GV(2R) � ": However, for
� � �GV(2R)�"or� � 1��GV(2R)+", the TRC hasNTRC(d) = 0.
In short, the TRC has distance distribution

NTRC(d)

:
= 2N(R�1+H(�)); 1

2
� � � 1

2
� �GV(2R)� "

= 0; 1
2
� � � 1

2
� �GV(2R) + ":

The exponents ofNRCE(d) andNTRC(d) are plotted in Fig. 2 as
functions of the continuous variable�. The exponentR � 1 + H(�)
of the RCE is nonnegative forj 1

2
� �j � 1

2
� �GV(2R), continuous,

strictly concave and symmetrical about� = 1
2
. The exponent for the

TRC is equal to the RCE exponent forj 1
2
� �j � 1

2
� �GV(2R)� ";

however, for� # �GV(2R) or � " 1� �GV(2R) it goes to�1.

C. Random Binary Linear Codes

A binary linear codeC of lengthN and rateK=N is a (multi)set of
M = 2K binaryN -tuples that is generated byK N -tuplesgggj ; 1 �
k � K; i.e.,C is the set of all binary linear combinations

xxx(uuu) =
k

ukgggk

whereuuu is an arbitrary binaryK-tuple.
We will consider the random LCE in which each of theN bits in

each of theK generators is chosen independently at random with equal
probability of being a0 or a1. Equivalently, each of the2NK possible
K � N matricesG = fgggk; 1 � k � Kg is assigned probability
2�NK . An exponentially small fraction of the resulting codes will have

dimension less thanK (and thus,d = 0), but this will not affect our
development. We define the code rate asR = K=N bits per symbol.

(In [5], Gallager considers a similar ensemble of linear codes defined
by the2N(N�K) possibleN � (N � K) parity-check matrices, and
derives an asymptotic lower bound�GV(R) on the relative minimum
distance of a TLC.)

In a linear code, the distribution of distancesfdH(xxxi; xxxj); j 6= ig
from any given codewordxxxi is independent ofi. The average distance
distribution of a linear codeC therefore reduces to

NC(d)=
j 6=i

�fdH(xxxi; xxxj)=dg (d=1; 2; . . . ; N) (2.3)

wherexxxi is an arbitrary codeword. Typically,xxxi is taken as the all-zero
codeword000 = xxx(000).

In this ensemble, iffuuukg is a set ofK0 � K linearly independent
informationK-tuples, then theK 0 corresponding codewordsfxxx(uuuk)g
are equally likely to be any of the2NK possible sets ofK 0 binary
N -tuples. In other words, the probability distribution over any such set
is the same as that in the RCE. In particular, theK 0 codewordsfxxx(uuuk)g
are statistically independent.

Therefore, if (uuuj ; uuuk) is any pair of distinct nonzeroK-tuples,
then the corresponding codewords(xxx(uuuj); xxx(uuuk)) are a pair of
independent random binaryN -tuples. It follows that two distinct
distancesdH(xxxi; xxxj) anddH(xxxi; xxxk) from a given codewordxxxi (e.g.,
the all-zero codeword000) are pairwise-independent and distributed as
in the RCE. In particular

PrfdH(xxxi; xxxj) = N�g
:
= 2�N(1�H(�)):

For anyd = N�, the quantityNC(d) in (2.3) is thus a sum of
M � 1

:
= 2NR pairwise-independent, identically distributed random

variables with mean �
:
= 2�N(1�H(�)) and varianceVar(�) =

� � ( �)2. Its mean value is thus again equal to

NLCE(d)
:
= 2N(R�1+H(�)) (2.4)

the same as for the RCE. Moreover, its variance for anyd is upper-
bounded by its mean.

We can now repeat the argument of Theorem 2.1 and arrive at anal-
ogous conclusions for the LCE. Namely, if the exponentR�1+H(�)
of (2.4) is greater than0, then with high probability there will be expo-
nentially many codewords at distanced = N� from a given codeword.
On the other hand, if1�H(�) > R, then the average number of code-
words at distanced from a given codeword will be exponentially small,
and with probability approaching1 there will be no such codewords at
distanced. In short, the relative minimum distance of a code chosen at
random from the LCE will be, with probability1� 2�
(N), approxi-
mately equal to the GV relative distance�GV(R).

The typical random linear code from this ensemble has the distance
distributionNTLC(d); d = 1; 2; . . . ; N , where

NTLC(d)

:
= 2N(R�1+H(�)); 1

2
� � � 1

2
� �GV(R)� "

= 0; 1
2
� � � 1

2
� �GV(R) + ":

The exponent ofNTLC(d) is also plotted in Fig. 2 as a function of
a continuous variable�. It is equal to the other three exponents for
�GV(R) + " � � � 1 � �GV(R) � "; however, for� # �GV(R)
or � " 1 � �GV(R) it goes to�1.

In summary, the typical minimum distance in the LCE is better than
that in the RCE because it is the minimum of onlyM � 1 pairwise-
independent distances, whereas in the RCE it is the minimum ofM

2

pairwise-independent distances. In fact, the typical random linear code
has a minimum distance equal to the GV distance, which many people
(e.g., [9]) have conjectured to be the best possible asymptotic minimum
distance of binary codes.
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III. ERROREXPONENTS FOR THEBSC

Now, using the distance distributionsNRCE, NTRC, NLCE, and
NTLC, we will find the true error exponentsERCE(R), ETRC(R),
ELCE(R), andETLC(R) for each of these ensembles and typical
codes. We will find that the difference in distance distribution expo-
nents illustrated in Fig. 2 is reflected in a difference in error exponents
at low rates.

The error exponent of a family of codesC of rateR and increasing
lengthsN is defined as

EC(R) = lim
N!1

�
1

N
log Pr(E)

wherePr(E) is the average probability of decoding error of a max-
imum-likelihood decoder, which is assumed to decrease exponentially
with N , and where the limit is assumed to exist.

For brevity, we will take the following facts as given.

• Above a certain rate calledRcrit, the RCE and in fact all of these
ensembles and codes achieve a certain error exponent called the
sphere-packing exponentEsp(R), which is known to be the best
possible error exponent for ratesR � Rcrit.

• For 0 � R � Rcrit, a union bound analysis as below yields
the true error exponent for the RCE, and in fact for all of these
ensembles and codes.

The last fact is proved for the RCE in [7], and can be deduced for
the TRC from [4]. Proofs of this fact for the LCE and the TLC are
well known in the information theory community, although perhaps
not published explicitly. This fact is also closely related to the Bas-
salygo–Elias bound on codes [2], and it explains why the Elias distance
appears in Section III-A as the typical weight of incorrect codewords
atR = Rcrit.

Given two codewords(xxxi; xxxj) at Hamming distanced =
dH(xxxi; xxxj), if xxxi is transmitted over a BSC with crossover probability
p, the probability that the received wordyyy will be at least as close to
xxxj as toxxxi is

Prfxxxi ! xxxjg
:
=

d

dd=2e
pdd=2e(1� p)bd=2c

:
= 2�dD( kp)

where

D
1

2
p =

1

2
log

1
2

p
+

1

2
log

1
2

1� p
= � log 2 p(1� p) :

The union bound estimate ofPr(E) is simply the sum of all these pair-
wise error probabilities; i.e., if a code has average distance distribution
N (d), then the union bound estimate is

Pr
UBE

(E) =
1

M
i j 6=i

Prfxxxi ! xxxjg

:
=

N

d=1

N (d)2�dD( kp):

For instance, let us substitute here the distance distribution (2.2) of
the RCE. AsN ! 1, the sum will be dominated by the minimum of
theN+1 exponentsD(�k 1

2
)+�D(1

2
kp)�R for �=d=N; 0�d�N .

Switching to a continuous variable�, we observe thatD(�k 1
2
) is a

strictly convex function of� and�D( 1
2
kp) is linear; thus, the exponent

has a unique minimum. Setting the derivative of the exponent to zero,
we find that its minimum occurs at

�crit(p) =
2 p(1� p)

1 + 2 p(1� p)
:

Moreover,

D �crit(p)
1

2
+ �crit(p)D

1

2
p

= � log
1

2
1 + 2 p(1� p) = R0

whereR0 is the pairwise error exponent of a BSC with crossover prob-
ability p. Thus, for0 � R � Rcrit, the true error exponent of the RCE
is

ERCE(R) = R0 �R

a straight line of slope�1 which is equal toR0 atR = 0.
Since the LCE has the same average distance distribution as the RCE,

it has the same error exponent.
On the other hand, for a TRC with minimum distance�GV(2R), the

exponent of the union boundPrUBE(E) has the form

min
��� (2R)

D �
1

2
+ �D

1

2
p �R :

This minimum occurs for� = �crit(p) if �crit(p) � �GV(2R); oth-
erwise, because the exponent is monotone increasing in�, it will be
dominated by the term with� = �GV(2R). Thus, we obtain the fol-
lowing theorem.

Theorem 3.1: For0 � R � Rcrit, the true error exponent of a TRC
is

ETRC(R) =
Ey(R); 0 � R � Rx=2

R0 �R; Rx=2 � R � Rcrit

(3.1)

whereRx is the rate for which�crit(p) = �GV(Rx), and

Ey(R) = D �GV(2R)
1

2
+ �GV(2R)D

1

2
p �R:

Similarly, for a typical random linear code with minimum distance
�GV(R) we have the following.

Theorem 3.2:For 0 � R � Rcrit, the true error exponent of a
typical random linear code is

ETLC(R) =
Ex(R); 0 � R � Rx

R0 �R; Rx � R � Rcrit

(3.2)

whereRx is defined in Theorem 3.1 and

Ex(R) =D �GV(R)
1

2
+ �GV(R)D

1

2
p �R

=��GV(R) log 2 p(1� p) :

We conclude that

• with probability1�2�
(N), the error exponent of a random code
(resp., random linear code) is given by (3.1) (resp., (3.2)).

The functionEx(R) is the usual “expurgated exponent” for a BSC.
Since�GV(0) = 1

2
, atR = 0 we have

Ex(0) = Ey(0) = �
1

2
log 2 p(1� p) :
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Fig. 3. Typical relative distances, given a decoding error, between transmitted
(correct) codewordxxx, received wordyyy, and decoded codewordxxx .

Note thatEy(R)may be written in terms of the expurgated exponent
Ex(R) as follows:

Ey(R) = Ex(2R) +R; 0 � R � Rx=2:

Fig. 1 illustrates the error exponentsERCE(R) = ELCE(R),
ETRC(R), andETLC(R). They coincide above the rateRx. The error
exponent of the TRC lies between the exponents of the RCE and the
TLC for rates0 < R < Rx=2; it equals the TLC exponent atR = 0
and the RCE exponent atR = Rx=2.

A. Geometry of Typical Errors

The preceding calculation also yields the asymptotic values of (rel-
ative) distances between the transmitted codewordxxx, incorrect code-
wordxxx0, and the received vectoryyy in a typical error event. Let�typ =
�typ(R) denote the typical value of the distance(1=n) dH(xxx; xxx0) asN
grows. Likewise, let�typ = �typ(R) be the typical (relative) number of
BSC channel errors. The relative distances�typ and�typ are illustrated
in Fig. 3.

We observe that�typ = �crit(p) for the RCE, the LCE, the TRC at
ratesRx=2 � R � Rcrit, and the TRC at ratesRx � R � Rcrit,
whereas�typ = �GV(2R) for the TRC at rates0 � R � Rx=2 and
�typ = �GV(R) for the TLC at rates0 � R � Rx.

When�typ = �crit(p), we have

�typ = �crit(p) =

p
pp

p+
p
1� p

:

In terms of �crit(p), the critical rateRcrit is the rate at which
�crit(p) = �GV(Rcrit) [6]. For Rcrit < R < C = 1 � H(p), the
decoding error probability is dominated by the probability that the
number of channel errors will exceedN�GV(R) < N�crit(p), in
which case with overwhelming probability there will be an exponen-
tially large number of incorrect codewords as close or closer to the
received word as to the correct codeword. In this rate interval, the
error exponent is therefore given byEsp(R) = D(�GV(R)kp), and
the typical number of channel errors is�typ = �GV(R). Since the
correct word and the decoded word are equally likely to be in any
direction from the received word and at distance�typ, the typical
distance between the correct and the decoded word is

�typ = 2�typ(1� �typ) = 2�GV(R)(1� �GV(R))

which is sometimes called the Elias distance.
The typical relative distances�typ and�typ are illustrated in Fig. 4

as a function ofR for both the TRC and the TLC, along with the GV
relative distance�GV(R), for a BSC withp = 0:05, which is represen-
tative of the general case.

B. Concluding Remarks

1) For all cases, for rates0 � R < Rcrit, the decoding error
probability is dominated by the probability that a single incor-
rect codeword is as close or closer to the received word as to
the correct (transmitted) codeword. However, even for a TLC
with relative minimum distance�GV(R), errors are typicallynot
made to minimum-distance codewords whenR > Rx. Rather,

Fig. 4. Typical relative distances� and� (cf. Fig. 3) as functions of code
rateR, for p = 0:05.

for Rx < R < Rcrit, errors are typically made to codewords at
distance�crit(p) > �GV(R).

2) ForRx � R � Rcrit, the typical distance�typ(R) = �crit(p) is
not a function ofR.

3) The typical random linear code not only achieves the GV
distance, as has been noted previously [5], but also, as a result,
it achieves the expurgated/random coding error exponent, which
many conjecture to be the best possible. Moreover, it achieves
this exponent without expurgation. In particular, the typical
random linear code retains the usual symmetry properties of
linear codes, which expurgated linear codes do not.

4) It is perhaps surprising that the typical random code is not
as good as the typical random linear code. We have not been
able to find this observation in the previous literature, although
we believe that it was well known to researchers at MIT, IPPI
(Moscow), and probably others.

5) It is perhaps also surprising that the TRC performs much better
than the average performance over the RCE, at least at low rates.
For ratesR < Rx=2, the average performance over the RCE
is dragged down by the performance of an exponentially small
number of atypical bad codes.

6) It is straightforward to generalize these results to codes over an
alphabet of arbitrary sizeq used over aq-ary symmetric channel.
Moreover, the derivation of error exponents for an arbitrary dis-
crete memoryless channel [3] is very similar to the argument of
Section III. For that derivation, one employs codes chosen ran-
domly with a uniform distribution from the set of all vectors of
a fixed type (composition). In particular, the general GV bound
and “distance distribution” of pairwise joint compositions pos-
sess the same properties as those discussed for the random en-
semble of all binary codes.
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More Results on the Weight Enumerator of Product Codes

Ludo M. G. M. Tolhuizen, Senior Member, IEEE

Abstract—We consider the product code of -ary linear codes with
minimum distances and . The words in of weight less than +
max( ) are characterized, and their number is expressed
in the number of low-weight words of the constituent codes. For binary
product codes, we give an upper bound on the number of words in of
weight less thanmin( ( + + 1), ( + + 1)) that is
met with equality if and are (extended) perfect codes.

Index Terms—Product codes, weight enumerator.

I. INTRODUCTION

If Cr andCc are codes over the same alphabet, the product code
Cp = Cc � Cr consists of all matrices with all rows in the row code
Cr and all columns in the column codeCc. We will restrict ourselves
to the case that bothCc andCr are linear codes over the fieldq, with
parameters[nc; kc; dc] and[nr; kr; dr], respectively. ThenCp is an
[ncnr; kckr; dcdr] code [1, Ch. 18, Sec. 2].

In this correspondence, we study weight enumerators of such
product codes. For large codes, determination of the weight enumer-
ator by enumeration of the codewords is computationally prohibitive.
We are interested in deriving information on the weight enumerator
of a product code from the weight enumerators of its—usually much
smaller—constituent codes.

In [2] and [3], closed expressions are obtained for the weight enu-
merator of product codes for which the component codes belong to

Manuscript received December 21, 2000; revised April 16, 2002. The ma-
terial in this correspondence was presented in part at the IEEE International
Symposium on Information Theory, Cambridge, MA, August 1998.

The author is with Philips Research Laboratories, 5656 AA Eindhoven, The
Netherlands (e-mail: ludo.tolhuizen@philips.com).

Communicated by J. Justesen, Associate Editor for Coding Theory.
Publisher Item Identifier 10.1109/TIT.2002.801476.

specific classes. In [4], [5], it was shown that the weight enumerator of
Cp is not determined by the weight enumerators ofCc andCr. More-
over, in this reference, the words inCp of weight less thandrdc +
max(dr; dc) were characterized, and the number of such codewords
was expressed in the number of low-weight words ofCc andCr.

In Section II, we extend the results from [4], [5]. We characterize the
words ofCp of weight less than

w(dr; dc) = drdc +max dr
dc

q
; dc

dr

q

where, as usual,dxe is the smallest integer larger than or equal tox,
and we express the number of such words in the number of low-weight
words of the constituent codes. We also characterize the words ofCp

of weight equal tow(dr; dc) for the special case whereq = 2 anddr
anddc both are odd. In both examples in [4], [5], the number of product
codewords of weight equal tow(dr; dc) differ for different constituent
codes with equal weight enumerator. As a consequence, the number of
words inCp of weight at leastw(dr; dc) in general cannot be derived
from the weight distributions of the constituent codes.

In Section III, we move on to slightly higher weights in binary
product codes. We obtain an upper bound on the number of product
codewords of each weightw less thanv(dr; dc), where

v(dr; dc) = min dr dc+
dc

2
+1 ; dc dr+

dr

2
+1 :

The upper bound is met with equality if the constituent codes are perfect
or extended perfect codes. In particular, we give explicit formulas for
the number of words of weight less than18 in the product of Hamming
codes, and of weight less than28 in the product of extended Hamming
codes.

II. L OW-WEIGHT WORDS IN PRODUCT CODES

In this section, we characterize the low-weight words of a product
code, and express their number in the number of low-weight words of
the component codes.

In order to fix the notation, letCc andCr be linear codes overq
with lengthsnc andnr , and minimum distancesdc anddr, respectively.
We define

w(dr; dc) = drdc +max dr
dc

q
; dc

dr

q
: (1)

In this section, we will characterize the words in the product codeCp =
Cc � Cr of weight less thanw(dr; dc).

For arbitrary vectorsaaa 2 n
q andbbb 2 n

q , bbb � aaa is defined as the
nc � nr matrix that hasbiaaa asith row andajbbb asjth column, that is,

(bbb � aaa)ij=biaj for all (i; j) 2f1; 2; . . . ; nrg�f1; 2; . . . ; ncg:

Clearly, for eachaaa 2 Cr andbbb 2 Cc, the matrixbbb � aaa is in Cp. We
call such words inCp obvious. In [4], [5], we showed that all product
codewords of weight less thandrdc+max(dr; dc) are obvious. In this
section, we extend this result to higher weights.

Thesupportof a vectorxxx, denoted bysupp(xxx), is the index set of
its nonzero positions, i.e.,

supp(xxx) = fijxi 6= 0g:

If C is a code of lengthn, andI � f1; 2; . . . ; ng, thenC(I) is the
set of all words ofC with their support insideI , that is,

C(I) = fccc 2 Cjsupp(ccc) � Ig

= fccc 2 Cjcj = 0 for all j 2 f1; 2; . . . ; ng n Ig:
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