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band-limited functions. The decoders are still convolutional, and thus
democratic; in his construction, the rate of the exponential decay of the
error, shown here to be necessarily strictly inferior to1, is smaller than
1 by several orders of magnitude.
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Error Exponents of Expander Codes

Alexander Barg, Senior Member, IEEE,and Gilles Zémor

Abstract—We show that expander codes attain the capacity of the bi-
nary-symmetric channel under iterative decoding. The error probability
has a positive exponent for all rates between zero and channel capacity.
The decoding complexity grows linearly with code length.

Index Terms—Expander code, iterative decoding, Ramanujan graph.

I. INTRODUCTION

Constructing families of codes of growing lengthN with low error
probability and large minimum distance is one of the main problems of
coding theory. The first result that gave us codes together with a poly-
nomial decoding algorithm that achieves an exponentially small error
probability goes back to Forney [3], and relies on a concatenated con-
struction. Specifically, it states that for any" > 0 there exists an infinite
family of easily constructible codes of rateR that are decodable with
complexityO(N2) and error probabilityPe � 2�Nf (R; p), wherep
is the bit transition probability of the binary symmetric channel and
where

f1(R; p) = max
R�R <1�H(p)

E(R0; p)(1�R=R0)� ": (1)

HereE(R0; p) is the “random coding exponent” [4] andH(�) is the
binary entropy function. Thus,f1(R; p) > 0 for all ratesR up to the
channel capacity. A similar idea was used by Zyablov in [10] to con-
struct codes with polynomial decoding complexity and relative distance
arbitrarily close to

�(R) = (1�R=R0)H
�1(1�R0) (R � R0 � 1): (2)

Thus, for these codes we have�(R) > 0 for any valueR of the code
rate 0 � R < 1. These results underwent a number of improve-
ments (surveyed, for instance, in [2]), but until recently no codes were
known with lower decoding complexity and nonvanishing relative dis-
tance and/or error exponent for nontrivial values of the code rate.

The first result of this kind [7] gives us a family of codes, based on a
graph-theoretic approach of [8] and constructions of Ramanujan graphs
[5], [6]. The result is as follows.

Theorem 1 [7]: For any" > 0, there exists a polynomial-time con-
structible family of codes with distance��" and rate1�2H(

p
�) for

which any� < �=48 fraction of errors can be corrected by a circuit of
sizeO(N logN) and depthO(logN). The complexity of a sequential
implementation of this decoding isO(N).

This result was a remarkable novelty because not only did it decrease
the complexity of decoding but it was also the first time that concatena-
tion was not used to construct families of binary codes with a nontrivial
rate and a nonzero relative minimal distance. It implies the existence
of linear-time decodable codes withR > 0 for 0 � � < 0:0121.

Sipser–Spielman’s decoding algorithm was modified in [9] where
the factor48 was improved to4. In the present correspondence, we
study the error probability for iterative decoding of expander codes and
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modified expander codes that we shall introduce. We shall use the de-
coding algorithm of [9].

Our main result is as follows.

Theorem 2: For a given rateR, any" > 0, and� < 1 there exists
a polynomial-time constructible family of codes of lengthN such that
Pe(C; p) � 2��Nf (R; p), where

f2(R; p) = max
R�R <1�H(p)

E(R0; p)(R0 �R)=2� ":

The decoding complexity of these codes is the same as in Theorem 1.

Thus,f2(R; p) > 0 for all 0 � p < 1 � H(p). Comparing this
result with (1), we see thatf1(R; p) > f2(R; p) for all R; p, so in
terms of error probability expander codes do not surpass concatenated
codes, but they do give an alternative to classical concatenation and
they have a lower decoding complexity.

II. HARD ITERATIVE DECODING OFEXPANDER CODES

A. Code Construction, Notation

Setup—The GraphG, Vectors, and Subvectors:LetG be a bipartite
graph with vertex setA [ B wherejAj = jBj = n and where every
edge ofG has one endpoint inA and one inB. Any vertexv 2 A (v 2
B) will be called left (right) vertex. LetE be the edge set ofG. The
neighborhoodof a vertexv, denoted byEv , is the set of edges incident
tov. SupposeG is�-regular, i.e., the neighborhoodEv of any vertexv
contains exactly� edges. The total number of edges is thereforeN =
�n. Number the edges ofG, i.e., letE = f1; 2; . . . ; Ng, and for any
vertexv definev(1); v(2); . . . ; v(�) to be some ordering of the edges
of the neighborhoodEv of v. Letx = (x1; x2; . . . ; xN ) be any vector
of f0; 1gN . The neighborhoodEv of every vertexv of G induces a
subvector ofx of length�, namely,xv = (xv(1); xv(2); . . . ; xv(�)).

The CodeC: For everyv 2 A [B, letCv be some code of length
� and dimensionkv . Let us define the codeC to be the set of binary
vectorsx = (x1; x2; . . . ; xN ) of f0; 1gN such that for every vertex
v of G, xv is a codeword ofCv . To keep the construction manageable,
one usually choosesCv among a limited set of small codes, e.g., one
setsCv = C0 for a given fixed codeC0; asymptotic behavior can then
be studied by letting the number of verticesn of the graphG go to
infinity. In this correspondence, we shall use two constituent codesC0

andC1 of length�, and we shall setCv = C0 for every left vertex
v 2 A andCv = C1 for every right vertexv 2 B.

Parameters: Let [�; k0 = R0�; d0] be the parameters (length,
dimension, minimum distance) ofC0 and[�; k1 = R1�; d1] be those
of C1. LetK = RN be the dimension ofC. The codeC is linear and
its redundancy is at most the sum of the redundancies of the constituent
codes [8], so that we haveN �K �

v2A[B �� kv . Whence

R � R0 +R1 � 1: (3)

Remark: To obtain a reduction in decoding complexity from (1) and
(2) it is essential to notice that� is a constant independent ofn; thus,
the construction falls in the class of low-density parity-check codes. If
� is allowed to grow, the construction would be similar to the clas-
sical ones; for instance, takingG = Kn;n (a complete bipartite graph)
yields a standard direct product construction ofC0 andC1.

B. Decoding

We shall use the decoding algorithm of [9]. Let us briefly recall its
description. Letx 2 f0; 1gN be the received vector. The first itera-
tion, let us call it a left-decoding step, consists of applying in parallel,
for every left vertexv 2 A, complete decoding of the subvectorxv in-
duced by the neighborhood ofv. In other words, a left-decoding step is

a functionL that decodesx into a vectory = L(x) of f0; 1gN where,
for everyv 2 A, the vectoryv = (yv(1); yv(2); . . . ; yv(�)) is one of
the codewords ofC0 closest toxv = (xv(1); xv(2); . . . ; xv(�)). The
next iteration, a right-decoding step, is a functionR: y 7! z defined
similarly with A replaced byB, andC0 replaced byC1. The next it-
erations alternately repeat left-decoding and right-decoding steps, i.e.,
alternately apply parallel decoding to the subvectors induced by the
vertices ofA and to the subvectors induced by the vertices ofB. This
produces a sequence of vectors, let us call it the decoding sequence

x(0) = x; x(1) = L(x(0)); x(2) = R(x(1)); x(3) = L(x(2)) � � � :

(4)

The procedure stops if it encounters a fixed point or after having moved
O(logN) steps, where the constant can be expressed explicitly via the
parameters ofG; C0; C1. The number of gates at each round is at most
O(N logN).

Without loss of generality, becauseC is linear, we may suppose
that the initial uncorrupted codeword is the zero vector so thatx =
(x1 . . . ; xN ) is actually the error vector. Letx be a vectorx 2 f0; 1gN

and lety = L(x). It will be useful to identify vectors off0; 1gN with
their supports, i.e., think ofx andy as the edge sets of subgraphs ofG.
Let v 2 A be a left vertex. Let us say thatv is a (left)survivorof x if
yj = 1 for somej 2 Ev . In other words, ifx is an error vector, the
survivors ofx are all the vertices incident to the edge set represented
by L(x), i.e., the error vectorafter the next decoding step. Similarly,
let y0 = R(x), and define a right vertexv 2 B to be a (right) survivor
of x if y0j = 1 for somej 2 Ev .

Note that ifx has no left survivors (right survivors) thenL(x) = 0
(R(x) = 0). In [9], it is proved that if the numbers of left survivors of
x is small enough, then the numbers0 of right survivors ofy = L(x)
is strictly smaller, i.e.,s0 � �s with � < 1. By left–right symmetry
(when the two codesC1 andC0 are the same) one obtains that the
decoding sequence (4) converges to the zero vector in a number of steps
logarithmic inn.

Let x 2 f0; 1gN be a vector andv 2 A [ B a vertex. The number
of ones ofx in the neighborhoodv, jEv \ supp(x)j, will be called the
x-degreeof v. It should be clear that we have the following.

Proposition 1: The minimumx-degree�(x) of any survivor ofx
(left or right) satisfies

�(x) � min(d0=2; d1=2):

Define thefan of a codeC as follows:

� = �(C) := min
x2f0;1g

�(x):

We emphasize this parameter rather than write simplyd1=2 or d0=2 as
in [9] because in Section IV we shall give a modified construction of
an expander code that improves upon Proposition 1.

The key result of [9] that we need to recall here can be reformulated
in terms of� as follows.

Proposition 2: Suppose2� > 3� where� is the second largest
eigenvalue of the adjacency matrix ofG. Let� < 1. Then there exists
� < 1 such that: if the numbers of left survivors (right survivors) of
x satisfies

s � �n(�� �)=�

then the numbers0 of right survivors (left survivors) ofL(x) (R(x))
satisfies

s0 � �s:
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Recall that whenG is a Ramanujan graph then�=� � 2
p
�� 1=�

which vanishes when� grows.
The proof of Proposition 2 is that of [9, Lemma 5 and Theorem 6]

with d0=2 replaced by�: we refer the reader to [9] for the details. We
remark that to prove thatL (resp.,R) has the claimed “contraction”
property it suffices to replace� in the claim withd1=2 (resp.,d0=2).

III. ERRORPROBABILITY

Let us submit the expander codeC of the preceding section to the
binary-symmetric channel with transition probabilityp. LetPe(C; p)
be the probability that the iterative decoding algorithm of the preceding
section fails. We wish to study the asymptotic behavior ofPe(C; p),
i.e.,� will be large, but fixed, and the numbern of vertices ofA orB
will be allowed to go to infinity.

The idea developed in this section is that wheneverp is less than the
decoding threshold of the first codeC0, then the first decoding iteration
will leave a very small proportion of bits in error. Therefore, the second
codeC1 need have only a small redundancy for the iterative algorithm
to converge.

The goal of this section is to prove the following theorem.

Theorem 3: For a given rateR, any" > 0, and� < 1 there exists an
expander codeC of lengthN suchPe(C; p) � 2��Nf (R; p), where

f3(R; p) = max
R�R <1�H(p)

E(R0; p)H
�1(R0 �R)=2� ": (5)

Proof: Given a small"1 > 0, let us chose the value of� so
that the error probability of complete decoding of the codeC0 is
bounded above by�(R0; p) = 2��(E(R ; p)�" ), whereE(R0; p) is
the random coding exponent. Furthermore, let us make sure that the
chosen� is sufficiently large so that the assumption of Proposition
2 is satisfied. This is possible since for any rateR0 or R1 one can
choose the codesC0 (C1) of sufficiently large length� so that their
distanced0 (or d1) is much greater than

p
�, so2� � d > 3� (recall

the Ramanujan property ofG). In particular, let us assume that

2�=� = min(H�1(1�R0); H
�1(1�R1))� "2: (6)

Our main point here is that whenever the proportion of left survivors
of a random error vector is strictly less than(���)=� then, by Proposi-
tion 2, the decoding algorithm converges correctly. We have, therefore,
for any� < 1 andR0 > R

Pe(C; p) �
i�i

n

i
�(R0; p)

i(1� �(R0; p))
n�i (7)

where i� = �n(� � �)=�. Note that for any fixed� we have
�(R0; p) < i�=n for � sufficiently large. So the dominating term in
the above sum will be the one withi = i�; all the other ones contribute
to a nonexponential factor only. The opposite of the logarithm of this
term has the form

�n�
�

�
� �

�
(E(R0; p)� "1)� log

n

i�

� (n� i�) log(1� �(R0; p))

� �n�
�

�
E(R0; p)� �

�
"1

� 2p
�

E(R0; p) +O(��1)

� �N 1
2
E(R0; p)min(H�1(1�R0);H

�1(R0 �R))

+O(��1=2):

the second inequality by (6) and (3).

The smallest error probability is therefore obtained by computing
the maximum overR0 of f�3 (R; R0; p) where

f�3 (R; R0; p)=
1

2
E(R0; p)min(H�1(1�R0);H

�1(R0 �R))�"
(R�R0<1�H(p)):

It is straightforward to check numerically that the error exponent re-
duces to

f3(R; p) = max
R�R <1�H(p)

E(R0; p)H
�1(R0 �R)=2� ":

This result already gives codes with positive error exponent for all
code rates less than capacity. In the next section we modify the code
construction and prove Theorem 2.

IV. REPLICATED EXPANDER CODES

A. Construction

We now modify the construction of the codes of Section II-B as fol-
lows: we stay with the same bipartite graphG, we keep its edges num-
bered1; . . .N ,N = n�, and for everyv 2 A [B keep the ordering
v(1); . . . ; v(�) of the neighborhoodEv of v. But this time, we choose
the constituent codesCv (in practice there will again be two of them,
Cv = C0 for v 2 A andCv = C1 for v 2 B) to be of lengtht� for
some fixed integert � 1. The length of the new code will betN . For
a vectorx 2 f0; 1gtN we modify the definition of the subvectorxv to
be

xv = xt(v(i)�1)+j i=1; ...;�; j=1; ...t

so that nowxv 2 f0; 1gt�. The new codeC is defined to be the set
of vectorsx 2 f0; 1gtN such that for everyv 2 A [ B, xv 2 Cv . It
should be clear that ifR0 andR1 are again the rates ofC0 andC1 then
the linear codeC has again rateR satisfying (3). This construction can
be thought of alternately as replicatingt times every edge inG.

B. Minimum Distance

We can view everyt-tuple as an element of the additive group of2 ,
so that, by separating vectorsx 2 f0; 1gt� into subvectors of lengtht

(x1; . . . xt); (xt+1; . . . ; x2t) � � �
and so on, we have a natural additive mapping off0; 1gt� onto
( 2 )�. The linear binary codeC0 (and alsoC1) can, therefore, be
also thought of as a2t-ary additive code. Let us callD0(C0) the
minimum2t-ary Hamming distance ofC0: in other words,D0 is the
smallest number of nonzerot-tuples

xt(i�1)+1; . . . ; xt(i�1)+t�1; xti ; 1 � i � �

of any nonzero codewordx = (x1; . . . ; xt�) 2 C0 (sometimes called
thephased burstsweight).

Consider briefly the case whenC1 = C0. As in [7], we can invoke
the Alon–Chung lemma [1].

Lemma 4 (Alon–Chung):LetG be a�-regular graph onn0 vertices
with second largest eigenvalue�. Let S be a subset of vertices. Then
the average degreedS of the subgraph induced byS satisfies

dS � �
jSj
n0

+ � 1� jSj
n0

:

Let D be the minimum distance ofC and letD=(tN) be its relative
minimum distance. Let�0 = d0=(t�) be the relative minimum dis-
tance ofC0. We obtain the followng theorem.
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Theorem 5: The relative minimum distance ofC satisfies

D

tN
� �0

D0=�� �=�

1� �=�
:

Proof: Any nonzero codeword ofC represents the set of edges of
a subgraph ofGwith minimum (and hence average) degree at leastD0.
Note that heren0 = 2n. Apply the Alon–Chung lemma to obtain that
the number of verticesjSj of the subgraph is at leastn0(D0��)=(��
�) and argue that the number of edges of the subgraph, i.e., the weight
of the codeword, is at leastd0jSj=2.

Note that whent = 1 (the usual case) we haveD0=� = �0. The
point of this generalized construction is that whent > 1 we can have
D0=� > �0 = d0=(t�) in which case Theorem 5 gives an improved
lower bound.

In particular, for large� and larget we get the following result.

Proposition 3: LetR0 be fixed,0 < R0 < 1, and let" > 0. For�
andt big enough, there exists a codeC of lengtht� and rateR0 such
that

1) �0 = d0=(t�) > H�1(1� R0) � ";

2) D0 � (1 � R0)� � ".

To see this, simply recall that, asymptotically, most binary linear
codes lie on the binary Varshamov–Gilbert boundR0 = 1�H(�) and
most2t-ary linear codes lie on the2t-ary Varshamov–Gilbert bound
which gets, ast goes to infinity, arbitrarily close to the Singleton bound
R0 + D0=� � 1. This last fact is classically stated for2 -linear
codes, but the reader will be readily convinced that this carries over
without any difficulty to2t-ary additive codes. Indeed, this follows by
the usual procedure of augmenting the codeC0 with cosets from the
quotient group( 2 )�=C0.

C. Iterative Decoding

We now switch to the iterative decoding of replicated expander
codes. We now again use two constituent codesC0 andC1 of length
t�. The algorithm is really the same as in Section II-B, namely, define
L(x) (R(x)) to be a vectory such that for everyv 2 A (v 2 B)
yv is one of the codewords ofC0 (C1) closest toxv . As before, let
the decoding sequence of a vectorx 2 f0; 1gtN be as in (4). Let
y = L(x) andy0 = R(x) and define as before a left (right) survivor
of x to be a vertexv 2 A (v 2 B) such thatyv (y0v) is a nonzero
vector off0; 1gt�. Finally, let thex-degree of a vertexv 2 A [B be
the number ofj 2 Ev such that the subvector off0; 1gt

xt(j�1)+1; xt(j�1)+2; . . . ; xt(j�1)+t�1; xtj

is nonzero.
Proposition 1 can now be replaced by the following.

Proposition 4: The minimumx-degree�(x) of any survivor ofx
(left or right) satisfies

�(x) � min(D0=2; D1=2):

Proposition 2 (see [9, Lemma 5]) is really a pure graph-theoretic
statement, and it continues to hold when� is now the new minimum
value of�(x) whenx ranges over allx 2 f0; 1gtN .

We can now replace� in the upper bound (7) on the decoding error
probabilityPe(C; p) by any quantity arbitrarily close to(1�R1)�=2.
Otherwise the calculation in the proof of Theorem 3 is unchanged,
which finally establishes Theorem 2.

V. COMMENTS

1) The decoding algorithm of [9] and Section II-B is especially
adapted to parallel computations. As in [7], however, it can be
adapted so as to yield a sequential algorithm with complexity
O(N). Here is a simple way of doing this. Let the firstL it-
eration be executed sequentially, i.e., one decodes, one after the
other, every subcode associated to every one of the vertices ofA.
Note that when this is done, every left subvectoryv ,v 2 A, of the
resulting vectory = L(x) has zero syndrome. LetS(y) � B be
the set of right verticesv for whichyv hasnonzerosyndrome. Let
z = R(y) be the vector after the next iteration, and notice that all
the left verticesw that arenotneighbors of somev 2 S(y) must
be left untouched by the decoding procedure, i.e.,zw = yw , so
that they stay with zero syndrome. This means that at thenextit-
eration, when computingL(z), all these left verticesw need not
be examined at all.

The trick is, therefore, to keep track of every vertex that corre-
sponds to a nonzero syndrome. Specifically, at iterationi, when
computingx(i+1) fromx(i), we decode only subvectorsx(i)v for
verticesv belonging to a privileged subsetSi that was computed
at the previous iteration, and we prepare the way for the next iter-
ation by computingSi+1 which is the set of neighboring vertices
of all thosev 2 Si for whichx(i)v had nonzero syndrome.

Finally, let y = L(x) and notice that any vertexv such that
yv has nonzero syndrome must be a neighbor of left survivor of
x. Now whenever Proposition 2 applies, the number of survivors
decreases geometrically with the number of iterations, so that the
total number of survivors throughout the total number of itera-
tions is linear inn. Therefore, the sum, over alli, of the number
of vertices for whichx(i) has nonzero syndrome is also linear
in n, and so is the total number of vertices examined by the de-
coding procedure.

2) In the caseC0 = C1, the distance bound obtained in Proposition
3 for replicated expander codes gives the asymptotic result.

Theorem 6: For anyR0; 0 < R0 < 1, and" > 0 there
exists an expander codeC of rateR � 2R0 � 1 and relative
distance� = (1 � R0)H

�1(1 � R0) � ". Iterative decoding
applied to this code corrects any� < �=4 fraction of errors.

This is an improvement over Theorem 1: in particular, we ob-
tain codesC with positive rates for all0 � � < 0:055.

3) As mentioned earlier, replicated expander codes can be thought
of as expander codes with the graphG replaced by a graph with
multiple edges. Such a graph is a graph with many small cycles.
We have found here that replicated expander codes have a better
behavior under iterative decoding than the unreplicated ones: this
gives substance to the empirical finding sometimes claimed in
the turbo coding community that “iterative decoding sometimes
works better when the underlying graph has small cycles.”
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