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band-limited functions. The decoders are still convolutional, and thus Error Exponents of Expander Codes
democratic; in his construction, the rate of the exponential decay of the ) ) )
error, shown here to be necessarily strictly inferiot t&s smaller than Alexander BargSenior Member, IEEENd Gilles Zémor

1 by several orders of magnitude.
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modified expander codes that we shall introduce. We shall use the ddunctionL that decodes into a vectory = L(x) of {0, 1}* where,
coding algorithm of [9]. for everyv € A, the vectoy, = (¥u(1)s Yo(2)s - - - Yu(a)) IS ONE Of

Our main result is as follows. the codewords of’y closest tar, = (zy(1). Ty(2), ---» Ty(a)). The
next iteration, a right-decoding step, is a functiBny — z defined
similarly with A replaced byB, andCy replaced byC . The next it-
erations alternately repeat left-decoding and right-decoding steps, i.e.,
alternately apply parallel decoding to the subvectors induced by the
f2(R, p) = max E(Ro, p)(Ro — R)/2 — =. vertices of4 and to the subvectors induced by the verticeBofrhis

R<Ro<1—H(p) produces a sequence of vectors, let us call it the decoding sequence

Theorem 2: For a given rateR?, anys > 0, anda < 1 there exists
a ponnomiaI-time constructible family of codes of lengthsuch that
P.(C, p) < 27oN2P) where

The decoding complexity of these codes is the same as in Theorem %(0) — o 2D L(::z(o)) 22 = R(.r“)) 23 = L(IE(Q)) o

Thus, f2(R, p) > 0forall0 < p < 1 — H(p). Comparing this @)
result with (1), we see that (R, p) > f2(R, p) forall R, p, so in o ) _ )
terms of error probability expander codes do not surpass concatendtbg Procedure stops if it encounters a fixed point or after having moved

codes, but they do give an alternative to classical concatenation &hdog V) steps, where the constant can be expressed explicitly via the
they have a lower decoding complexity. parameters off, Co, C.The number of gates at each round is at most

O(NlogN).

Without loss of generality, becaugg is linear, we may suppose
that the initial uncorrupted codeword is the zero vector so that
A. Code Construction, Notation (1 ..., zx)isactually the error vector. Letbe a vector: € {0, 1}

Setup—The Grapi, Vectors, and Subvectors:et G be a bipartite and lety = L(x). It will be useful to identify vectors of0, 1} with
graph with vertex setl U B where|A| = |B| = n and where every their supports, i.e., think of andy as the edge sets of subgraphs:of
edge of(¢ has one endpoint id and one inB. Any vertexy € A (7) e Letv € A be a left vertex. Let us say thatis a (Ieft)survivorof x if
B) will be called left (right) vertex. Lef be the edge set af. The v; = 1 for somej € E.. In other words, ifr is an error vector, the
neighborhoodf a vertexu, denoted by, , is the set of edges incident survivors ofx are all the vertices incident to the edge set represented
to v. Suppose is A-regular, i.e., the neighborhodd, of any vertexy by L(), i.e., the error vectoafter the next decoding step. Similarly,
contains exacth edges. The total number of edges is therefre-  lety’ = R(x), and define a right vertex € B to be a (right) survivor
An. Number the edges @, i.e., letE = {1, 2, ..., N},andforany Of z if y; = 1for somej € E..
vertexv definev(1), v(2), ..., v(A)to be some ordering of the edges Note that ifz has no left survivors (right survivors) thdi{z) = 0
of the neighborhood,, of v. Letz = (. s, ..., ) beanyvector (F(x) = 0).In[9], itis proved that if the number of left survivors of
of {0, 1} The neighborhood, of every vertexs of G induces a < is small enough, then the numberof right survivors ofy = L(x)
subvector ofr of |engthA, name|y‘mv = (”hr(l)a Tp(2)s s Tu(A) ). is StriCtly smaller, i.e.,S‘/ < fgs with 4 < 1. By Ieft—rlght symmetry

The Code&: For everys € AU B, letC,, be some code of length (when the two code€’; and (', are the same) one obtains that the
A and dimensiork, . Let us define the cod€' to be the set of binary decoding sequence (4) converges to the zero vector in a number of steps
vectorsr = (x1, 9, ..., xx) of {0, 1}V such that for every vertex logarithmic inn.

v of G, x. is a codeword of ... To keep the construction manageable, Letz € {0, 1} be a vector and € A U B a vertex. The number
one usually chooses,, among a limited set of small codes, e.g., on&f ones ofx in the neighborhood, | E\, N supp(x)|, will be called the
setsC, = C, for a given fixed code€’, ; asymptotic behavior can then x-degreeof v. It should be clear that we have the following.

_be_ s_tudied t_’y letting the number of verticesof the gra_th go to Proposition 1: The minimumz-degrees(x) of any survivor ofx
infinity. In this correspondence, we shall use two constituent céjes (left o right) satisfies

andC of lengthA, and we shall sef’, = Cy for every left vertex

v € AandC, = C, for every right vertex: € B. o(x) > min(do/2, d1/2).

Parameters: Let [A, ko = RoA, do] be the parameters (length,
dimension, minimum distance) 6& and[A, k1 = Ri A, dq] be those
of Ci.Let K = RN be the dimension of'. The code’ is linear and
its redundancy is at most the sum of the redundancies of the constituent ¢ =9¢(C):= min ¢(x).
codes [8], so that we haw — K < 3 _, 5z A — k.. Whence r€{0. 1}

We emphasize this parameter rather than write sindpf2 or do /2 as
in [9] because in Section IV we shall give a modified construction of
an expander code that improves upon Proposition 1.

Remark: To obtain a reduction in decoding complexity from (1) and The key result of [9] that we need to recall here can be reformulated
(2) it is essential to notice thal is a constant independentofthus, in terms ofé as follows.
the construction falls in the class of low-density parity-check codes. If N )
A is allowed to grow, the construction would be similar to the clas- Proposition 2: Suppose2o > 3A where) is the second largest
sical ones; for instance, takii@ = k..., (a complete bipartite graph) eigenvalue of the adjacency matrix@f Leta < 1. Then there exists
yields a standard direct product constructiorCafandc’ . 3 < 1 such that: if the number of left survivors (right survivors) of
x satisfies

Il. HARD ITERATIVE DECODING OFEXPANDER CODES

Define thefan of a codeC' as follows:

R>Ro+Ri—1. ©)

B. Decoding s < an(d—X)/A

We shall use the decoding algorithm of [9]. Let us briefly recall its
description. Let: € {0, 1} be the received vector. The first itera-then the numbes’ of right survivors (left survivors) of (z) (R(x))
tion, let us call it a left-decoding step, consists of applying in paralledatisfies
for every left vertexwo € A, complete decoding of the subvector in-
duced by the neighborhood of In other words, a left-decoding step is s < ps.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002 1727

Recall that wherf? is a Ramanujan graph theg/A < 2¢/A — 1/A The smallest error probability is therefore obtained by computing
which vanishes wherh grows. the maximum oveR, of f3 (R, Ro, p) where
The proof of Proposition 2 is that of [9, Lemma 5 and Theorem 6] 1

with dy /2 replaced bys: we refer the reader to [9] for the details. Wefs (R, Ro, p)= §E(Ro, p)min(H ' (1-Ro),H "(Ro — R))—=
remark that to_ prove thak (re_sp.,R) hgs thz_e clalmed contraction (R<Ro<1—H(p)).
property it suffices to replace in the claim withd, /2 (resp.,do /2).

It is straightforward to check numerically that the error exponent re-

I1l. ERROR PROBABILITY duces to

Let us submit the expander codéof the preceding section to the fs(R, p) =
binary-symmetric channel with transition probabilityLet P.(C, p)
be the probability that the iterative decoding algorithm of the preceding
section fails. We wish to study the asymptotic behavioPofC, p),
i.e., A will be large, but fixed, and the numberof vertices ofA or B
will be allowed to go to infinity.

The idea developed in this section is that wheneusress than the
decoding threshold of the first codg , then the first decoding iteration IV. REPLICATED EXPANDER CODES
will leave a very small proportion of bits in error. Therefore, the second ]
codeC; need have only a small redundancy for the iterative algorithfly Construction

E(Ro, p)H "(Ro— R)/2—¢. O

max
R<Rog<1—H(p)

This result already gives codes with positive error exponent for all
code rates less than capacity. In the next section we modify the code
construction and prove Theorem 2.

to converge. We now modify the construction of the codes of Section 1I-B as fol-
The goal of this section is to prove the following theorem. lows: we stay with the same bipartite graphwe keep its edges num-
Theorem 3: For agivenrate?, any= > 0,andx < 1 there exists an beredl, ... N, N = nA,_and forevery € AU B _ke‘?p the ordering
expander codé' of length N suchP.(C, p) < 27*N/sl&») \where v(d), ... 3 v(A)ofthe nel_ghborh_oorEU of v. BUtth'§t'me’ we choose
the constituent codes,, (in practice there will again be two of them,
fs(R, p) = max E(Ro, p)H "(Ro—R)/2—= (5) Cv»=Coforve AandC, = C forv € B)to be of lengtht A for
RS Ro<1—H(p) some fixed integet > 1. The length of the new code will be€V. For

f‘,’\f . ]
Proof: Given a smallz; > 0, let us chose the value af so @ Vector: € {0, 1}""" we modify the definition of the subvectar, to

that the error probability of complete decoding of the cdde is be
bounded above by(Ry, p) = 2~ 2FFo.»)=<1) ‘whereE(Ry, p) is
the random coding exponent. Furthermore, let us make sure that the o0 = (@043 iz, a, =,
chosenA is sufficiently large so that the assumption of Proposition A ) )
2 is satisfied. This is possible since for any rdtg or R; one can 59 that nows, € {O’fl\,} - The new code"is defined to be the set
choose the codeS, (C1) of sufficiently large length so that their ©Of vectorsz € {0, 1} such that for every € AU B, z, € . It
distancels (or d1) is much greater thaw’A, s026 > d > 3 (recall shogld be clear that iR gnde are again the rate_s afy andCl_then
the Ramanujan property 6f). In particular, let us assume that the linear cod€” has again rat& §at|§fy|.ng (3). This cons’Fructlon can
be thought of alternately as replicatingjmes every edge it-.
2¢/AIIIliII(H71(1—RO);H71(1—31))—62. (6)
B. Minimum Distance
Our main point here is that whenever the proportion of left survivors . i
of arandom error vector is strictly less th@n- ) /A then, by Proposi- SO\It\:]ea(t:agyv;‘eevgaeé?irz;L\Jlglcet;;anrSlelrr; leAn Eg{;giﬁgggg?sgg?;fg;
tion 2, the decoding algorithm converges correctly. We have, therefore, o

foranya < 1 andRy > R (1, o)y (Tyg1y oeey Tog) o
n ; ni and so on, we have a natural additive mapping{0f 1}'* onto
P(Cop) < Z <5>F(R°’ )" (1= w(Bo, p)) 7 (Fy:)®. The linear binary cod€’, (and alsoC';) can, therefore, be
= also thought of as &*-ary additive code. Let us calDo(Cy) the
wherei* = an(é — \)/A. Note that for any fixedv we have minimum2’-ary Hamming distance af’: in other words,D, is the
7(Ro, p) < i*/n for A sufficiently large. So the dominating term in smallest number of nonzetetuples
the above sum will be the one with= i *; all the other ones contribute - ’ B <i<A
to a nonexponential factor only. The opposite of the logarithm of this (=410 ooy Ta=) ety @) 5 lsis!
term has the form of any nonzero codeword= (1, ..., 2:a) € Co (Sometimes called

y n the phased burstsveight).
anA <— - —) (E(Ro, p) — =1) — log < ) Consider briefly the case whety = Cy. As in [7], we can invoke
A A i*
the Alon—Chung lemma [1].
—(n —i")log(l — w(Ro,p))

Lemma 4 (Alon—Chung)LetG be aA-regular graph on’ vertices

> anA {% E(Ry, p) — %51 with second Iarge§t eigenvalue Let S be a subset of vertices. Then
) ' the average degrek; of the subgraph induced Hy satisfies
—1
\/KE(Roap)-i-O(A )} 35§A@+A<1—@).
> aN L E(Ro, pymin(H (1 — Ro), H "(Ry — R)) " "
+ O(AT?), Let D be the minimum distance & and letD/(tN) be its relative

minimum distance. Lefy, = do/(tA) be the relative minimum dis-
the second inequality by (6) and (3). tance ofCy. We obtain the followng theorem.
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Theorem 5: The relative minimum distance ¢f satisfies

D Do/A=)/A
tIN =TT /A

Proof: Any nonzero codeword af represents the set of edges of

a subgraph off with minimum (and hence average) degree at |&ast
Note that herex’ = 2n. Apply the Alon—Chung lemma to obtain that
the number of verticelsS| of the subgraph is at least(Do — \) /(A —

A) and argue that the number of edges of the subgraph, i.e., the weight

of the codeword, is at leadt|S|/2. O

Note that whert = 1 (the usual case) we have; /A = é;. The
point of this generalized construction is that whex 1 we can have

Do /A > 6o = do/(tA) in which case Theorem 5 gives an improved

lower bound.
In particular, for largeA and larget we get the following result.

Proposition 3: Let Ry be fixed,0 < Ry < 1, and let: > 0. ForA
andt big enough, there exists a codeof lengthtA and rateR, such
that

1) b0 = do/(tA) > H™'(1 — Ro) — =;
2) Do > (1 = Ro)A —=.

To see this, simply recall that, asymptotically, most binary linear

codes lie on the binary Varshamov—Gilbert boudd= 1 — H(§) and
most2‘-ary linear codes lie on th2'-ary Varshamov-Gilbert bound

which gets, as goes to infinity, arbitrarily close to the Singleton bound

Ry + Dy/A < 1. This last fact is classically stated fbt,:-linear

codes, but the reader will be readily convinced that this carries over

without any difficulty to2¢-ary additive codes. Indeed, this follows by
the usual procedure of augmenting the cédewith cosets from the
quotient group Fy:)= /Co.

C. lterative Decoding

We now switch to the iterative decoding of replicated expander

codes. We now again use two constituent codesandC', of length

tA. The algorithm is really the same as in Section II-B, namely, define

L(x) (R(x)) to be a vector such that for every € A (v € B)

Y. is one of the codewords af, (C1) closest tar,. As before, let
the decoding sequence of a veciorc {0, 1}*"¥ be as in (4). Let
y = L(x) andy’ = R(x) and define as before a left (right) survivor
of » to be a vertexw € A (v € B) such thaty. (y,) is a nonzero
vector of {0, 1}'2. Finally, let thex-degree of a vertex € A U B be
the number off € E, such that the subvector b, 1}

(l't(jfl)Jrla Lt(j—1)+2s -+ Le(j—1)+t—1> émj)

is nonzero.
Proposition 1 can now be replaced by the following.
Proposition 4: The minimuma-degreeg(x) of any survivor ofx
(left or right) satisfies

&(x) > min(Do /2, D1/2).

Proposition 2 (see [9, Lemma 5]) is really a pure graph-theoretic 2]

statement, and it continues to hold whers now the new minimum
value of¢(x) whenz ranges over alt € {0, 1}V,

We can now replace in the upper bound (7) on the decoding error

probability P. (C, p) by any quantity arbitrarily close td — R:)A /2.

Otherwise the calculation in the proof of Theorem 3 is unchanged,[4

which finally establishes Theorem 2.

—
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V. COMMENTS

1) The decoding algorithm of [9] and Section II-B is especially

adapted to parallel computations. As in [7], however, it can be
adapted so as to yield a sequential algorithm with complexity
O(N). Here is a simple way of doing this. Let the firbtit-
eration be executed sequentially, i.e., one decodes, one after the
other, every subcode associated to every one of the vertices of
Note that when this is done, every left subvegtare € A, ofthe
resulting vectoyy = L(«) has zero syndrome. L&t y) C B be

the set of right vertices for whichy,, hasnonzeressyndrome. Let

z = R(y) be the vector after the next iteration, and notice that all
the left verticesv that arenotneighbors of some € S(y) must

be left untouched by the decoding procedure, kg.= y.,, SO
that they stay with zero syndrome. This means that anéxét-
eration, when computing(z), all these left vertices need not

be examined at all.

The trick is, therefore, to keep track of every vertex that corre-
sponds to a nonzero syndrome. Specifically, at iteratiavhen
computingz“t1) from 2, we decode only subvectar§” for
verticesu belonging to a privileged subsét that was computed
atthe previous iteration, and we prepare the way for the next iter-
ation by computings ™! which is the set of neighboring vertices
of all thosev € S for which z{’ had nonzero syndrome.

Finally, lety = L(x) and notice that any vertex such that
y» has nonzero syndrome must be a neighbor of left survivor of
«. Now whenever Proposition 2 applies, the number of survivors
decreases geometrically with the number of iterations, so that the
total number of survivors throughout the total number of itera-
tions is linear ine. Therefore, the sum, over allof the number
of vertices for whichz(”) has nonzero syndrome is also linear
in n, and so is the total number of vertices examined by the de-
coding procedure.

2) Inthe cas€’y = (', the distance bound obtained in Proposition

3 for replicated expander codes gives the asymptotic result.

Theorem 6: For anyRy, 0 < Ry < 1, ands > 0 there
exists an expander codg of rate R > 2R, — 1 and relative
distances = (1 — Ro)H (1 — Ry) — =. lterative decoding
applied to this code corrects any< 6/4 fraction of errors.

This is an improvement over Theorem 1: in particular, we ob-
tain code<” with positive rates for all < 6 < 0.055.

As mentioned earlier, replicated expander codes can be thought
of as expander codes with the gra@treplaced by a graph with
multiple edges. Such a graph is a graph with many small cycles.
We have found here that replicated expander codes have a better
behavior under iterative decoding than the unreplicated ones: this
gives substance to the empirical finding sometimes claimed in
the turbo coding community that “iterative decoding sometimes
works better when the underlying graph has small cycles.”

REFERENCES

N. Alon and F. R. K. Chung, “Explicit construction of linear sized tol-
erant networks,Discr. Math, vol. 72, pp. 15-19, 1988.

I. Dumer, “Concatenated codes and their multilevel generaliza-
tions,” in Handbook of Coding Theory. Pless and W. C. Huffman,
Eds. Amsterdam, The Netherlands: Elsevier, 1998, vol. Il, pp.
1911-1988.

G. D. Forney, Jr.Concatenated Codes Cambridge, MA: MIT Press,
1966.

R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002 1729

[5] A.Lubotsky, R. Philips, and P. Sarnak, “Ramanujan grap@sshbina- [8] M. Tanner, “A recursive approach to low-complexity codeffEE
torica, vol. 8, no. 3, pp. 261-277, 1988. Trans. Inform. Theoryol. IT-27, pp. 533-547, Sept. 1981.

[6] G.A.Margulis, “Explicit group theoretical constructions of combinato- [9] G. Zémor, “On expander codeslEEE Trans. Inform. Theory (Spe-
rial schemes and their application to the design of expanders and con-  cial Issue on Codes on Graphs and Iterative Algorithms). 47, pp.
centrators,’Probl. Inform. Transm.vol. 24, no. 1, pp. 39-46, 1988. 835-837, Feb. 2001.

[7] M. Sipser and D. A. Spielman, “Expander codd&EE Trans. Inform.  [10] V. V. Zyablov, “An estimate of complexity of constructing binary linear
Theory vol. 42, pp. 1710-1722, Nov. 1996. cascade codesProbl. Inform. Transm.vol. 7, no. 1, pp. 3-10, 1971.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


