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Random Codes: Minimum Distances and Error Exponents

Alexander Barg Senior Member, IEEEand
G. David Forney, JrFellow, IEEE

Abstract—Minimum distances, distance distributions, and error expo-
nents on a binary-symmetric channel (BSC) are given for typical codes from
Shannon’s random code ensemble and for typical codes from a random
linear code ensemble. A typical random code of lengtdV and rate R is
shown to have minimum distanceNégv (2R), where 6y (R) is the
Gilbert-Varshamov (GV) relative distance at rate R, whereas a typical
linear code (TLC) has minimum distance N v (R). Consequently, a
TLC has a better error exponent on a BSC at low rates, namely, the ex-
purgated error exponent.

Index Terms—Distance distributions, exponential error bounds, min-
imum distance, random codes, random linear codes, typical linear codes,
typical random codes.

. INTRODUCTION

. i . . 0 %Rz R, Rerig Ry C
The performance of random codes is one of the earliest topics in

information theory, dating back to Shannon’s random code ensemplg 1. Error exponent&rce (1), Erre(R), andErwe(R) for a BSC with
(RCE). Our interest in this topic has been reawakened recently by the- 0.007.
development of “random-like” capacity-approaching codes.

In this correspondence, we consider binary codes from Shannon’s
random code ensemble and also from a random linear code ensembléis well known that on a BSC with crossover probability the
(LCE), used over a binary-symmetric channel (BSC). We derive ti§fannel capacity i€’ = 1 — 7(p). The random coding exponent
minimum distance, distance distribution, and error exponent of a tyf=(1?) is positive for0 < I < C' and given by [5], [6]
ical random code (TRC) from the RCE, and of a typical linear code
(TLC) from the LCE, and also averages over these ensembles. Most of
these results were previously known and have appeared in the literature E.(R)= {
in some form or another.

Many of our results are stated in terms of the relative Gilbert—Var-
shamov (GV) distancécy (R), which for0 < R < 1 is defined as where the pairwise exponefR% (sometimes called the “cutoff rate”),
the roots < L of the equatior(5) = 1 — R, where’H(s) is the ~the critical ratefZ.;., and the sphere-packing exponéht (12) willbe
binary entropy function. Thugicv(0) = 1, andéav(R) decreases defined later. Moreover, Gallager [7] has shown that the random coding
monotonically ta) asR — 1. WhenR > 1, we definescy (R) = 0. €xponentis the true error exponent for the RCE on the BSC (and, more

It is well known that for) < R < 1, asN — oo there exists a binary generally, on any discrete memoryless channel).

code of lengthV, rate R, and minimum distanceV sqv (R). More- The random coding exponent may be improved at low rates by a

over,écv (R) is the best such asymptotic lower bound known. process called “expurgation,” which yields an “expurgated exponent”
It is known that, with probability approachingas N — oo, the E-(R) that exceedd,(R) for0 < R < R,, whereE..(R) andR,

minimum distance of a binary linear code of lengfrand rate? drawn Wil also be defined later [6]. Many have conjectured (e.g., [9]) that the

from a standard random LCE is at ledétv (R). In other words, the combination of the expurgated and the random coding exponents is the

minimum distance of a TLC meets the GV bound. The earliest res@fst possible error exponent—i.e., that the expurgated/random coding

Ry — R, 0 § R S Reri
Ey(R), Rau<R<C

of this type that we know of appears in [5, Sec. 2.1]. exponent is the “reliabi”t)./ fUnC-tiC-)n" of the BSC.
We show that, with probability approachiagasN' — oc, the min-  We argue that the relative minimum distardes, () and complete
imum distance of a binary code of lengthand rateR from Shannon’s distance distributiomVrrc(d), d = 1.2,... N of a TLC imply

RCE is approximatelyV cv (2R). Thus, a TRC has poorer minimumthat on a BSC its true error exponefitri.c(R) is equal to the
distance than a TLC fd¥ < R < 1. Moreover, the minimum distance €xpurgated/random coding exponent; i.e., TLCs achieve the best lower
of a TRC is positive only whet® < é bound on error exponent at all rates, without expurgation.
) ) o _ Similarly, we find the complete distance distributidtirrc(d)
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Finally, we derive the typical number of channel errors and typichlnder this RCE, two distancek;(z;, ;) anddq (z,/, ¢,/) are in-
distance from the transmitted codeword to the decoded codeworddiependent random variables unldssj} = {i', j'} or {4, j} =
typical decoding error events. We observe that errors are typicatly {5, i'}.
made to minimum-distance codewords whgn> R., even though  Consider the number of unordered pairs of codewaedsz; ) with
pairwise analysis and the union bound give the true error exponeént j in C at distancel apart

whenR < Reuig. M—1 i—1
Se(d)y= > {du(a, z;) =d}
Il. RANDOM CODE ENSEMBLES AND TYPICAL CODES i=0 j=0

In this section, we introduce the appropriate ensembles of randavhere®{d (x;. x;) = d} is the indicator of the eventin the brackets;
codes for a BSC. We then discuss the properties of the typical randoen, {d(z;, ;) = d} is equal tal if dy (z;, ;) = d and to0 oth-
code (TRC) from the random code ensemble (RCE), and the typiesivise. Therbe(d) is a sum of(‘y) pairwise-independent, identically
linear code (TLC) from the linear code ensemble (LCE). In particulagjstributed random variableb{d (z;, ;) = d}, each with mean
we note that whereas the distance distributions of the RCE or LCE and
the TRC or TLC are exponentially identical for distances above the GV E® = Pr{dy(z:, z;) = d}
distance, they differ radically for small distances. and variance

A. Preliminaries Var[®] = E®® — (E®)* = E® — (E®)® < E®

We will be concerned with code parameters (such as the error prediere we have observed tht = & since® is a{0, 1}-valued func-
ability and distance distribution) that behave as exponential functiotign. Thus, we have

of the code lengthV asN — oo. For any two functionga(N), b(N) "
we writea(N) = b(N) if ESc(d) = <12 ) Ep = oN(E-1HH(©)
Jim N~ log(a(N)/b(N)) = 0. and, since the variance of a sum of uncorrelated random variables is
equal to the sum of their variances

We say that the exponent of V) is | E, | if a(V) = 2V, V

As usual, for any two nonnegative functions the expresgigi) = Var(Se(d)) = ('2 )Var(q)) < ESe(d).
Q(g(N)) means that there exist positive constahitsandc such that
f(N) > cg(N) for everyN > No. The minimum distancé.....(C) of the code is equal to the minimum

From the viewpoint of large-deviation theory, itis natural to expresgsuch thatSc(d) # 0. The following theorem shows that the rela-
exponents in terms of the binary Kullback-Leibler (KL) divergenc@ve minimum distance of a random code is highly likely to be near

D(pllg), defined as 6av(2R) asN — oo, and moreover, that the exponent of the distance
) distribution is highly likely to be near that of the average distribution
Dllg) = p loglf’; +(1—p)log . _l;_ wherever the exponent is positive.

Theorem 2.1:For0 < R < % and any:= > 0, the probability that

All logarithms will be to the base. The KL divergenceD(p||¢)isa & code of lengthV and rateR from the RCE has relative minimum

strictly convex function of andq that has a minimum df when and  distance less thai:v (2R) — < goes to zero exponentially 8 — c.
on|y Whenp = q. Note that For0 < R <1, if d = Né is such that

6(’;\7(2R) +e<6<1— (SG\W(QR) -

1
b <p 5) =1-Hp) then the probability that the number of codeword pairs at distdnce
satisfiesSc(d) = 2NVR=1+HE) goes to one ad — oc.
whereH(p) = —plogp — (1 — p)log(1 — p) is the binary entropy Proof: For a given value of the code rafe, choosed so that
function. 4 — 6 < bav(2R) — . Then

) o= N(1—H(§)—2R)
B. Random Binary Codes Pr{Sc(d) > 1} < ESc(d) =2 — 0.

Abinary code” of lengthiV and rateR bits per symbol is a (multi)set In other words, with probability differing front by an exponentially
of M = 27 binary N-tuplesz;, 0 < i < M — 1. falling quantity there will be no pairs at distande Conversely, if

Because of the symmetry of a BSC, the appropriate RCE is thev(2]?)+c < § <1—éav(2R) — =, thenl —H(4) < 2R, and the
equiprobable ensemble in which each of fHebits in each of thev ~ average number of paiisSc(d) at distancel is exponentially large.
codewords is chosen independently at random with equal probability# the Chebyshev inequality, for amy > 0, we have
being a0 or al. Equivalently, each of the"¥** possible binary codes Y Ed
of lengthN and rateR in the RCE is assigned probability ¥/, Pr {|5c(d) — ESe(d)| > <l’ )n} <

In this case, the probability that a given random codewsraf 2 (‘z )“2
length N will be at Hamming distancé = N6 from an arbitrary bi-

- If we choosen = 2~ NU=HO+2) < EP for any A > 0, then we
nary N -tupleb is independent df and equals ya >

obtain

Pr{dp(z:, b) =d} = (:) G)d @)\d Pr{lsc(d) _ESe(d)] > (;{)a}

2E® = 9= NER=I4H(=28) () 1)

2 9= N(I=H(#) _ 5=ND(s]|%) S MO -1z
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0’ dav(2R) 1 dimension less thak™ (and thusd = 0), but this will not affect our
dav(R) 1L — development. We define the code ratefas- K/ N bits per symbol.
RCE - 2 é (In[5], Gallager considers a similar ensemble of linear codes defined
b by the2¥ ¥ =5 possibleN x (N — K) parity-check matrices, and
2 derives an asymptotic lower bouiddv ( R) on the relative minimum
distance of a TLC.)
TRCTLC

In a linear code, the distribution of distancesy (z;, ;), j # i}

Fig. 2. Exponents of average distance distributidfg: (@) and\ o (d) fr_om_ any given C(_)dewom},; is independent of. The average distance
for the RCE and the random LCE, and of distance distributighs.(d) and  distribution of a linear cod€ therefore reduces to

Nrpe(d) foraTRC and a TLC. . ) )

mo(d) Ne(d)=)" ®{du(@i, x))=d}  (d=1.2.....N) (2.3)
The exponent on the right-hand side can be made positive b¥| ) ’ ) ) )
choosingA small enough. This establishes the fact thatd) = wherez; is an arbitrary codeword. Typically, is taken as the all-zero

9N(2R-T+H(5) for the chosen value of with probability tending to codewordd = z(0). _ L _
one asV — co. O In this ensemble, ifu;} is a set of K’ < K linearly independent

information K -tuples, then théx’ corresponding codewords: ()}

We can express this result succinctly as follows. are equally likely to be any of the™ " possible sets ofs’ binary
« With probabilityl — 27*") asN — oc, the relative minimum N -tuples. In other words, the probability distribution over any such set

distance of a code drawn from the RCE will be approximatelis the same as thatin the RCE. In particular, Aiecodeword 2 (u;, ) }

Sav(2R) for0 < R < Landoforl < R <1. are statistically independent.

Therefore, if(u;, u;) is any pair of distinct nonzerdy -tuples,
then the corresponding codewords(u;), #(u;)) are a pair of
fon_ 2o _ AT independent random binany -tuples. It follows that two distinct
Ne(d) M Se(d) (d=0,1, ..., N). distances/r(z;, z;) andd (z;, z;) from a given codeword; (e.g.,
the all-zero codewor@) are pairwise-independent and distributed as
in the RCE. In particular

Define thedistance distributiorof C as

Thus,\¢(d) is the average over the codewordse; of the number of
other codewords;, j # i, at Hamming distancé from z;.

We have shown that the complete average distance distribution over Pr{dy(zi, 2;) = N} = 9= NO—H(8))
the RCE is N
For anyd = N§, the quantityNc(d) in (2.3) is thus a sum of
. 2 o o o the s N e
Nrer(d) = i ESec(d) M —1 = 2" pairwise-independent, identically distributed random

R variables with meart® = 2~Y(=7) and variancéVar(®) =

= gN(R=147®) (d=0,1,....N). (22) E® — (E®) Its mean value is thus again equal to
Since the probability in (2.1) tends to zero exponentially and since there Nicgp/(d) = 2V E-1HHE) (2.4)

are onlyN + 1 different values of the distanek Theorem 2.1 implies ) ) )
that for almost all codes in the RCE:(d) = Nucw(d) for all d the same as for the RCE. Moreover, its variance for @ny upper-

such thatiqy (2R) + = < & < 1 — éaqv(2R) — =. However, for Pounded by its mean. )
§ < bav(2R)—=0ré > 1—6cv(2R)+=, the TRC hasVrre (d) = 0. We can now repeat the argument of Theorem 2.1 and arrive at anal-

In short, the TRC has distance distribution ogous conclusions for the LCE. Namely, if the expon@nt 1 4 (6)
of (2.4) is greater thaf, then with high probability there will be expo-
| < % —bav(2R) —= nentially many codewords at distante= N6 from a given codeword.
1 gy _ On the other hand, if — H(6) > R, then the average number of code-
| | >3 —6av(2R) + = : ; : :
words at distancé from a given codeword will be exponentially small,
The exponents aNircr(d) andNrra(d) are plotted in Fig. 2 as and with probability approachingthere will be no such codewords at
functions of the continuous variabte The exponen? — 1 + H(6) distanced. In short, the relative minimum distance of a code chosen at
of the RCE is nonnegative fot — 6| < 1 — éqv(2R), continuous, random from the LCE will be, with probability — 2=%(N) approxi-
strictly concave and symmetrical abaut= 1. The exponent for the mately equal to the GV relative distangev (R).

2

= oN(R=1+H(8)

5—06
-6

Nirre(d) {

W= K=

:0,

\Y%

TRC is equal to the RCE exponent ﬂdjr — 5] < ;_ —bav(2R) — &, The typical random linear code from this ensemble has the distance
however, fors | 6cv(2R) oré T 1 — scv(2R) it goes to—oo. distribution\rLc(d), d = 1, 2, ..., N, where
» g N(R—1+H(6 1 1
C. Random Binary Linear Codes Nivo(d) {: N (R=147(5)) |t -6l <t -bav(R)—=
A binary linear cod& of length N and rate/{/V is a (multi)set of =0, |§ - (5\ > 5 —bav(R) +e.
M = 2" binary N-tuples that is generated Hy N-tuplesg;, 1 < The exponent ol'rLc (d) is also plotted in Fig. 2 as a function of
k < Kjie.,Cis the set of all binary linear combinations a continuous variablé. It is equal to the other three exponents for
bav(R) + e < 6 < 1= bav(R) — =; however, fors | Sav(R)
()= urgy oré 11— bav(R) it goes to—oc.
k In summary, the typical minimum distance in the LCE is better than
whereu is an arbitrary binaryx -tuple. that in the RCE because it is the minimum of odlff — 1 pairwise-

We will consider the random LCE in which each of thebits in independent distances, whereas in the RCE it is the minimu(‘ﬁf@f
each of the{ generators is chosen independently at random with equairwise-independent distances. In fact, the typical random linear code
probability of being & or al. Equivalently, each of the™ possible has a minimum distance equal to the GV distance, which many people
K x N matricesG = {g,,1 < k < K} is assigned probability (e.g.,[9]) have conjectured to be the best possible asymptotic minimum
2=~ An exponentially small fraction of the resulting codes will havelistance of binary codes.
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I1l. ERROREXPONENTS FOR THEBSC Moreover,

NrLe, we will find the true error exponentBrcw(R), Evrrc(R), D

Now, using the distance distribution€rce, Nrre, Mok, and 1
<6crit(p) H_> + 6crit(p)D <§H p)
Ercr(R), and Etr.c(R) for each of these ensembles and typical

codes. We will find that the difference in distance distribution expo- 1 ( )

=—log - (1+2/p(1— =R
nents illustrated in Fig. 2 is reflected in a difference in error exponents 985 +2vr(l—p) 0
at low rates.

whereRy is the pairwise error exponent of a BSC with crossover prob-
ability p. Thus, for0 < R < Rais, the true error exponent of the RCE
is

The error exponent of a family of cod€sof rate R and increasing
lengthsN is defined as

1
E¢(R)= lim —— logPr(E
c(R) N—oo N & ( ) ERCL(B) =Ro—R
wherePr(E) is the average probability of decoding error of a max- o o
imum-likelihood decoder, which is assumed to decrease exponenti@gtraight line of slope-1 which is equal tok, at R = 0.
with V, and where the limit is assumed to exist. Since the LCE has the same average distance distribution as the RCE,

For brevity, we will take the following facts as given. it has the same error exponent.
) . On the other hand, for a TRC with minimum distares; (2R), the
* Above a certain rate callefi..i., the RCE and in fact all of these exponent of the union bourtru i (E) has the form

ensembles and codes achieve a certain error exponent called the
sphere-packing exponeht,, (), which is known to be the best ) 1 1
possible error exponent for raté&s> R..i:. 52;213(121?) {D <5 Hg) + 6D <§Hp) - R} .
e For0 < R < Rait, a union bound analysis as below yields
the true error exponent for the RCE, and in fact for all of thesghis minimum occurs fob = et (p) if dcrit(p) > dGv(2R); oth-
ensembles and codes. erwise, because the exponent is monotone increasiAgitrwill be

dominated by the term with = éav(2R). Thus, we obtain the fol-
The last fact is proved for the RCE in [7], and can be deduced fﬂfwing theorgm. av(2R)

the TRC from [4]. Proofs of this fact for the LCE and the TLC are
well known in the information theory community, although perhaps Theorem 3.1:For0 < R < R..is, the true error exponent of a TRC
not published explicitly. This fact is also closely related to the Bass
salygo—Elias bound on codes [2], and it explains why the Elias distance
appears in Section IlI-A as the typical weight of incorrect codewords Erre(R) = E,(R), 0<R<R,/2 3.1)
atR = Rerit- - Ro— R, R./2 < R < Rt '
Given two codewords(z;, #;) at Hamming distanced =
drr (i, 2;), if @; is transmitted over a BSC with crossover probabilityyhereR, is the rate for whickei. (p) = éiv (R.), and
p, the probability that the received wogdwill be at least as close to
p) - R

x; as tox; is { ‘ 1
E,(R)=D <’5GV(2R) 5) + éav(2R)D <§
Similarly, for a typical random linear code with minimum distance

d . )
prm ol (r d/:ﬂ>1}“’m (1—p)l/2) = 2= P31

where bav(R) we have the following.
1 1 Loy L ‘ Theorem 3.2:For0 < R < R, the true error exponent of a
D <§Hp) =3 log % 35 log 1 ip = —log2y/p(1 - p). typical random linear code is
The union bound estimate Bf:( F') is simply the sum of all these pair- E.(R), 0<R<R,
wise error probabilities; i.e., if a code has average distance distribution Eyio(R) = (3.2)
RO — R, RLL’ S R S Rcrit

N (d), then the union bound estimate is

Pr(B)=5; 3> Pr{z -z}

i g

whereR,. is defined in Theorem 3.1 and

1

N |

N

=3 N ()2 PGP,
= =—bav(R)log2/p(1—p).

For instance, let us substitute here the distance distribution (2.2) of
the RCE. AsN — oo, the sum will be dominated by the minimum of We conclude that
the N+1 exponentsD(8||3)+6D(%||p)—Rfor s=d/N, 0<d< N.
Switching to a continuous variable we observe thaD(§||1) is a
strictly convex function of ands D( £ ||p) is linear; thus, the exponent
has a unique minimum. Setting the derivative of the exponent to zero;The functionE, ( R) is the usual “expurgated exponent” for a BSC.
we find that its minimum occurs at Sincedav (0) = ‘5 at R = 0 we have

2y/p(1—p)

T A T 1
1‘1‘2\/1?(1—]7) . EI(O):Ey(O):_§ 10g2\/p(1—p).

E.(R) =D (ﬁcw(R,) H%) + bav(R)D (

v)- R

« with probabilityl —2~*%¥) the error exponent of a random code
(resp., random linear code) is given by (3.1) (resp., (3.2)).

écrit (11) =
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x Styp x
Ttyp Ty,
Otyp, TLC
Fig. 3. Typical relative distances, given a decoding error, between transmitte 5typ TRC
(correct) codeword:, received wordy, and decoded codewoud. ’ derit

Note thatE, ( R) may be written in terms of the expurgated exponent

Ttyp, TLC
,
E.(R) as follows:

Ttyp, TH Terit
E,(R)= E.(2R)+ R, 0< R<R,/2.
Fig. 1 illustrates the error exponenfspci(R) = Evce(R),

Errc(R),andErLc(R). They coincide above the rate,. The error Otyp
exponent of the TRC lies between the exponents of the RCE and tt

TLC for rates) < R < R./2; it equals the TLC exponent & = 0 Teyp
and the RCE exponent & = R, /2.

0 lR:a: R, Rcrit C

A. Geometry of Typical Errors 2

The preceding calculation also yields the asymptotic values of (r&lig. 4. Typical relative distances,,, ands.,, (cf. Fig. 3) as functions of code
ative) distances between the transmitted codewsgricicorrect code- "ate R, forp = 0.05.
word z’, and the received vectgrin a typical error event. Let,,, =
8iyp (R) denote the typical value of the distandegn) dy (z, ') asN
grows. Likewise, letiy, = 71y, ( R) be the typical (relative) number of
BSC channel errors. The relative distanégs andr,,, are illustrated
in Fig. 3.

We observe that,, = é..it(p) for the RCE, the LCE, the TRC at
ratesR./2 < R < Re.it, and the TRC atrateB, < R < Rerit,
whereash:y, = dav(2R) for the TRC atrate < R < R./2 and
btyp = bav(R) forthe TLC atrated < R < R..

Whenéiyp = barit(p), we have

for R. < R < R, errors are typically made to codewords at
distanceeic (p) > dav(R).

2) ForR., < R < Ruit, the typical distancé,,, (R) = é..it(p) is
not a function ofR.

3) The typical random linear code not only achieves the GV
distance, as has been noted previously [5], but also, as a result,
it achieves the expurgated/random coding error exponent, which
many conjecture to be the best possible. Moreover, it achieves
this exponent without expurgation. In particular, the typical

B () = VP random linear code retains the usual symmetry properties of

Tiyp = Terit\P) = V=1 . linear codes, which expurgated linear codes do not.

~

It is perhaps surprising that the typical random code is not
In terms of 7.t (p), the critical rateR..it is the rate at which as good as the typical random linear code. We have not been

able to find this observation in the previous literature, although
we believe that it was well known to researchers at MIT, IPPI
(Moscow), and probably others.

Terit (P) = 6av(Berit) [6]. FOr Revis < R < C' = 1 — H(p), the

decoding error probability is dominated by the probability that the

number of channel errors will excegléav(R) < N7git(p), in

which case with overwhelming probability there will be an exponen- 5) |tis perhaps also surprising that the TRC performs much better
tially large number of incorrect codewords as close or closer to the  than the average performance over the RCE, at least at low rates.
received word as to the correct codeword. In this rate interval, the  For ratesR < R./2, the average performance over the RCE
error exponent is therefore given W, (R) = D(écv(R)||p), and is dragged down by the performance of an exponentially small
the typical number of channel errorsis, = éav(R). Since the number of atypical bad codes.

correct word and the decoded word are equally likely to be in any 6) |t is straightforward to generalize these results to codes over an
direction from the received word and at distancg,, the typical alphabet of arbitrary sizeused over g-ary symmetric channel.
distance between the correct and the decoded word is Moreover, the derivation of error exponents for an arbitrary dis-
crete memoryless channel [3] is very similar to the argument of
Section lll. For that derivation, one employs codes chosen ran-
domly with a uniform distribution from the set of all vectors of

a fixed type (composition). In particular, the general GV bound
and “distance distribution” of pairwise joint compositions pos-
sess the same properties as those discussed for the random en-
semble of all binary codes.

ﬁtyp = Q'Ttyp(l - Ttyp) - 2(SGV(R)(1 - (SGV(R))

which is sometimes called the Elias distance.

The typical relative distances,, andé.,, are illustrated in Fig. 4
as a function ofR for both the TRC and the TLC, along with the GV
relative distancéqv (R), for a BSC withp = 0.05, which is represen-
tative of the general case.
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