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Abstract—We derive a new upper bound on the exponent of in R™. In this paper we restrict ourselves to this communication
error probability of decoding for the best possible codes in the model, which will be referred to as the Gaussian channel (with
Gaussian channel. This bound is tighter than the known upper iscrete time and continuous amplitude). It suffices to consider

bounds (the sphere-packing and minimum-distance bounds ) . .
proved in( Shanl?won’s e:lassigal 1959 paper and their low-rate spheres of any fixed radius. Therefore, in a large part of the

improvement by Kabatiansky and Levenshtein). The proof is Paper we study only codes on theit sphere inR™, denoted
accomplished by studying asymptotic properties of codes on the by 5™~ = S™~*(R). A codeis a finite subset 06" ~*(R). To
sphere S™~*(R). First we prove a general lower bound on the djstinguish between codes 6~ and in the Hamming space,
distance distribution of codes of large size. To derive specific the former are often called spherical codes.

estimates of the distance distribution, we study the asymptotic . .

behavior of Jacobi polynomialsPE* ** ask —» co. Analogously to_the Hamming case, the most |mportar1t pa-
Since on the average there are many code vectors in the vicinity Fameters of spherical codes studied in geometry and coding and

of the transmitted vector @, one can show that the probability of information theory are the minimum distance and the error prob-

confusing # and one of these vectors cannot be too small. This ability of decoding as functions of the code size. A natural geo-

proves a lower bound on the error probability of decoding and the - metric motivation for the distance problem is studying the best

upper bound announced in the title. possible packings of™~!(R) with spherical caps. This and

Index Terms—Distance distribution, error probability of de-  closely related problems of finding the best possible fillings of

coding, Jacobi polynomials, spherical codes. R™ with identical spheres and the kissing number were studied
long before the emergence of coding theory (see a survey in
|. INTRODUCTION [13]). Spherical codes in information theory were introduced

lassical model of L h Is wi y Slepian [34] (paper based on a 1951 Bell Labs report) and
HE_ classical model o cr:10mmun.|cat|on overc annehs WI8hannon [31]. However, studies in geometry and coding theory
noise, introduced by Shannon in .1948.’ assumes .t at mﬁéileloped independently of each other until the second half of

sages are represented by vectors (p_o'_”ts) imtdemensional 0 19705 when important unifying steps were taken by Del-

Euclldea_n space. Under this model it is a_ssume_d tha_t Whe%eﬁte, Goethals, and Seidel [15], [16], and Kabatiansky and Lev-

vectorz is sent over the channel, the received signal is rePr€ashtein [21]

sented by a vector = = + y, wherey is a vector whose coor-

dinates are independent Gaussian variables with mean zero Angarameters of Spherical Codes

H 2
vananceo”. Let C € S"~! be a code and?(C) = % In |C] its rate,

A consistent definition of capacity of such a channel is o%—< R(C) < 0. The distancelist (z, ) = [z — y|| between

tained if one assumes that the input signals satisfy some sort ~ "\ ) !
P 9 fy two points inS™~! can be also measured by the inner product

of energy constraints. Typically, one assumes that the ener\?g, - 1 4. .2 T
or the average energy, of input signals does not exceed a giS ﬂ?reﬂ_—l 2 dl?t (m’> yé:éhbgftt?;sg:?ndee;slzrC::tiinc%en\(/)gntiZ?\t
numberAc? per dimension, wherd is a positive number called ; P = arccos (&, Y.

the “signal-to-noise ratio.” Shannon [31] has shown that for'g SOM€ coding-theoretic problems. Accordingly, let
set of input signals of suffic_ient_ly Iarge size the study of the d(C) := min dist (z, y) (0 < d(C) < 2)
channel is reduced to considering signalscohstantenergy 2, yCC

equal tooy/An, that is, points on the sphere of radias/ An =y
#C) = max (z, y) = 1 —  d?(C), andf(C) = arccos t(C).
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Usually one is interested in upper bounds B(®) and lower For0.234 < R < oo bound (6) is better than (5). Some further
bounds onk(#). Below we assume that these two sequencestails on the upper bounds will be provided in the next sections.
have a common limit and speak loosely of the maximum pos-

sible rateR(6) of a code (sequence of codés,) of angular B. Error Probability of Decoding

distanced. Note that by [30],/(f) = 0 for w/2 < 6 < x. A systematic study of the error probability of decoding for
Likewise, defined( i) to be the maximum distance of a codepherical codes was initiated by Shannon in [31]. Bétbe a
(sequence of codes) of ratgC;,) > R. code on the sphere of radius/An. We assume that code vec-

Remark: Following the discrete case [1], it is not difficult totors for transmission are chosen fréfwith equal probability.

prove thatR(#) is a continuous function of. Indeed, for any Then
6 >0 1
P(W) = 7 > Pz

(1 —cos O)~Y2 M (n, ) zeW

< V2mn(1 — cos )" "Y/2M(n + 1, ¢') s the average error probability, wheRe(z) is the error proba-

bility of decoding provided that the transmitted vectogid et

(Yaglom’s inequality, see, for instance, [13].) Letbe some D(z, W)= {2 €R": |z — || < ||z — ||
small number such that < 6 < 6 + ¢ < «w/2. Apply Ya- tor all ' ,
glom’s inequality,/» times, putting each tim& = 6 + ¢//n. oralle’ e W, z' #z} (7)

We obtain be the Voronoi region af with respect to the codd’. Then the
optimal decoding rule, i.e., the one minimizing the average error
I M(n, 6) 1+ n=t/? In <1 —cos (6 + 6)) probability, associates to the received vectar code vectomr
n -2 1—cosf such that € D(z, W). (The definition ignores vectoesat the

+(1+n"?)

In M(n+n'/2, 6 +¢) Inn same distance from two or more code vectors since their prob-

n+ ni/2 & <ﬁ) ability is 0.) Under this decoding, the error probabil iy ()
equals

SinceR(#) is monotone, we havB(#) — R(6 +¢) > 0. Letting

e — 0 andn — oo, we see thaR(#) is continuous. 1 ,
P (W)= ] > Prize | D(y, W)|ztransmitte

The best known lower bound afi(#) is Shannon’s sphere- zcW yow
packing bound [31] ye ®)
R(#) > —Insinf 0<6<m/2) (1) where the last probability equals the total probability, under the
2(R) ; 21 m) (0< R_< ) @ Gaussian distribution with meanaand variance? along each

coordinate, of the part dR"™ complementary to the decoding

which relies on the same type of argument that the varzgion ofz. Further, let

shamov—Gilbert bound for the Hamming space. P.(R, A, n) = W }zl(lxial}pR P.(W)

Best known upper bounds di(¢) were derived in [21]. One ' 1
of the main results of [21] states that E(R, A, n)=— . ln P.(R, A, n)

- g E(R, A) = limsup E(R, A,
R(O) < 1—|—.su;9 <1 SPlZ) 0<0<n/2) @3 ( ) msup ( n)
2sin 1+ sin E(R, A) = liminf E(R, A, n).

whereH(z) = —wlnz — (1 - a)ln(l — z) is the entropy  Again we are interested in upper boundsi(®, A) and lower
function. This bound admits a small asymptotic improvemegt;nds onE(R, A) as functions of? for given A. A common
for0 < 6 < 63°[21] limit of these two functions, provided that it exists, is called the

reliability function (or the error exponent) of the channel, de-
notedE(R, A). By abuse of notation, below we speak of upper
d lower bounds of/(R, A).
hannon [31] showed tha@ (R, A) > 0for R € [0, C),
whereC = (1/2)In (1 + A) is the capacity of the channel. In
this interval E(R, A) is bounded above by the sphere-packing

R(6) < —(1/2)In (1 — cos 8) — 0.0686

(the real numbers here and below are approximate). Th
bounds can be also transformed to rel&tandd (rather than
8). Indeed, lelpr; = pri(R) be the root of the equation

p bound [31]
g E(R, A) < E,(6(R), A) )
prt = (1/2)(1 — sin 0)/sin 6,0 < pgy < oo. Then where
A Ag(6, A)cos 6
P2(R) < d2(R) = (VIFom — Vow)” )  Eulb.A)=3- VAg(6, A)cos 0 = V08 b 16, A)sin 0)

14 2p5
d2(R) < 2¢~2R-0.137, (6) g(0, A) = %(\/Z cos 0+ /A cos? 6 +4)
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andf(R) = arcsin e~ is the “sphere-packing” angle; cf. (1).C. Outline of the Paper

Further,E(R, A) is bounded below as follows [31]: The goal of this paper is to prove a new upper bound on

%(1 —cos 8(R)), 0<R<R () E(R, A) given by the following theorem.
E(R, A) > $(1—cos 6(R1)) + Ry — R, (10)  Theorem 1: The reliability function of the Gaussian channel
Ry <R< Ry (Il) with signal-to-noise ratiol satisfies the upper bound
Esp(e(R)a A)7 RQ S R S C (”I) d2 w2
where E(R, A) §0<1£11<I})M max [min <A , A§ — L{(w, d, p))}
2
Rlzlln l—i—l 1—|—A— (14)
2 2 2 4 whereR is a value of the code rate
Ro—im(iyA L/ A 0<d< VVIT = Vi)
2=yl Ty it ="= VIt 20
Bounds (9) and (10.111) show thdt( R, A) is known exactly d<w< V2 (VItr—p)
for R, < R < C. Shannon [31] also proved the inequality Vi+2p
A pre is the root of R = (1 + p)H({%,)
L 4 — L(w, d, p) = min S 1—1w2p
which implies that bound (10.1) is tight fakR = 0. The proof B 8(4w? — d?)’ 2 7
of (11) in [31] used the minimum-distance argument (the prob- p
ability of confusing two code vectors at a minimum distance) F(z, p)=R—(14+p)H <1—+p>
together with a Plotkin-type bound on the size of the code. Inde- 1
pendently and earlier, Plotkin-type bounds#§#t) were proved +1n <§ (a: + /(1 +2p)222 — 4p(1 + p)))
by Rankin [30]. Later, it was realized that one can abstract from
the Plotkin bound and use Shannon’s argument to establish a —(1+2p)
general minimum-distance bound iR, A) (see [32] for dis- T (1+2p)x + /(1 +2p)222 — 4p(1 + p)
crete channels and [21], [24] for the Gaussian channel). This 2(1+ p) '
bound has the form .
A Together with a segment of the common tangent to the curve
E(R, A) < Ena(R, A) = 3 d*(R). (12) on the right-hand side of (14) and the sphere-packing exponent

Together with (5) this implies the best known bound o 9) this theorem improves bounds (13.1)-(13.1I) for all rates
E(R, A) for low code rates € (0, R"]. Indeed, observe that forgetting the second term
Finally, as shown in [32], the reliability function of discreteInSIde the bra_ck_ets n (;4)’ we get (13.1), so (1.4) s at least as
od as the minimum-distance bound. Now putin (14 px;.

channels is bounded above by the straight line connecti ppose that — dyy, then the second term under the minimum
. . H = Gkl
any pointR, of any upper bound o (R, A) with any point (14) is less thatld2, /8 SINCeL(dw, dt, pra) > 0, S0 in this

R,, R, > R,, of the sphere-packing bound. Sheverdyaéo : _ .

[33] extended this result to the Gaussian channel, showing, C} ie;urt?]oel:wnglrlzasttjr;/(:::]);lzfsstttr;?;](iis(.ll)ﬁf)oig Itzzsott::; Tig?) i
ticular, that tofth t wia(R, A koo 5 9 "

particlifar, thata segment oTthe common tange (R, 4) Thus (14) is strictly less than (13.1) for at € (0, R'], so the

dE., (R, A) gi bound oR(R, A te that . . \ .
and £, (R, A) gives an upper boun (R, 4) (note tha straight-line bound associated with it is also strictly less than

both E,., and E, are convex). Rather than writing out a : .
cumbersome explicit expression for this bound, we simp 7}<R’ A) in (13'”) and touchest,, at some paint between
" and R, (see Fig. 1).

denote it byE (R, A). Th ¢ bi . i q bi il
Concluding, let us summarize the results on the upper bound € proot combines geomeF”C* analytic, an com Inatoria
on E(R, A) known to date arguments. Its idea is summanzgd as foIIows.' It is well known
that the error probability of decoding is determined not as much
Ena(R, 4), 0<R<E () by code’s minimum distancé(C) as by its distance distribu-
E(R, A) < ¢ Eq(R, A), R <R<R' () (13) (on. To take into account this influence one has to estimate the
Ep(R, 4), R'<R<C () average number of neighbors of a code vector. This number af-
whereR’, R are certain numbers which are easier to computects the error exponent if it grows exponentiallyrinBounds
for each givenA than to write out in general. of the type (12) only take into account the fact [31] that each
In our paper, following [34] and [31], we assume that codeode of a large size contains a large subcode in which every code
vectors can be any points &#*~!. In communication theory vector has a neighbor at a minimum distance. In contrast, we use
one also studies a restricted case of this problem, namely, trdosrer exponential estimates of the average distance distribution
mission over the Gaussian channel with codes whose vectfmsall distances!(C) < d < /2 (i.e.,8(C) < 6 < 7/2). This
have coordinates equal to (binary or nonbinary) roots of unitgccounts for a better estimate B{ R, A) in the region of code
Then it is possible [28] to obtain upper bounds on codes bettates where the best known bound Was, (R, A).
in a certain region of rates than the Kabatiansky—LevenshteinThe paper is organized as follows. In Section Il, we derive a
bounds. For lower existence bounds on the reliability functiageneral lower bound on the distance distribution of codes. This
of the Gaussian channel witlinary codes see, e.g., [29]. result is proved by a new application of Delsarte’s polynomial
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E(R, A) the Hamming space, namely, that the distance spectrum with
respect to any given vector in the subset is one and the same.

The remaining part of the proof of Theorem 1, given in Sec-
tion V, is geometrically much more intuitive. It is accomplished
by an argument analogous to the Hamming case in [25].

A few remarks on the asymptotic notation. Since in the
paper we are interested only in logarithmic asymptotics of
the reliability function and related parameters, we write
f(z)~g(z) to denote the fact thaiin f(z))/(In g(z)) — 1
asz — oo. For instance, the Stirling approximation fB(z)
givesln I'(a)~a(In a — 1). A short notation for

T (f(2)/g()) = const
is g = ©(f). Notation f(x) = g(x) means that
lim inf(f(x)/g()) 2 1.

Il. BOUNDS ON THEDISTANCE DISTRIBUTION OF CODES

In this section we prove a general bound on the distance dis-
tribution of codes. We take a somewhat broader view than in the
rest of the paper since by one and the same method one can prove
this bound for codes in many metric spaces simultaneously. The
method is suggested by Kabatiansky and Levenshtein in [21]
Fig. 1. Bounds on the reliability functionpd = 4). (a) “Random coding” and applies to configurations in very general spaces (indeed, not
exponent (10.1-111). (b) Sphere-packing bound (9). (c) Minimum-distancaecessarily metric). We restrict ourselves to a fragment of their

bound (11). (d) Minimum-distance bound (12). (¢) The new bound &4). theory, the unifying idea being to consider those spaces in which
denotes the critical rate. Each of the curves (d)—(e) includes a segment of the | spherical f ti . by J bi vol ials. (1
common tangent to the curve and the sphere-packing exponent. Zonal spherical Tunctions are given by Jacobi polynomials. ( n-

cidentally, this covers all compact infinite spaces in which our
) ) ) results and the results of [21] are valid.)

method in coding theory, discovered recently by the authorsApart from our main example, the unit sphes&—1(R),
in [3] and [25]. As suggested by the Kabatiansky—-Levenshtejje also consider thén — 1)-dimensional projective spaces
(KL) approach [21], we prove these estimates 5'{T‘U|ta”e°U§JVer[R<, C, H (the quaternions). Each of them can be realized
for codes in a number of metric spaces includifig™ (R). We a5 the set of lines through the origin in the corresponding
believe that these estimates will find further use in coding theoyygimensional linear space, or the sphéie ! with antipodal
as it happened with analogous results in the Hamming space [f{ints identified. A code, again, isfaite subset ofS™ L. Let
[6], [7]. 3 _ dist (2, y) be a certain metric ank, ¥) be the usual (Hermi-

To prove specm_c bounds,.wean%ed to establish the asymptafign) inner product ors™—1. Let D be the set of all possible
behavior of Jacobi polynomialg ™ as the degrek — oo and  gistances ors™~! with respect talist(z, y). For instance, for
% — a. This is the subject of a fairly technical Section III. Bysn—1(R) with the Euclidean metric we ha® = [0, 2]. Let
combination of classical aratl hocmethods we prove a number . )

. 3 . e, y) =t(dist (&, 9)): D—-Z=1[-1,1]

of asymptotic bounds on the exponent®jf’” and, in a sense, . ]
give a definitive answer for the entire orthogonality segmerft® @ monotone function that depends only on the distance be-
In this section we actually prove more than is needed to deri¢eene andy, such that(0) =1, #(maxgep d)=—1,andsuch
Theorem 1 readers interested only in this theorem can Sk_ﬁgnat the zonal sphe_ncal fun_ctu_Jns are expressed as polynomials
everything except Theorem 6. in¢ (seg below). Thl§ substitution _enable_s one to present results

Section IV consists of two parts. In the first part, we us# @ uniform way while not changing their analytic nature. For

the estimates of Jacobi polynomials to derive exponential low@stance, fors”~*(R) with the Euclidean metric we can put

I
!
!

0.2 0.4 R 0.6 0.8R

bounds on the distanc_e distribution of ;pherical godes. In the ta, y) = (z,y) =1— ldistQ(:r, y).
second part, we establish some regularity properties of the dis- 2 ) ]
tance distribution of spherical codes. This part is a technical &i#us?(0) = 1(z = y) and#(2) = —1 (a pair of antipodal

for the proof of the lower bound on the error probability foPCiNts)- - _ _

spherical codes (Theorem 1). Here we prove that in any codd-6tC C 5"~ be a code. Define the functions

one can isolate large subsets that in the asymptotics possess dis- bo(s, t) =|{c € C: s < t(e, ) <t} (15)
tance invariance properties similar to those of linear codes in b(s, t) = @ Z be(s, ). (16)

ceC
\We believe that it is worthwhile to present these results in view of a prom'fé,pma”y, below we consider mterva[& t] of SIZG@(%) for

nent role that Jacobi polynomials play in coding theory. After this paper wa . In thi k | f th
submitted, we learned of related results [11]. Their results are given in the foHFOWING 7. In this case we keep only one of the two argu-

that does not allow immediate use in our bounds. ments, writing, for instancé(s) for b(s, s + ©(+)). Observe
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thatb(s) can be thought of as the distandensityof C (more where the first equality follows by (17) and the inequality is
precisely, the scalar products density). Further,Bgfs) = implied by i) and (18) and the fact thdt, = 1. Now let us
be(s, 1), B(s) = b(s, 1) be the (local and average) distancénterchange the sum and the integral and use ii)

distributions ofC. To sum other functions according B(z), it

l
is convenient to have a discrete measure associated with it. Ob—/ Z Fu®r(2)dB(z) = / F(2)dB(x)
serve thaB(s) is a nonincreasing function, soits jumps are neg- Jz T

ative. Therefore, let (1) = B(s+0)—B(t),wherel = (s, t), F=0 m—1
ps(I) = B(s) — B(t + 0), wherel = [s, ], etc. Then <y / F@)dB(z) + £(1)
i=0 YU

b(s, 1) :/ dB(z) /I dB(z) = |C] a7) (we have used the fact thg0) = 1). Let

where the integration is with respect to the meaguse Then we have

One of the main results in [21] is that the distance distribution el
of codes ons™~! satisfies certain positivity conditions. Recall JolCl < F(U) + > Flsi)b(uis wigr)-
that there is a natural way of associating with—* a Fourier o

basis formed of zonal spherical functiofrg. A specific form . , _ i
of these functions depends both on the ground field and on tﬂgnce, there exists a numbgee [0, m — 1] such that the sum

distance function o™, By [21] mation term satisfies the claimed inequality. O
Note that conditionf(x) > 0(ug < z < 1) in the statement
can be replaced by,|C| > f(0). In the applications of this
/ Py (z)dB(x) = 0, k=0,1,.... (18)  theorem below we usually choose the segmé&hnts be of equal
o small length (of ordet /n).
Theorem 2mutatis mutandiss valid for all spaces covered
By the KL theory (for instance, for all two-point homogeneous

) . X spaces with massive invariant subgroup). For codes in the Ham-
zonal spherical functions form a complete systehd), and ming space this theorem was proved in [25] (see [5] for an
Fourier coefficients of any positive-definite function In (&) overview)

with respect to this system are nonnegative. A particularly read—l_et us specialize this theorem to the context of this paper, that
able introduction in this part of harmonic analysis on compagt 1 the unit sphere iR"

groups is found in [37]; see also [19], [20], and [36]. In fact, in- a) (S""Y(R), t(z, y) = (z, y)). The zonal spherical func-

equalities (18) apply in a much more general context [21]. Fﬂan were found by Cartan [10] (see also [37, Ch. 9]) in the
Q-polynomial association schemes, they constitute the Delsafggm ’

inequalities [14].
We now derive a lower bound on the distance distribution ®p(z) = C,E"_Q)/Q(a:)/C,E"—Q)/Q(l)
of C.

These inequalities follow from the fact that the action of th
isometry groupG of $™~! is doubly transitive on it; hence

. o where
Theorem 2: Let B(x) be the distance distribution of a code

C C S™! and letm be an integer. Let-1 < ug < 1 and N Lk/2] <k — L) <k — i+ A= 1>(2 )k_%
X

suppose thaty < w1 < ... < Up—1 < um = E(d(C)) < 1are Ci(a) = Z (=) k— i

1=0

defining points of a partition ofug, ¢(d(C))] into m segments
U; = [ui, wiy1]- is the Gegenbauer, or ultraspherical, polynomial. It is known

Suppose thaf(z) = Y4 _, fx®x(z) is a polynomial of de- [35] that

greel such that C)\(x) B <<k+2)\—1> /<k+)\—(1/2)>>
) fu>0for0<k<I A k k

i) fx)<oOfor—1<z<wug f(z)>0foruyg<z<1. .p}j—ﬂ/?):k—(l/?)(x)

Then there exists anumberd < ¢ < m—1,and apoint € U;

whereP® ?(z) is the Jacobi polynomial.
such that i (2) Poly

Note that the inequalities above do not change if we divide
out a positive %or;stang. 'I;herefore, in estimate (19), we can put
b(ui, wip1) > fl€ = 1) f(1)~ (19) Pr(@) " P’En V) (a?)' . -
mf(s) b) Projective Space€onsider the projective spacBsy ™1,
whereX = R or C or H. The distance irPX"~! can be ex-
Proof: We have pressed via the inner produet = |(x, y)|. The substitution
t(x) = 22% — 1 maps[0, 1] on [-1, 1] and possesses the nec-
essary properties. One can take [21]

l
flc1= o [ i@ <3 i [ ou@ine) 510y = P61
k=0 Ax) =15
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where2s € (1, 2, 4) is the dimension ofX as a linear space The polynomiaIP,f"a(a:) hask simple zeros off. Denote them
overR. by ti k=t thk <t 1k <--- <tk Thus we have
We see that to apply inequality (19) we need to study the

asymptotic behavior of (s), —1 < s < 1. This question leads 5 k
one to the study of values of Jacobi polynomials. PP (x) = Ly, 1_[(3j —t5 k) (22)
j=1
where
lll. A SYMPTOTIC ESTIMATES OF JACOBI POLYNOMIALS s k4 aN (k4 8
Lpy=2"%)" .
) ) o ) k—v v
The subject of this section is the study of the asymptotic be- v=0

havior of Jacobi ponnomiaIsP,f"ﬁ(x) for k — oo, a/k —  Eurther

const. In order to derive asymptotic bounds on the distance dis-

tribution of spherical codes in the next section it suffices to con- PO P(x) = (=) PP (—x)
sider the caser = 3. However, exponential estimates of gen-

eral Jacobi polynomials, besides being of independent intereg, i particulartg’f — —t’f’,‘f- Zeros of P * () are symmetric
are useful for constructing bounds on codes in different metijgiy respect ta), andt = —t1_ ;. Zeros of the two adjacent

spaces (see the end of the previous section). Therefore, we begifobi polynomials form two interlacing systems:
with the case of generat, 5 especially since it is not much

more difficult than the particular case mentioned.
Below we assume thét— co, a/k—a, 3 <«. The general

analytic situation that we treat in this section stems from ttand so forth.

derivation of the so-called “linear programming (LP) bound” For % sufficiently large by [21] we have

[26] and its extensions to othér-polynomial spaces [21], [23],

[2]. The bound on the rate of a code has a form of a certairtw .
. . : 1x —qla, b) =

function of the extremal zerfy of the corresponding family of

zonal orthogonal polynomials. Asymptotics of the extremal zerg,, ,, — — ¢(b, a)

for various systems of polynomials were studied in [26], [21],

[23]. (an independent later proof was given in [27]). In particular, for

A more refined situation encountered in a number of prolx = # = ak this implies

lems that involve LP bounds [25], [3], [8] requires estimating

the asymptotic behavior of the polynomials in the entire interval t 1 — qla, a) = v1i+ 26‘.

from the extremal zero to the end of the orthogonality segment. ' 1+a

For a discrete spad&’, a simple uniform estimate follows from

the identity|| P, ||*> = m|W|, where P is the @-polynomial

of degreek of the association schemey, is thekth eigenvalue [—4(b: @) a(a, b)] densely. 5

of the scheme, an{iPy|| = (P:, P,)'/? is the corresponding Let us p.roceed to bgunds an”’ .We present_three resglts,

Lo-norm (cf. our Theorem 5 which employs a different methofach obtained by a different technique. The first result is ob-

to prove a similar result in the continuous case). For Krawtcho{kned by transforming the differential equation (60) for the Ja-

polynomials K, an extension of the method in [26] was em¢obi polynomials to a form with (locally) constant coefficients

ployed in [22] to derive an exact expression for the main terA"d @Pplying a method of Sturm-Liouville to estimate the dis-
of the exponent in the interval considered. The proof in [22] {&nce between the consecutive zeros. This gives an exponential
based on the difference equation 6. In the continuous case eStimate for Jacobi polynomials in the entire segninthe
one can rely on the distribution of zeros of the polynomial artfcond theorem extends the method of [26] and [22] and gives

derive, in a sense, a tight estimate for the entire orthogonalftj) €xponentially tight estimate in the rangel, —q(b, a)) U
segment. (g(a, b), 1]. In this range this estimate coincides with the first

Properties of Jacobi polynomialgf"ﬁ(a:) are collected, for one, but is derived in a different manner, and has a totally dif-
instance, in [35], [17, vol. Il]. We need the following facts.ferent for.m. .
The ponnomiaIsP,f"ﬁ(a:) are orthogonal off = [1, 1] with The_th|rd theqrem rehes_ on the val_ue of the-norm of the
weighty(z) = (1 — 2)2(1 + z)° Jacobi polynomlal.altaprowde_s an estimate thft@passes through
all the maxima of P, ”'| and since the zeros &%~ are dense,
" " w3 can be thought of as the limiting envelope of the polynomials.
(B (2), By (2))2 = bxjwy” (20) |tis asymptotically tight in the intervdlk-q(b, a), ¢(a, b)] and
in this interval coincides numerically with the first estimate. All
and the three estimates are equakat —q¢(b, a), = = ¢(a, b).
From now till the end of this section we denote zerod»pf
«, 8 20k + a+ DI(E+ B+ 1) 5 by ¢;, omitting the degree. The next theorem, proved in the Ap-
Yo T Ck+a+p+DkT(k+a+p5+1) (21) pendix, gives the exact logarithmic asymptotics Rjr 8,

L1, k1 < Ti ke < i g+l

4/(a+b+1)(a+1)(b+ 1) — a® + b?
(a+b+2)?

(23)

The zeros of the sequenc{eP,f"a(az)};iO fill the segment
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Theorem 3: LetP,f"a(a:) be the Jacobi polynomial. Suppose b) ¢ < |z| < 1
thatk — , «/k — a > 0, 3/k — b,andz € [—1, 1]. Then
/ & = %1nufa@n:(y+@ﬂ<lia)

:F/l (14 2a)dz (28)

1n|Pa 8( |<—1nLk

(I(a 2 l+atbtab/z o> P az £ \/a2z? — (1 — 22)(1 + 2a)
q(b a) 1— 22 ~ 4(1-2)2 4(1+2z)?2  where the first choice of the signs corresponds to (¢, 1] and
In (1). (24) thesecondta € [-1, —q).

)z € [-1,1]
Note thet forz € [—q_(b, a), ¢(a, b)] the integral in (24) hae 1 In [P®%(2)| < (a+ 1)H 1
a singularity at the point = x. However, its convergence is k 2(a+1)

i . 1
easily checked ) 5o m(1—2?)—m2 (29)
Theorem 4: Let P " (z) be the Jacobi polynomial. Suppose i ; : .
thatk — oo, a/k — a > 0, 3/k — b, and Proof. Standard asymptotic analysis, see the Appendix.

Obviously, remarks on the mutual relations and tightness of

v € [-1, —¢(b, )) U (g(a, b), 1]. the bounds made in the general case are valid in the particular
Then we get (25) at the bottom of the page, where-thgign case considered in this theorem. For instance, (27) and (28) for
corresponds ta > g(a, b) and the+ to z < —q(b, a). z € [g, 1] represent one and the same function.
Proof: See the Appendix. The integrals in (28) can be computed in a closed form using

Mathematica. The answer is rather cumbersome, but can be

Note that (24) also g|ves the exact main term of the expongpisformed to a compact form (computed by the saddle point

of P. So for suche & [-1, —q(b, a)) U (a(a, b), 1], €Xpres- aiho from the integral representationk§F * in [9]). For in-
sions (24) and (25) represent one and the same function.

Finally, let us derive an estimate which turns out to be tight .
in the subsegment from the first to the last zerdpf /

(1+2a)dz
az++/a?z? — (1 — 22)(1 + 2a)
az + /(1 + a)?2? — (1 + 2a)

Theorem 5: Let P s (z) be the Jacobi polynomial. Suppose

thatk — oo, a/k — a, 8/k — b. Then =aln 5
a
1 o, BN 2 o, 1 1 202 — (1+2
Eln [P (2))" s —aln(l—z)—bIn(l+x)+1n wy ", —(1+a)ln( +a)$+\/gl——::§i)$ (1+ a).(30)
-1, 1]. (2
€11 @28) The following simple corollary is of independent interest and
Proof: See the Appendix. may be useful in applications.

Remark: It can be proved that exponentially bound (26) is Corollary 7: Let P,f’“’“’“ be the sequence of Jacobi polyno-
exact for—g(b, a) < = < g¢(a, b). Hence in the oscillatory mialsk — oc. Then up too(1) terms

segment the right-hand side of (26) equals that of (24). 1 o o a
PPl € TS ema+h(a), v els 1] (D)

Since in the following section we deal with codes on k
S"—1(R), the case ofr = /3 is of special interest to us. RecallVhere
that in this caseP,(x)| is even, in particulat, = —¢;, and h(z) = (a +1)H <#> _ la In(1—2?) —1In 2.
thatt; — q(a, a). Below we abbreviate(a, a) to ¢. Estimates 2(a+1) 2

of Theorems 3-5 in this case are collected in the following Proof: Note that the derivative of the function on the
theorem. right-hand side of (28) equalg(x) atx = ¢. It can be checked

oo that the function itself is concave far € (g, 1]. Therefore,
Theorem 6: Let £ be the Jacobi polynomial and supposghe straight line drawn through the poiat = ¢ with slope

thatk — oo, a/k — a > 0. Then up too(1) terms R'(q) is an upper bound on the exponent of the polynomial in
a)z € [-1, 1] x € [g, 1] U

1 In [P %(x)| < 2(a+ 1)H <;> —1n 2 Clearly, a similar argument is valid far € [-1, —¢], i.e.,

k 2(a+1) the exponent of Py *(z)| is bounded above by a straight line

1 [Ty/2a+1—(a+1)22 I le? — 21 d o7 symmetric to (31) with respect to theaxis.
T A 122 nfa” = 2% dz. (27) " 1ne pehavior of the bounds is visualized in Fig. 2.

1
F 17 = o

dz + o(1)
(25)

Yat+(a+b)z—b)F/lat+(@a+b)z—0)2—4(1—-22)1+a+b)
1+a> /,,

2(1— 22)
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where the overbar refers to averaging over the ensemble of
codes. By [31, p. 624]

Q0) = (1 + o(1))x™=/ 2(sin )" /T ((n + 1)/2)
SO
Q) — Q) =QO)(1—-o(1))  (#</2).

Thus the main term of the right-hand side of (32) is independent
of #’. Hence, we may as well put in (32) = 0. Thus we have

Be(t) _ QO)(1 - o(1))
M Q) '
Further, since (33) holds with respect to every C, we can use

the definition of the distance distribution 6f (16) to conclude
that for the random code

Fie _ 2 SUO)(A —o(1))
Blt) = M= =

(33)

All told, we obtain

n n nR ;. n—1
Fig. 2. Exponent of the Jacobi polynomidB** “*|(k — oo, a = 6). (a) B(t)~e"" sin 4
Exact expression (27), valid far € [—1, 1]. (b) Exact expression (28), valid
for ¢ < |z| < 1.(c) Upper bound (29), valid far € [—1, 1]. (d) Upper bound Or
(32).

1 _
— In B(t) =R+ In sin 8 4 o(1)
n

Remark: Observe thak(x) is the function on the right-hand =R+Inv1—£+0(1). (34)
side of (29). The second derivatif(z) = a(1+z2%)/(1—2z?)
is positive for allz € (-1, 1); soh(z) is convex. So (31) is a Below we call this expression thandom distance spectrum

commortangent to (28) and (29) at = ¢ and separates these Remark: The role of the random distance spectrum for

two curves. Bound (31) is useful because on the one hand is 8asY rical codes is much the same as that of the well-known
to work with, and on the other hand, it is much better than (2 P

in particular, it does not become infinite as— +1. inomial” weight spectrum in the Hamming case

- n
B— (V)i
IV. ASYMPTOTIC BOUNDS ON THEDISTANCE DISTRIBUTION ¢

OF SPHERICAL CODES where this time is the code length. Namely, both functions ap-
pear as the mean distance distribution of random codes chosen

®th uniform probability from their respective spaces. More-
8\f/er, forlarger as long asj; is less than the sphere packing (Var-

shamov-Gilbert) bound on the code distadgex 1. Likewise,

in the spherical casB(t) < 1 as long a¥ is less than the sphere

A. Absolute Bounds packing (Shannon) bound (1). Finally, a code with the random

_ _ ) distance distribution and minimum distance equal to the sphere

_Belowwe use the asymptotic expression for the distance defiying hound asymptotically meets the “random coding expo-

sity b(#) of a “random code,” that is, the ex}gectatlon of the disyent » This means that at rates below capacity the exponent of

tance density of a codg of a fixed sizel =c™" chosen o in  yhe arror probability of decoding for such code asymptotically

accordance with the uniform probability measure. &€ be o4y es as (10) for the spherical case or as its “discrete” coun-
a code point ané.(¢) be the local distance density with respec[rerpart [18].

to ¢ (15). In other words, we are counting the number of code
points in the spherical ring located Srbetween two cones with  In this section we use a shorthand notatiéh(x) for
apex at the origin, “center” at and half-angle$ = arccos t Py “(z). Let® — p (p is a constant). We will see below that
and®’ = arccos(t + ©(2)), respectively. On the average, thi is the same parameter as appeared briefly in Section I. We
number constitutes the same fraction/df as the area of the need to takex = (n — 3)/2, wheren is the dimension of the
ring of the total area of. Letting () denote thén — 1)-di- ambient space. Let
mensional area of a spherical cap 8rwith half-angleé, we

then obtain F¥ () = PE(s)

In this section, we return to the concrete setting of Secti
I and prove asymptotic bounds on the distance distribution
codes on the unit sphefe= S"~1(R) in n dimensions.

(Prt1 () + Pi(x))

r—S

(39)

be(0/,6)  Q(6) — Q)
M Q(r) (32)

wherety , < s < t1 141, ands is chosen so thab(s) =
—Pi4+1(s) (so in particulars depends ork). A polynomial of
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the same form ag*)(z) was suggested in [26] for the Ham-satisfies the conditions of Theorem 2, so we can apply the esti-
ming and Johnson spaces and used there to derive upper bounaltes of the previous section to derive concrete bounds on the
on the size of codes'*)(z) was used in [21] to derive boundpossible distance distribution of spherical codes. Observe that

3)—(5). ask — oo, t1.x — t1,%+1, and so the number approaches
We again assume thdt — q, i.e.,a = 2%) Our task for now ¢; .
will be to specialize bound (19) to the cage= f*. Let Let C be a code of rat& andb(x) its distance density. Let
. 1
2k+1 (p) = QM_ (39)

1+2p

and letty; = 7(pwt), Wherepy,; is defined in (4). (Note that
trr = t(dgr), wheret(-) is defined in Section Il andy, is given
by (5)) For0 < p < prrwe have0 < T(p) <t

@) =" fibi(e)
1=0
be the Gegenbauer expansionféf (). Then [21]

2k +2 DH(2k+ 2 Duw

fo= —Pk+1(s)Pk(s)( 2+k a;r ]z( 2+ a1+ a)ci" Theorem 9:Let C be a code of rat&. Letp, 0 < p < pxi,
( j )k + 20 + 1w ) be a fixed number. Then there is a valuer(p) < = < 1, such

F0(1) = (Pr(s))? <k + a) <k +lta Pk+1(s)) that

1-—s k kE+1 P(s) b(z) = J(n, z, p, |C])

The first equation follows by an application of the Christoffel— J(n, z, p, G"R) =exp (nj*(z, p, R) — o(n))  (40)

Darboux formula (61) and the orthogonality relations (20); tr\ﬁhere

second one is straightforward. Then we havesfef z < 1

.o iz, p, R)
fo ik wy,” P
@) s (@) + Fala))? =r-G+0H (14,
or, omitting small terms 1
g +ln <— (a: VA1 20222 — 4p(1 + p)))
Ly _Jo D ppoistay () =2 pia) ?
k) 201+a)) k" (1420l (14 2p)x + /(1 4 2p)%2% — 4p(1 + p)
(36) 2(1+p)
4 in particul (41)
and, in particular
'n particu Proof: Let0 < p < pu, k = pn, m = O(n'*7), where
1 Jo 1 ~ > 0. By Theorem 2 and Proposition 8 we have, for some
—In ——=-— 20)H | —— ). ’
ko F®(1) (1+2a) <1+2a> (37) U, = [z, y] ands € U;
In the last equation we have taken into account (59) and the Inb(z, y) = In folCl ] (42)
identity ) mf®)(s)
1 1 We plan to proceed by substituting in this estimate (36) together
2In2—-2(1+a)H < ) +2(1+a)H < ) with (28). Note that sinces — z = o(n~!), the difference
2(1+a) l+a In f®(y) —In f®(z) = o(k); hence inequality (42) is still
— (1+20)H < ) asymptotically valid if we replace with z. From the proof of
1+2a/) " Theorem 4 we see t?at the estimate in (28) is nothing else than
Note in passing that (37) leads to the following result. ~ £*(1) timesexp{— [ - dz}, where the integral is the same
as in (28). Hence by (36)—(37) we get
Proposition 8: Let € R be a number such that 1
1 111 b($)22lﬂ// 2(1-"‘2@)6[2}2
7’>(1—|—2@)H<1+2>. 38) a2+ y/a?z? — (1—2%)(1+ 2a)
a 1
—k(1+2a)H <—> +1n |C|.
Thenln(f®)(1)/e* fo) < 0,i.e.,e*" f is exponentially greater 1+ 2a

than £(1). (Alternatively, to derive this use (36) together with (28) and the
identity after (37).) To complete the proof it remains to change
the scaling according t2ak = n, 2ap = 1 and use the expres-

) sion (30) for the resulting integral. O

Remark: Note that

Ry = (1 + 2a)H <
1+2a Note that/(n, z, p, ¢*®) is monotone increasing aR.
is the KL bound (3), (4) renormalized to= pn. So this propo-
sition says that as long ads greater thark;;, bound (19) with
f = f%®(x) is dominated by thdirst term. For fixedR this

holds as long ag < px.

Remarks:

a) Let us see what happens with the lower bound on the dis-
tance distribution if in Theorem 2 we use estimate (29) instead
of (28). The answer, not quite intuitive, is that instead of (41)

Let us return to the main topic of the section. Again by there obtain in (40) the random distance spectrum (34). In other
Christoffel-Darboux, the coefficient§ are nonnegative. Fur- words, there is a point(p) < = < 1 at which the logarithm
ther, f®)(z) < 0 for = € [~1, s]. Finally, observe thaf*)(z)  of the distance distribution asymptotically at least equi(s).



1954 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

0.5 The bound on the rat& of a codeC' such thai(z, y)| < « for
(@) any two pointsz, ¥ € C, has the form [21]
(b) p
0.4 R<25+p)H [
<2(6+p) <6+p)
wherep = (6/2)((1 —x2)~*/2 —1). The bound on the distance
0.3 distribution has the following form. Let, be the root of
R=2(6+p)H(p/(6+ p))
0.2
and letp € [0, po) be a fixed number. Then there exists a point
0.1 z, (4p(6+p) = 6%)/(6 +2p)? < 22" —1< 1
such that
ts _
0.2 0.4 0.6¢,, 0.8 1 ¢ = cosd ln b(x)Zln%
22 _
Fig. 3. Bounds on the distance distribution of codgd = 0.5). (a) = hlw;j”a —2In P,?”B(ZQTQ — 1)+ Rn+o(n) (43)

“Random” distance spectrum (34). (b) Bound (41). (The first curve from

below corresponds tp,; = 0.179.) The remaining three curves are drawnyhereq andg should be chosen as specified above. Wiite:
for p = 0.139, 0.099, 0.059, respectively);ts; = 0.795—the Shannon . 8 k

(Varshamov-Gilbert) distance;,; = 0.675—the KL distance. ak andj constant, (21) yields, ~2%% Next we substitite
b = 0in (25) and integrate (using Mathematica) to obtain the

Indeed, let us use (19) or its corollary (42) together with (29§xpression at the bottom of the page. Plugging all this into (43)

Again taking into account (36), we obtain and substituting: = pn, a = 6/p, we obtain an exponential
lnb(z, y) = In|C| + kaln (1 — ) lower bound on the distance distribution@f

Codes in the real Grassmann spégg ,, recently attracted
1 interestin geometry [12{+;, ., is the manifold of:-dimensional
“lnb(z) Zlny1—22+R. linear spaces iR™ passing through the origin. The case- 1
n corresponds to the real projective spae™ 1.

Rescale the above inequality usitgk = n. This gives

Since estimate (28) is better than (29) exceptfer ¢ where
they are the same, Theorem 9 gives a lower bound (in factBa Regularity Properties
family of lower bounds) on the distance distribution at least as
strong as the average distribution. At this moment it is instruc- In this part of the section we prove a few results that hold
tive to consider Fig. 3 which visualizes this remark. uniformly for most local distance densities in the code. Together

b) Projective SpacegCodeS in the Comp|ex projective spacéVith Theorem 9 these theorems will be used in the next section.
PC"~! with distance measured byz, y)| are also known as  Let us define theeffective distancef the code as follows.
families of sequences with small cross- and autocorrelation [2B)gfine a partition of the intervaky = 0, u,, = #(C)] into
For this reason their properties are of interest to coding theopggments of equal leng®(;-)

It is possible to use polynomials of the form (35) to write out

lower bounds on the distance distribution of codesPii"—* Uo = uo, ], Ur = [u, wal, Ut = [im—1, wim]. (44)
and other prolec_tlve spaces mentioned in the end of Sectlonr_lb.r a code vectoe € C let

Let us outline this derivation.

LetC c PX"! be a code of ratd?, whereX = Ror C |y . / 1
or H. Let k& = pn. Together with the definitions of = «/k Ot o) = {c €Cits{ee)<t+O n)Jf (45)
andé (see the end of Section Il) we then obtain= 6/p. The
maximal zero ofP{"“(y) converges to Further, let
(CL 0) _ 4(CL + 1)2 - CLQ . 4p(5 + p) — (52 Cz = {C e C. (C(uz, C) 75 (Z)) and‘v’j>i(0(uj, C) = w)}
A5 =0 22 T (51202 (46)

PO (y) = I a )_gm2w+D@—1%Hﬂy+D+aJ¥O+yV—41+@O—y%
k 2

1+a 4a?

u+@H<

a+2m4M1+ayﬂﬁu+yy+@+aNM%1+m2—41+@u—y%
2 4(a +1)2

+o(k)  (g(a,0) <y <1)
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There are at mogb(n) such subset€);; they all are pairwise- Hence in particular, there is a poiéae C such that
disjoint. Theeffective distancef C (measured in cosines) is

1
defined as be(usy, C) 2 J <n’ —_— |C; )|> .
v=v(C)=u <<= |C|2]|Cj], j#i.

_ _ Obviously 2bz(w;,, CV) > ba(u;,, C). Then by definition,
Let C1) = ; for this value ofi. It is clear that|C'")| > e L,  contradicting the fact that all the subséis 0 < i <

|C|/©(n), i.e., exponentially this subcode has the same sizg. — 1, are cast away fronV . To complete the proof recall
This proves the following lemma (below we omit the unessentiﬂ{at|c(1)| > |C|/n. n

constant in®(n)).
() This theorem establishes the existence in any code of a sub-

Lemma 10:Let C C 5™ ! be a code. Then there exists &ode with many neighbors in the vicinity of every code vector,

subsetC) C C such thatt(CV)) = »(C) and every vector e, some kind of distance invariance in the neighborhoad of
ce CW has a neighbot’ € C(v, ¢). Moreover,|[C™ | > |C|/n.

Since|CM|L|C|, Theorem 9 implies that for somethere V. PROOF OFTHEOREM 1
is a point in the partition (44) such that the exponent of the av-
erage distance density 611 is bounded below by the func-
tion j*(u;, p, R). In the next theorem we isolate a subcod
Cc® < ¢® of the same exponential size &with some ad-
ditional properties. Namely, since we will ha&C?) = R, _ . Juct
Theorem 9 implies that for somethere is a point in the par- {2nces on the sphere of radiugAn will be denoted byl, ,

tition (44) such that the main term in the exponent of the a@nd so on, to distinguish them from distances on the unit sphere
erage distance density 6€2) is bounded below by the function (&> @; - --)- Clearly,d = dov/An, and so on. By’ we denote
*(u;, p, R). We prove that on top of thi§® can be chosen in the projection oiW on the. concentric unit sphe&~*. Obvi-

such a way that all thiecal distance densitids (u;), ¢ € C2, ously, angular distances i and V" are equal. Let

have at least the same exponential growth*ds;, p, R). Of

course/(C) £ 1(C). w0~ fyew:m-6 () < ja—yl ).
Theorem 11:Let C be a code of ratédk and distance = "
t(C). Let p, 0 < p < pui, be a fixed number. There exists

a subsetC® ¢ ¢ ¢ ¢ such that|C®| > A |C| and o _ . .
| |2 5=|C ring C(¢, ¢) defined in (45), with the obvious relation between

t(C®) < v(C). Moreover, there exists a number 7(p) < _ _ .
« < 1, such that the average distance densitgi® satisfies t_andw. Dﬁtances I andC’ are connected by the scaling
w = wov An.

b(u) > J(n,u, p, |C|/n) and for every vectoe € C@ the
number of its neighbors i@

As in Section |, lef? be a code on the sphereRf of radius
gV An, whereo? is the noise variance and is the signal-to-
noise ratio in the channel. In this section, we work with Eu-
clidean distances in codes rather than with inner products. Dis-

Note that the projection &% (w, &) onS™~! gives the spherical

For the rest of this section we assume that the fatd W is
betweerD and the channel capacifyand does not approac¢h

1
be(u) > = J <n, u, p, H) . (47) asn grows. Let
2 2n
Proof: Below we denote the average (local) distance den- o 1 - B
sity of a codeD at a pointz € [—1, 1] by b(z, D) (resp., be(w', W) = WH(@‘, y) € C7[w' < [l -yl < 7wl

be(x, D)).

We begin with the cod€®)  C constructed in Lemma 10
and show that it is possible to choo§€? as a subset af’(1).
Let

be the local distance density relatedatoe W. As above,

we omit one of the arguments and writg,(w) if W' =

. om w — ©(—=). The local distance distribution is by definition

L; = {c e CW: by(u;, Oy > = J <n, ug, P, | |>} B.(w) = b,(0, w). The average values of these functions
2 2 over the code will be denotddw), B(w). They are monotone

(0<i<m-1) nondecreasing functions af. We have

where(u;)7%,, is a defining sequence for partition of the form

(44). Ifthereis ani, 0 < i < m—1, suchthaL;| > ;- |CW)|, - w2 w

putC® = L;. This choice obviously satisfies the conditions of b(w) =b <1 B 2Ana> =0 <1 B 7) (48)

the theorem. Otherwise, consider the set

m—1

c=cW U L;.
:=0

wherel(-) is the distance function af andw is the Euclidean
distance. By virtue of this relation all our conventions and results
. of the previous section are readily translated into the present
Clearly, |C| > 3|C™)] since the sizgL;| for all ¢ is by as- context. In particular, i (C) is the effective distance ¢ (mea-
sumption at mostl /2m)|CV)|. By Theorem 9 there is an indexsured in cosines), ther(W) = o+/An\/2 — 20(C) is the ef-

0 < ip < m — 1 such that fective Euclideandistance ofiV.

bus,. O) > J <n i p |O(1)|> ~ Below we rely on two obvious facts which are worthwhile to
v = Ve g ) isolate in a separate proposition.
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Proposition 12: Let W be a code and. (W) its error prob- x
ability of decoding (8). LeW” C W’ C W be two subsets of
W. Then ¢

P6<W>z|1W| S PR\ D, W) (49)
zEW

2|1W| S Pr(R"\ D(z, W'))  (50)
TEW?
whereD(z, -) is the Voronoi regior(7).
Proof: The first inequality follows by putting in (8)

Pr(D(z, W)) = 0 forz € W \ W”. The second one holds
true sinceD(xz, W) C D(z, W'). O

Suppose for a while that’ possesses the regularity prop-
erties discussed in the previous section. Namely, every vector
in W has a neighbor at an effective distamg@V ) equal to its P
minimum distancel(W), and if b(w) is the average distanceriq 4. 1o the proof of Lemma 13: We need to find the probability that the
density of W for a certain value ofv then for all the local den- received vectoe is in the stroked area.
sities we havéh,(w) = b(w).

Let us assume that € W is the transmitted vector (thisto compute the last probability in (52). Let,, ¥, be two
condition is omitted from our notation below; it should be alcode points inW (w, «). As mentioned above, the noise in
ways kept in mind) ang € R™ is the received vector. Sup-the channel is a product of independent and identically
pose that for som& the setW (w, ) is nonempty and let distributed (i.i.d.) Gaussian variables, each affecting the cor-
b(w) = |W (w, z)|. By (8) and Proposition 12 we have responding coordinate of. Let us have a closer look at the

P(W)>b(w) min Pr(ze Dy, (W(w, z)Ux))). probabilities of error events that outpgt or ¥, as a decoding

yeEW (w, x) (51) result. These probabilities are completely determined by the
_ airwise distances in the triple, ¥,, ¥, and the relative
:?;gébeilig/éﬁoﬁ ?_Ztany code vector and let us bound the la tistances between and these three points. Therefore, we can
' restrict our attention to the secant pladeefined byz, y,, ¥,.
Ro(y) ={z e R™: |ly — || <lz — 2||} Let us introduce affine coordinates R in such a way that
be the half-space of points closergahan toz. We have the the origin is located a#, the first coordinate vector is given
following chain of (in)equalities, which is just a one-step incluby the directiony; — x, and the first two coordinates form an
sion-exclusion argument: orthogonal basis foP, making it into a linear space. Now let
Pr(ze D(y,, (W(w, ) Ux))) us writey;, », 21N thgse coordmatgs_and restrict our attention
to the planeP, ignoring the remaining: — 2 coordinates

=Pr(z € Rz(y,)) (i.e., projectz orthogonally onP). Denote the corresponding
- Z Pr(ze[Ry(y, )N(D(y,, (W(w, z)Uz)))]) two-dimensional vectors by, ¢;, e. Note thate is a random
v, EW (T, z) vector in? whose coordinates are i.i.d. Gaussian with mean
Y2 7Yy zero and variance?. The resulting picture is shown in Fig. 4,
=Pr(z € R.(y,)) where0 corresponds te.
_ Z Pr {z € Ru(y,) N Ry, (yQ)} Let us proceed Fo estimate the last probability in (52). This is
—~ done in the following lemma.
Y, EW (w, )
Y2701 _ Lemma 13: Lety,, y, € W(w, z) be two code vectors at a
> Pr(z € Ra(y,)) — (b(w) - 1) distancel|y, — y,|| = d(W). Then

-Priz:[lz —z|| = [y, — 2l = |ly. — 2] and

_ n w>
lws—woll =A%)} 2 Prlz: e — 2l 2 iy — 2l 2 g — 2} e (—GQQ
3

where the last inequality follows since the case of ) (
dist(y,, ¥,) = EQ(W) whereG = 4@2/(4@2 —d (W)).

. . Proof: According to the discussion before this lemma
is the worst one for our estimate.

Observe that the distance betweeandy,, ¥, lies between Pr{z: ||z — z|| > ||y, — 2| > ||ly. — 2|}
w— 6(1//n) anc_im. Since we are deriving lower e.stimates =Pr{e: |le|| > |les — || = ||ez — €|}
on P.(W) (and since the rate is below the capacity of the
channel), we can assume that all these distances egualwhere the last probability is computed under a two-dimen-
Then by the definition of the channel and properties of tt&ional Gaussian noise centeredOatvith variances? along
normal distribution, the first probability in (52) is asymptotic teeach coordinate. Further, we assume that]| equals||e;||
®(w/20)~ exp (=7 /802), whered(-) is the(0, 1) Gaussian and both are exactly”. From Fig. 4 we have, = (w, 0),
distribution function. To boundP.(W) below we still need ¢; = (W cos ¢, w sin ¢), where¢ = 2 arcsin % is the angle
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betweere; ande,. Suppose that = (z, ¢). Then the condition ~ Now let L(w, d) = min(b(w), b(w, d)). By the above ar-

thate is closer tae,; than toe; yields the inequality gument it is clear that
(& = cos ¢)2 + (y — @ sin ¢)> < (& — @) + 3 P.(W) = L(w, d)Pr(z € D(y,, (W (w, x) Ux)))
ora:% < y < co. Further, since is closer tae; than to0, for any fixedy, € W(w, ). O
we also have} < z < oc. Denote the required probability by | emma 14 gives a lower estimate for the expression on the
p- Then asw, d(W) - right-hand side in (51). Recall that by Shannon’s minimum-dis-
1 eo _ = eo _2 tance bound (12) the error probability is bounded below by
= 902 /w/2 e 2 /1, .y ¢ 27 drdy the the probability of confusing two code vectors at a distance
oo e d(W). Therefore,
n__ Smd / e 4 2
2ro(1+cos @) Ji/a z P.(W) > max <exp <——2 + o(n)) )
: oo 2 8o
sin ¢ _s2 dy
- 2n0(1 + cos ¢) /— ¢ m w
L, wVG/2 - L(w, d) exp <_8_2 + o(n))) (55)
w T
< 82 provided thaf¥ is a distance-invariant code (hete= d(17)).
where we have used the identity However, generally¥ is not distance-invariant. Therefore,
1 9 we have to employ the asymptotic regularity results in the pre-
G=1+ ﬂ, O vious section. By Lemma 10, starting frdi, one can construct
sin” ¢ a subset of code vectoF& () of rate R in which the minimum

Note that (52) is only nontrivial if the second term is smalledistance equals the effective Euclidean distance. This is done by
than the first one. This restricts the number of code points thaking the cod€, isolating in it the subse&t(*) whose existence
can be taken into account in this estimate. In other words, iByproved in Lemma 10, and lifting it back to the sphere of radius
some situations in our estimate we can only rely on a subcagl¢/An. In this way, each vector if”1) will have a neighbor
of W(w, z). In the next lemma is a short notation fod(W). at a distancel(W ) = m(W). Further, by Theorem 11, it is
possible to isolate i (1) a subseW (®) such that

Lemma 14:
_ w2 ) (1/n)ln (W3] — R;
P.(W) > L(w, d) exp <—@ + 0(%)) (54) i)y dW®) > dwdy;
whereL(w, d) = min(b(w), b(w, d)), and and, for a certaif = wov/ An,
2, i) its distance densityb(w) is bounded below by
bw d)=oxp | — LT J(n, 1= (1/2)w?, p, |C|/(2n2));
8o2(4w? — d) iv) for eachz € W@ (w, z) the subseW () (w, z) satis-

Proof: For the inequality in (52) to be nontrivial we need fies

the inequality at the bottom of this page. lits, d) be equal WM (w, )l EeXP(ﬂj*(l—%w27 p, R)—o(n)).

to the right-hand side of this inequality. #(w) < b(w, d), ] ]

then we can substitute(@) in (52). Otherwise, in this estimateHerep € [0, pu(R)] is a fixed number and; depends om.
we only take into accourtt(w, d) code points froniV (w, z), BY Property i), the average densityw) is bounded below by

which is possible by Proposition 12. J(-). If it is exponentially greater thad, this only improves
Since our estimate, so the case of equality assumed below is the worst
one. Moreover, by Property iv), for this all the local densities
Pr(z € Re(y,))~ exp(—w?/8c?) have at least the same growth. Again the equaliffic) = J

assumed in the derivation of this section is the worst case, so our
course of action is legitimate. The same applies to the equality
N w2 T d(W) = (W) of the minimum and effective distances as-
b(w, d)~ exp <—@(1 - G)) = exp <m> * sumed above.

o - d) We will use subcodd? (? to estimate from below the first
Observe thab(w d) is a growing function ofi. Therefore, in and the second terms in (55), respectively. In doing so, we rely
the worst (for our estimates) case we must assume that evenyProposition 12. Letl = d(W) < d(W®)) < d(W®),
pair of vectors il (w, x) is at a distancd apart. Since(1/n)1In |W®)| — R, the minimum-distance bound (12)

we obtain

Pr(z € Ra(y,)) )
Prle: [lo — 2 > v, — 2l = > — 2]l andlly — gl = dOW)}

b(w) =
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still gives the first of the two terms in (55). Let us estimate théecoding { equals the covering radius of the code) it is not pos-

second term. Lep be fixed andw be the same as in the defini-sible to write the error probability as a function of the distance

tion of W2, We assume that ranges ovetV(? and consider distribution, but is possible to estimate it. This is in contrast to

only decoding errors producing code vector$in') (z, w). By previous works which relied only on the minimum distance of

virtue of Properties i)ii), iv) o#¥ (?) and (50) we have the code, and explains improvements in upper bounds on error
_ w2 exponents in [3], [25], and the present paper.

P.(W) > L(w, d(W®))exp <—8—2 + o(n)>
_, 7 APPENDIX
> L(w, d) exp <—% + 0(71)) . (56) JACOBI POLYNOMIALS

To complete the proof of Theorem 1 it remains to write ev'li\' Further Properties

erything in terms of distances on the unit sphere. AgairClet The explicit expression fda,f"ﬁ(a:) has the form

be the code obtained by projectif on the concentric unit ‘ ‘
ke a) <IZ+ ﬂ) (@ +1)(z — 1P
1 —1

k
sphere. Then, taking into account (55) and (56), we obtain P,f“" (x) = o~k Z < L
=2 -
d =2 0 (57)
This implies the following useful relation (the forward shift op-

1 . -
JEE— << S —
" In Pe(t[)~1n1n< 802" 852 +In L(w, d))

22 w? erator):

R , 1 ,

i < Agy —Ag +In Lw, d)> ’ % PP (z) = sk rat s+ DR ). (58)
where0 < d < dy, From (57) one obtains

. Ad?w? . 1 o k+a
L(w, d) = min <exp<m> 5 J <1 — 5 1,(]27 0, R)) 3 Pk 7!8(1) = < o ) (59)

w,d < w < V2(VI+p — /p)/VI+2p, is the weight of Itis known thatP{ 7 () satisfies the equation
“‘wrong” code vectors;™ is defined in (41), ang € [0, p(R)]  (1—a)y/"+ (B—a— (a+B+2)z )y +h(k+a+p+1)y = 0 (60)
is any fixed number. Inequality (14) is now immediate. [ PonnomiaIsP,f"a satisfy the Christoffel-Darboux formula

a, 8 k
Wy Lk 1 1 fe! [
VI. DISCUSSION k I + Z — P ”8(37)Pi ,,a(y)
The polynomial (“linear programming”) method in coding » i=0 Yi
theory was introduced in the founding works of Delsarte in _ P,fjr'f(a:)P,f“@(y) — P,f"a(a:)P,fjrf(y) 61)
1972-1973. Its applicability to bounding the size of codes (and - T —y :

designs) was extended by Delsarte, Goethals, and Seidel [15],

[16] to include the spherical case. Kabatiansky and Levensht&n Proof of Theorem 3

[21] developed a general approach, based on harmonic analysi§e need a result from Sturm’s comparison theory [35, p. 19].
of noncommutative compact groups, to deriving bounds on ) i .
packings in a very broad class of homogeneous spaces. Oufheorem 15:Let f(z) andF'(x) be functions continuous in
paper further extends the scope of the polynomial methath < ¢ < Xo with f(z) < F(z). Let the functiong(z) and
Though technically speaking it is devoted to the proof of (¢) satisfy the differential equations

Theorem 1, on a more conceptual level it involves a large circle y' + f(z)y=0 and YY"+ F(2)Y =0,

of ideas some of whose consequences are yet to be realizededpectively. Let’ andz”, 2/ < z”, be two consecutive zeros

particular case of the linear programming method studied ¢ (). Then the functior’ () has at least one root in the
coding theory hitherto relies upon the equaliyf = [ dB(z), intervals’ < z < z".

where B(z) is the average distance distribution, and positivity
conditions of the form (18). However, many other functionals
of primary interest to coding/information theory, notably, thel

From (22) we have
0 1 1 ¢

error probability of decoding, can be written as, or are relateg In [P ()] = % In Ly + k Z In fo — i, T # b
to, linear forms of the distance coefficients. This enables one to = (62)
study bounds on these quantities in the same fashion as bourggrite the second term in the last expression as
on the size of codes and shows that many information-theoretic
problems have their natural place in the geometric context of
coding theory. Curiously, this possibility has been overlooked i=1 k(ti —tiv1)
for about 25 years until having been explored recently in [3]Note that the segment containir@ives rise to two terms; we
[25], where we studied the discrete case. have omitted one of them since it does not affect the main term

Applications in [3] include bounds on the undetected erraf the answer. Similarly, we omit the last term in the sum.)
exponent, which is directly expressible via the distance coeffi- To estimate the distande — ¢,41, apply a transformation of
cients. The same holds true for error probability of decoding f0) discussed in [35, Ch. 1,4, esp. p. 67]. It can be checked that
to any radiusgt for which the spheres around code vectors atbe function
disjoint. For larget, and in particular, for maximum-likelihood w(z) = (1 — 2)@TD/2(1 4 2) D2 P ()

< In |z — ;]

(ti — tig1). (63)
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satisfies the following equation: the computations below we have suppressed supersatipts
W + N(z)u=0 (64) We have

where , , K
_szll—a LL11-p Jﬂ@:LdJ@—m

4(1—-x)2 4 (1+x)? i=1

+k(k+a+/3+1)+(a+1)([3+1)/2 S0
1-— 372 ’ y k
The set of zeros af(x) is the same as P, A(z). Sincek — Bilz) = !
oo, the quantityt; — ;41 is o(1); so we also have Bi(e)  Hw—t
%N(ti) - %N(tiﬂ) <1 +0 <%)) . and

/ 1 _ /\2 k
Note that (1/k2)N(q(a, b)) and (1/k2)N(—q(b, a)) both di % _ w oy L
vanish ask — oo and that in the limitN(z) > 0 for ok k o -t

x € (—q(b, a), q(a, b)) and N(z) < 0 otherwise. The idea (65)

= —kO(e;?).

is to replace equation (64) in the segmét ., t;] by an ThiS gives
equation with a constant coefficief; its solutionsin v Nz pr P2
will approximate the required distance. il S <—"> — kO(ex?).
More specifically, let B By
Nai= max N(x) Now consider (60) in a segment wheyénas no zeros. Then it
€[t ti] can be rewritten as
Nyi= min _N(x) N4 o
w1, ] (1-2)—+(B—a—(a+8+2)x)=+k(k+a+5+1) =0.
(typically, the extrema are attained at the endpoints of the Y Y

segment sinceéV’(x) has at most a constant number of sighety = P, andu = % Then we obtain
changes). Applying Theorem 15, we obtain (1— 202+ (B—a—(a+B+2)2)u

s s
—— <t -t < i .
7eiA Y FEE+ ot B+ 1) — KO 2)(1 — 2%)] = 0.
In particular, this implies that the distance between consecutiygjs is a quadratic with respectto Let us use (58) and (59) to
zeros falls ag—'. Letz € (ti41, t;) be a point such thaf —  compute
tiy1 = v/+/N(z). Then we have o o
= /YN T (FEPQ)Y _k+atpt+1 P
) = NG PR 2 P
_ ™ Ckta+8+1 (G5
1+a+b+ab/2 a? 12 - kta
\/ 1—t2 ‘ +4(1—t§) o 4(1+t§)+0 (%) 2 ( o )
_ w k(k+a+8+1)
o \/1+a,+b—|;ab/2 Lo_at ¥ B 2(a+1) .
1=t A=) A1) On the other hand, taking in the form of the equation shown
. <1 +0 <1>) . at the bottom of this page, we compute
_— . k . k(k+a+p+1)
Substituting this into (63) and letting — co, we observe that u(l) = 2a+1)

the sum in (63) converges to the integral in (24). Using this LPo establish that the choice of the sign in the solution of the

(Gi)btvéetf?gtt?mst h;rggsgnué:idgi/?sr?ﬁzlcgact value for the m.’;\t(%]%wjmltiC equation is uniform over € (g(a, b), 1], observe
term of the exponent oP,f"B(a:) forallz £4,1<i<k at the only zero of the expression under the square root in this

interval converges tg(a, b). So the second term in the formula

C. Proof of Theorem 4 for u(x) does not (for largé) becom_e zero far € (q(a, b_), 1];
w3 hence by continuity ofi(x) the choice of the sign is uniform.
As above, let; > --- > ¢, be zeros ofP,"". Let ¢, = k77, Now observe that
0 < v < 1/2. We consider only the case€ [q(a, b) + e, 1] d
since the case € [—1, —q(b, a) — €] is almost identical. In u= - lny(z)

Clat(atpiDe—p) V@t atBr2e— B2 - 40—kt +at+ B+ 1)~ O )1 - 22)]
U,(.I) - 2(1 _ 372) - 2(1 — 372)
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whence we get fog(a, b) + e, < 2 < 1, e~ = o(Vk) i.e., a segment of the straight line connecting the pdititsn;)
. . and(¢;, 0). Since by assumptio éf"8| for z € [t, t;] is con-
%/ Jln Pk(z):/ (a +2((“1+ 12;)_ b) cave, in this segmtent we haj@> “(z)| > v;(z). So letting
= z ? C i pen B2 @ 3
e e e e OO L = / P& (@)1 = 2)*(1 4 2) d
2(1 — 22) i " we obtain forr € [t}, ;]
(66)

ot;
7 2Dz U=t ) [ v de
The final answer is obtained by invoking the boundary condition t

2
(59) and collecting the(1) terms. — (] — o — a _ g oy
1-—z—-0(1)*(14+2z—0(1)) 3 (t; — t,
whereo(1) is of orderk—! or less. This gives
2<3(1—2—o(1)™ (1 + 2 —o(1))Pw P (t; — i)t

R—

)

D. Proof of Theorem 5

First letg(a, b) < = < 1. We know that in this segment m

|P2?| is monotone increasing. Let us partition the segmeRfoving the theorem.

[¢(a, b), 1] into m equal subsegment$ and denote their end- E. Proof of Theorem 6

points byuy = ¢(a, b), w1, ..., Upm—1, 4, = 1. Note that in
this segment.(z) is a falling function (recall that: > 3). For ~ To obtain part a) from (27) let us break the integral in (24)
x € [u;—1, u;] we have into two terms
.0 .q
1- (J(a/a b) o, 8 ¢ —
o | PP () i) Y 7(1"‘ o
m—1
< Z ]-_q—M|Pé“8(U/7‘)|2N(U/7‘+1) Changing the variable — —= in the integral ovef—g, 0] and
= m * ’ ’ simplifying, we arrive at
1 0 7 In(z + 2)v/2a+1— (a+1)22
</ |P§”8(x)|2u(x)dx<w;j”8 / dz:/ ( )\/1 5 ( ) dz.
q(a,b) —q 0 -z

This leads to the integral in (27). To complete the proof of part

e e e 1% 117 ) we hve o deriean syl epressen o e s
which (26) is violated, the lower Darboux sum will also expo(—:oeﬁ'c'emL’“' Fora =bitis easy to see thall,~2 (k/2) :
nentially exceedv;"”, a contradiction. S0 1 1
The argument for-1 < z < —q(b, a) is a slight variation of ~Inly=-l2+2(a+1)H <7> + o(1).
the above since the segment may contain the maximymnot k _ 2(a+1) o
Then one must be careful in choosing the pointto substitute  Part b) follows directly from (25) upon substitutirg= a.
in the Darboux sum above; otherwise, the logic is the same. I (28), we have moved thg'- to the denominator to underline
Now let —q(b, a) < = < qla, b) and letty < 1 <--- <t that the integral does not hgve a smgulantya.\t 1. .
be the zeros oP,f""(a:). Likewise, lett/, 1 < ¢ < k— 1, be the Part c) follows upon writing the asymptotic expression for

zeros of PAHE AL (z). Letm; = |P®?(#))] be the values of @ - FT0m (21) we obtain

the maxima of P ? ()| (58). Obviouslyt;y; < t; < t;, 1< ok 22Tk +a)
i <k—1. BTk + DI(k + 2a)
From (60) we have fox = t; From the Stirling formula we obtain the following asymptotic

/

equality(p — oo):
= Sk 2 In(2°I'(p)) = ln ['(2 1
y”_oc—i—(oc—l—ﬁ—l—Q)—ﬁ _ n( (p))—n (2p) + o(1).
So, neglecting the vanishing terms

i.e., at these pointg’ andy” have the same sign. Hence for 1 1 9=k (2 + o))
. . . 8 . . @,

every intervalt; 1, t;] the function P.” “(z)| is concave either 2 Inw, = = T In Tk + 20)

forz € [t], t;] or forz € [t;41, t;]. We will treat only the first

case; the second one is analogous. =—2In242(1+a)H < 1 ) . (67)
By Theorem 3, the functior(1/k)In |Py(x)| converges 2(1+a)

pointwise to the limit function (24), which is continuous for allThis completes the proof.

x € [—1, 1]. Therefore, the quotier{tl/£) ln 1,41 /m; tends

to 0 ask grows. Then by (22) we see thét — :)~! grows ACKNOWLEDGMENT
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