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Estimates of the Distance Distribution
of Codes and Designs

Alexei Ashikhmin, Member, IEEE, Alexander Barg, Senior Member, IEEE, and Simon Litsyn, Senior Member, IEEE

Abstract—We consider the problem of bounding the distance
distribution for unrestricted block codes with known distance
and/or dual distance. Applying the polynomial method, we provide
a general framework for previously known results. We derive
several upper and lower bounds both for finite length and for
sequences of codes of growing length. Asymptotic results in the
paper improve previously known estimates. In particular, we
prove the best known bounds on the binomiality range of the
distance spectrum of codes with a known dual distance.

Index Terms—Binomial spectrum, constant weight codes, dis-
tance distribution, Krawtchouk polynomials, polynomial method.

I. INTRODUCTION

I NTUITIVELY, it is clear that if the distance of a code is
known, its distance distribution cannot be arbitrary. This

paper is an attempt to quantify this statement. The distance
distribution of a code with given parameters is important,
in particular, for bounding the probability of decoding error
under different decoding procedures from maximum likelihood
decoding to error detection. Apart from this, it can be helpful
in revealing structural properties of codes and establish nonex-
istence of some codes.

Our main tool is the polynomial (linear programming)
method. This approach was pioneered by Sidel’nikov [25]
and applied to Bose–Chaudhuri–Hocquenghem (BCH) codes
correcting a small number of errors. Essentially the only feature
of BCH codes used in [25] was the width of the dual-weight
spectrum, known due to the Carlitz–Uchiyama bound. This
study was taken up in [8], [13], [14], [15], [11]. These papers
focused on establishing the range of weights in which the dis-
tance distribution of a code is close to the average distribution
of a code chosen in the Hamming space with uniform
probability (i.e., the binomial spectrum ).
However, implicitly some of these works contained bounds on
the distance distribution of any code with known distanceor
dual distance .

Another approach to bounding distance spectrum of (linear)
codes with a known distance and/or dual distance was proposed
in [9], see also [10]. In the frame of the polynomial method these
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results can be viewed as equivalents of the Singleton bound (see
more on this in [1], [3]). Generally the method in [9], [10] seems
to be somewhat weaker than the polynomial method employed
here.

In Section II of this paper, we formulate a general bound on
the distance distribution of a code in a-polynomial associa-
tion scheme. The most detailed analysis is performed for.
By modifying some polynomials known in Delsarte’s theory we
derive bounds on the distance distribution of a code with given

and . We also specify the results for the cases when only
is known (i.e., can be any number between 0 and), and vice
versa, only is known. The results can be summarized as fol-
lows. For a given code with knownor the gap between the
lower and upper bounds derived below depends on the “quality”
of the code: the better the code, the smaller the gap. For some
optimal codes the bounds turn out to be tight. Asymptotic ver-
sions of the bounds improve previously known results; in par-
ticular, we prove that the distance distribution of a design of
a given strength in is bounded above by the binomial dis-
tribution for a wider range of distances than previously known.
From a purely coding-theoretic point of view the most important
problem studied in the paper is bounding the distance distribu-
tion of a code with a known distance. A nontrivial estimate of
it for large values of the distance is given in Theorem 3. This
estimate in a large range of parameters is better than bounds on
the size of a code of constant weight and distance.

Our results imply the following facts, made more precise in
Section III.

• If a family of codes meets the upper bound from [23],
then every small segment of distance values contains a
binomial component in the distance distribution.1

• If the distance distribution of any family of codes is
bounded above by the binomial spectrum, then every
small segment of distance values, except maybe distances
close to the minimum distance of the code, contains a
binomial component.

Sections III and V deal with different ranges of code parame-
ters. In each of these sections, we first derive a general bound on
the distance distribution for some fixedand and then look
at particular cases when only one of these two parameters is
known. Accordingly, the corresponding subsections have titles
CodesandDesigns. In Section IV, we use the general method of
Section II to derive an asymptotic bound on the distance distri-
bution of constant weight codes. In Appendix A, we provide an

1It is not known presently whether such codes exist. We concur with a con-
jecture in [23] that they do not.
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alternative proof of Theorem 3. It is based on new inequalities
for orthogonal polynomials found recently in [12], which may
be useful also in other coding problems.

Asymptotic results claimed in the paper are related to se-
quences of codes of growing length. For instance, when we
say that a code meets a certain asymptotic upper (lower) bound
relating and , we actually mean that there exists a sequence
of codes whose rate tends toas grows and the distance
is in the limit not greater (less) than. Asymptotic bounds on
other parameters are treated in a similar fashion.

Let be the binary
entropy function. (The base of logarithms is 2 throughout.) In
the paper is always the element of the distance distribution
of a code of length and is its exponent: .

II. PRELIMINARIES

Let be a finite metric space with distance function
and let be a code. Let be the diameter of .
The distance distribution of the code is a -vector

, where

Suppose affords the structure of a -polynomial asso-
ciation scheme and let , , denote
the corresponding set of -polynomials. The -transform
of the distance distribution of is defined as a vector

, where

(1)

and by the Delsarte inequalities [6] all the numbersare non-
negative. We have ; if is the min-
imum distance of , then . Further-
more, if is the strength of as a design in , then

. Below, we call the dual distance. We
write when we need to specify the code.

Let be a real function defined on ,
where , is an integer parameter. Define a
moment function of the distance distribution of

We propose to derive bounds on . The reason for intro-
ducing the parameter is to make expressions for the moment
function algebraically independent for different; see more on
this in the end of this section.

Below we derive bounds on for any code with a given
and/or . In this case we write . The same meaning
is ascribed to the distance coefficients and their expo-
nents (we put , , ).

The following theorem enables us to construct upper and
lower bounds on .

Theorem 1: Let be a polynomial
such that

for

and

for (2)

Then

(3)

Let be a polynomial such that

for

and

for (4)

Then

(5)

Proof: Using (1), we obtain

Hence

The proof of inequality (5) is similar.

Remark: Bounds on also imply bounds on
for any fixed . Indeed, let , ,

and . Then

(6)

Regarding lower bounds, it is convenient to choose
for and for ,
where is some number that usually depends on. Then, if
we are able to establish that , this implies the
existence of such that

(7)

While such estimates can be asymptotically tight, they are
too crude for codes of finite length. We discuss two ways of
sharpening them. Denote by and lower
and upper bounds on and by and by lower and
upper bounds on , respectively.

In [11], the following procedure was suggested to estimate
the distance distribution of BCH codes. (The procedure actually
works for any code with known and .) First estimate as
follows:



1052 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

Next, estimate other spectrum components through the recur-
sion

(8)

In the present paper, we use a different approach, which
proved to be better in our examples. Namely, we choose the
function so that the matrix

(9)

is nonsingular. Then, we compute

and find lower and upper bounds on as follows:

(10)

where

if

if

and
if

if

Our main examples are , the Hamming scheme,
and , the binary Johnson scheme. If , then

, where

(11)

is a Krawtchouk polynomial. Note that if is a linear code in
, then is the distance of the orthogonal code.

A polynomial that satisfies (2) or (4) will be called feasible.
In what follows, we construct several feasible polynomials and
use them to derive bounds on the distance distribution, relying
on (6) and (7) for growing code length and on (10) for codes of
finite length.

III. A N ASYMPTOTIC BOUND

In this section, we will construct polynomials and
with the help of the Christoffel–Darboux kernel (43).

Denote by the smallest root of . Let
, , and . Let us choose and

as follows:

and

(12)

where is such that

and

We assume through the rest of this section thatis even.

Proposition 2: Let be a code with distanceand dual dis-
tance . Let

if

if

(13)

Then, for sufficiently large

(14)

Proof: By (46),
. Therefore, for sufficiently large

The coefficients of the Krawtchouk expansion of the polynomial
, say , can be estimated from below

as follows [4]:

(15)

By (44) in Appendix B, the Krawtchouk coefficients of
are

(16)

The definition of the constant implies that
. Note that tends to zero for growing . It is not

difficult to check that is decreasing onslower than when
(to verify this, compare the quantities and

). Hence

Thus, is feasible.
Now, computing with the help of (45), we complete

the proof.

Let us consider the cases when onlyor only is known.

A. Codes

We start with the case of known, assuming that (note
that if a polynomial is feasible for a givenand it is also
feasible for any ). Let

(17)
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Theorem 3: Let be a code of distance . Its distance dis-
tribution is bounded above as follows:

(18)

Proof: Let . Substituting into (13), we
get from (14)

To estimate , we have to choose. A good choice is
(in fact, this choice is optimal, though we leave this fact

without proof). From (48), it follows that

Now, a simple substitution completes the proof.

Another proof of this theorem is given in Appendix A. It is
based on some new bounds on orthogonal polynomials derived
recently in [12].

Theorem 3 gives a universal bound on the growth of the dis-
tance coefficients in a code with a given distance. Let us examine
the question when this bound is nontrivial. It can be trivial for
one of the two reasons: the right-hand side of (18) is greater than
the total size of the code, or it is greater than any known upper
bound on the size of a code of constant weightand distance

.
Let us examine the last option. Let be the maximal

size of a code of constant weight and Hamming distance .
One of the bounds on this quantity is [23]

(19)

for large distances this bound is the best known. A better bound
for small was obtained in [24] based on a result in [18] (in this
form it is given in [2]).

Proposition 4 [24]: Let

Then

(20)

Comparison of these results shows that we can estimate dis-
tance distributions better than the general bounds (19) and (20)
for large code distances. More specifically, it is clear that when-
ever (20) is valid, is better than (18) (indeed, the right-hand side
of (20) equals plus thesecondbound of [23], as op-
posed to the first one in (18)). However, it is known that for

the value . For these bound (20)
is void. Moreover, calculations show that in this range of dis-
tances, in (19) as a bound on the distance distribution

Fig. 1. Region in the(�; �)-plane, marked with a+, where (18) is the best
estimate of the distance distribution.

is also inferior to (18). For distances there is
a segment of weights beginning withwhere (18) is better than
both (20) and (19). The whole picture is shown in Fig. 1.

It is more difficult to compare (18) with the total size of the
code since this bound does not involve explicitly the code rate.
As shown below, for putative sequences of codes meeting the 1st
bound of [23], the bound (18) is tight, so it is certainly nontrivial
for all . For codes meeting the Gilbert–Varshamov
(GV) bound the right-hand side of (18) is less
than whenever

(21)

For small this holds true for all outside a small segment
around 1/2 (for this segment shrinks to the point 1/2).

Another approach to bounding the distance distribution of
codes was taken in [20]. In particular, in [20] it is proved that
in any linear code the number of vectors of any weight
does not exceed . When Theorem 3 is nontrivial (for
instance, for all such that (21) holds true), it shows that the
number of vectors of weight has a much slower exponential
growth than . However, there is a range of code parameters
when the bound in [20] is better than both. In [26], the authors
study the threshold probability of a codewith a given distance
, i.e., the crossover probability of a binary symmetric

channel such that the error probability of maximum likelihood
decoding of in this channel equals . They give a lower
bound on via an upper bound on the distance distribution
of , and then rely on upper bounds on constant weight codes.
Our estimate (18) sometimes yields a better bound on .

Theorem 3, together with earlier results, implies interesting
results on the distance distribution of certain sequences of codes.
The following theorem is a combination of results in [22] and
[15].

Theorem 5: For sufficiently large and any
there exists such that

(22)

Moreover, every subinterval of the interval of length
, contains a point such that this inequality holds

true.
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Now let us assume that a codeof rate meets the first form
of the linear programming bound from [23], i.e.,

Then Theorems 3 and 5 imply the following necessary condition
on the existence of .

Corollary 1: The distance distribution of is asymptotically
binomial in the following sense: the equality

holds for some within every subinterval of length
, of the interval .

Proof: It follows from the observation that the right-hand
sides of (18) and (22) under the assumptions of the corollary
can be made the same. Indeed, let us put
in Theorem 5. Then, together with (48) we obtain

on the right-hand side of (22). On the other hand, a
substitution of into (18) gives

and the claim follows.

This corollary complements a result in [2] in the following
way. In that paper, we proved that the distance distribution of
codes meeting the second bound of [23] is asymptotically bi-
nomial for code rates . Here, we prove the
same for all with respect to codes that meet the
first bound of [23]. The first and second bounds coincide for

. Hence, as conclusion, binary codes of rate
that meet the McElieceet al. bounds (if such exist) are proved
to have asymptotically binomial distance distribution for

.
As another example, consider a sequence of codes with rate

and distance related by and with distance distri-
bution (these codes can be chosen among
linear codes meeting the GV bound). For them, Theorem 5 im-
plies the existence of an exactly binomial component in any
subinterval of weights of length located between
and . The proof is basically the same as that of Corollary 1;
details are omitted.

B. Designs

The following bounds on the distance distribution of a code as
a function of its dual distance were implicitly obtained in [14].

Theorem 6 [14]:

Actually the authors of [14] were interested in estimating the
range of weights where the distance distribution of

a code (design) is at most binomial:
for any . Theorem 6 implies that

We will now show that this inclusion generally is strict, thereby
extending the binomiality interval, and also improve the second
estimate in Theorem 6 for some code parameters.

Let us use the polynomial (12). To guarantee its feasibility
for any we put . If we choose
(17). By (13), . Now, with the help of (48) after simple
computations, we get the first case of Theorem 6. The more
interesting case is the one with ,
i.e., . In this situation, the choice
of is a priori unclear, and, hence,can be greater than zero.
Thus

(23)

Let us compute the exponents of each term in (23)

Eventually, we obtain the theorem.

Theorem 7: For any

It follows from this theorem that, for codes of sufficiently large
size, the interval of binomiality can be expanded compared to
Theorem 6. Namely, let

and be the root of the equation

If the root of this equation is negative, we put .
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Corollary 2: Let be a code of rate with dual distance .
For any , the code has asymptotically
binomial distance distribution

This result can extend substantially the binomiality range in
codes’ spectra compared to Theorem 6; see the example in the
end of Section V.

IV. CONSTANT WEIGHT CODES

In this section, we apply Theorem 1 to codes in the Johnson
space . The corresponding metric equals half the
Hamming distance betweenand . As above, let be a code
and be its distance distribution. In
this case, the family of-polynomials is formed by some Hahn
polynomials , orthogonal on with weight

. Hahn polynomials share many properties of

Krawtchouk polynomials. The collection of basic facts was de-
rived in [6], the asymptotics of the extremal zero was found in
[23] (with a refinement in [19]), and the exponential asymptotics
outside the oscillatory segment was computed in [1] and [22].

The following theorem is proved similarly to Theorem 6 by
taking in Theorem 1 with a suitable dependent
on .

Theorem 8: Let be a code of rate in with dual
distance . Let and . Then

if

if

where

Note that the first of the two estimates, again, states that in
a certain range depending on , the distance distribution of a
code is bounded above by the mathematical expectation of the
distance distribution of a code chosen in with uniform
probability. To justify this, notice that the sphere in of
radius has size , so the normalized uniform measure
of the spheres in is given by . This theorem admits
improvements along the lines of Theorem 7.

V. BOUNDS FORHIGH-RATE CODES

In this section, we will construct several polynomials that give
tight bounds on the distance distributions of good codes of rate
close to one.

We start with deriving bounds for codes of finite length, con-
fining ourselves to the case of odd minimum distance
. The case of even can be analyzed similarly. Upon deriving

upper and lower bounds on the distance distribution of a code
with known , we consider a few examples in which the
bounds are virtually tight. In one example we also compute
bounds on the probability of undetected error and of decoding
error, illustrating the use of the distance distribution coefficients.
Then we turn to asymptotics, again looking separately at codes
and designs. The bounds derived in this part supplement the re-
sults of the previous section, covering the range of code rates

.
Let be fixed. For any , let

be the polynomial of degree with the Krawtchouk coeffi-
cients

where

is the Lloyd polynomial.
In what follows, we construct feasible polynomials

and , which enable us to compute numerically lower and
upper bounds on the distance distribution of a code. Since these
bounds cannot be formulated as closed-form expressions, we do
not present the results in the form of theorems.

Let be the polynomial with the Krawtchouk coeffi-
cients

(24)

where is chosen below. Let us compute and .
Using (41), (44), and (42) in Appendix B, we have

From this, we obtain

(25)

In a similar way, one can compute . In particular, for

So, we see that

(26)

(27)
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TABLE I

This prompts the following choice of:

(28)

It is clear that with this choice , ; thus,
is feasible. By (45) in Appendix B

(29)

Now, one can compute numerically an upper estimate of
from Theorem 1 and (25)–(29).

To estimate from below, choose with the
coefficients

(30)

where

This polynomial is feasible for the same reasons as the previous
one.

Example 1: For the sake of argument, let us apply the results
of this section to perfect codes. Letbe a code with minimum
distance that meets the Hamming bound, that is

(31)

Let us find an estimate for . Putting and sim-
plifying, we obtain . Now, using (26), (27),
(29), and taking into account (31), we compute

. So, finally

Using the same arguments for the polynomial , we get

Thus, we have derived the well-known expression for the min-
imum distance component of the distance distribution of a per-
fect code. Moreover, if meets the Hamming bound, then from
the definitions of the polynomials , , and and
(31) we have

In other words, is found exactly for all . Now (8)
or (10) enable us to reconstruct the entire distance distribution
of .

Example 2: Let us estimate the distance distribution of a
code of length 47, size , and minimum distance 3, which
is the best known for these parameters [21]. Computing the ma-
trix (9), one can check that it is invertible. Now, using in (10) the
polynomials defined by (24) and (30), we find upper and lower
bounds on the spectrum of the code. The results of computa-
tions for some values of are presented in Table I (the bounds
are computed for all ).

One can see that the upper and lower bounds are close to one
another. Using these bounds, let us find upper and lower bounds
on the probability of undetected error and of decoding
error for under complete decoding. We assume that
codewords of are sent over the binary symmetric channel with
crossover probability . Then

For , let us assume that is the vector transmitted over
the channel andis the error vector. We use the following crude
estimates:

The results are shown in Fig. 2. In both cases, the difference
between the upper and lower bounds is within the 50% range.

If some additional information about the code or its dual code
is available, we can tighten the bounds even further. Consider
the following example.

Example 3: Let be an extended BCH code correcting
errors. has length , dimension , and minimum

distance 8. Since the code contains the all-one word, we can
rewrite the estimates on as follows:

where

and for

It is well known that . Moreover, is a subcode
of the Reed–Muller code of the second order, and, therefore,
can be nonzero only if is a multiple of . Hence, we
have to guarantee nonpositivity of and nonnegativity of
only for such ’s. Define polynomials , , and
for even , by their coefficients as follows:
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Fig. 2. Estimates ofP andP for the [47; 9 � 2 ; 3] code of Example 3.

Here, and are the minimum possible nonnegative numbers
such that and satisfy the aforementioned conditions. Since
the second terms of and are positive, such and

always exist.

This is all we need to compute bounds on with the help
of Theorem 1 and expression (10). For instance, let . The
bounds for the first five distance distribution components are
presented in Table II.

Note that these estimates are slightly better than the results
in [11] and [8]. Estimates for the distance distribution of BCH
codes with other values ofcan be found similarly.

Now, let us move to the asymptotic case. Let be the
polynomial with the coefficients

where is a real number such that and
. Let us define polynomials and

as follows:

(32)

We put for the rest of this section.
Proposition 9: Let be a code with distanceand dual dis-

tance . Let

if

if

(33)

TABLE II

Then, for sufficiently large ,

Proof: To derive the bound, we use the polynomial
(32) in Theorem 1. First, let us prove that it is feasible. Using
the Christoffel–Darboux formula (43) and (42), we obtain

Again relying on (42), we calculate for integer
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Assume that and are even. In other cases, the arguments are
similar. Estimating the sum in the last expression by the term

, we have

(34)

From this estimate and from the definition of , it follows
that

It remains to prove that for . First, observe
that . Indeed, by (44)

So, the Krawtchouk coefficients in the expansion

are . Together with the definition of (33)
this implies that . Let us show that ,

, for large . First if then and
, so let us assume that . Note that we only need

to consider the values ofin the interval because
for greater by the above we have . Since , it
suffices to show that for large the quantity decreases on
slower than .

Observe that

and

For we have , so both polynomials are
positive and decline rapidly asgrows. We will prove that for
large the decline rate of is slower that of . Let

and write the derivative of the exponent of in the
form . Then from (47)
we get

valid for . It is easy to check that
for a fixed in this interval, is a decreasing function of

. Therefore, the exponent of is falling faster than that of
for . This finishes the proof of feasibility of the
polynomial (32).

It remains to compute the bound (3). Using (40) and (45), we
find and . Thereby, the proof is completed.

Let us again consider the cases when onlyor only is
known.

A. Codes

In this case, substitution of yields a known result. It
was obtained in [17], based on a result in [5].

Proposition 10: Let be a code with distance . Then

(35)

The proof amounts to a straightforward calculation, which we
omit. This bound is inferior to (20) and other bounds of this form
[17] on the size of a constant weight code.

The following theorem presents a lower bound on .
Theorem 11:For sufficiently large and any
there exists such that

(36)
Proof: Let us choose . Then by (44)

, and is obviously feasible. Compute

and note that for
. So for such values of the term grows ex-

ponentially faster than . As suggested in the remark after
Theorem 1, we have for , hence there exists
an index such that

We conclude by computing logarithms.
Remark: As a continuation of Example 1, let us observe that

the above results imply that the distance distribution of a perfect
code is asymptotically binomial

This follows by combining the estimates of the two preceding
statements. Since nontrivial perfect codes of growing length do
not exist, we do not include the details. However, there is some
theoretical interest in the fact that the distance distribution of
codes that meet in the asymptotics a linear-programming bound,
converges to the binomial distribution [this holds true for both
instances considered in this paper, and is also true in the Johnson
space with respect to the bound (19)].

B. Designs

The following bounds on as a function of were implic-
itly obtained in [14].

Theorem 12 [14]: Let be a code with dual distance
. Then, the bound is in the equation at the bottom of the page.

if

if
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We will rederive the first part of this theorem, improve the
second part, and as a corollary, extend the interval of binomiality
for codes of sufficiently large size. Let

and let be some function of polynomial growth.
First, suppose that . Then, by (33),

and . From this, we have

and

The optimal choice of is . Hence, whenever
, or, equivalently, ,

the following inequality is true:

This is the first part of Theorem 12.
Now, let . Then, and

We obtain the following theorem..

Theorem 13:Let . Then, for any

As mentioned earlier, the interval of binomiality can be ex-
tended for sufficiently large codes. Let and
let be the root of the following equation:

If the root of this equation is negative, we put .

Corollary 3: Let be a code of rate and dual distance
. Then, for any the code has the

binomial distance distribution

Example 4: As mentioned in the end of Section III, the im-
provement in the estimate of the binomial range over the known
results can be substantial. For instance, consider codes with

. Then, Theorem 6 guarantees that the distance dis-
tribution is binomial for and Theorem 12 does
the same for . Corollaries 2 and 3 are much

Fig. 3. Binomiality range for the distance distribution of codes with� = 0:2.
The distance distribution is asymptotically binomial in the interval[�(R); 1=2].
The plot shows the curve�(R) from Theorem 12 (straight line) and Corollaries
2 and 3.

better results for high code rates, see Fig. 3. In this example,
the binomiality range is extended for code rates .
Corollary 2 gives the best results for , for

, Corollary 3 gives a slightly wider range of distances.

APPENDIX A
ANOTHER PROOF OFTHEOREM 3

Let be the code distance and . We
note that is approximately equal to the first zero of the
Krawtchouk polynomial . Let ,
be the number such that . Such a choice
is possible for any because of the interlacing property of the
zeros of and : . Let us define
the polynomial as follows:

(37)

The Krawtchouk coefficients of are nonpositive. Indeed,
we have

so this follows by (43). Further, for and
for . Therefore, if we take in Theorem

1 , the polynomial is feasible with respect to
the conditions of the theorem.

Recall that by [23] for any code, . So, as-
suming that the rate of the code is

we see that the dominating term in the difference
is the second one. Hence, we can write the estimate onin
the form

(38)

To compute the bound (3), we find
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To complete the proof, we have to estimate . Note that
this problem is essentially different from the standard situation
since is greater than the first zero . Therefore, the point
is in theoscillatory segmentfor both and .

Lemma 14: Let be an integer and
. Then

(39)

Using this estimate in (38) and taking logarithms, we obtain
the exponential bound claimed in the theorem. The rest of this
appendix is devoted to the proof of (39).

We begin with the following result from [16].

Lemma 15 [16]: Let . Then, for
and integer ,

where for even

and for odd

First, note that, as verified easily using the Stirling formula

where is a function of at most polynomial growth in. So
for and

we have

Now, since

we obtain for integer and

Thus, in the interval considered, either

or

In the last case, since by (40)

we conclude that

Recall that is linear in , so these inequalities imply that
. Since , the same conclu-

sion also follows for the first case. Thus, at any integer point

at least one of the following asymptotic equalities holds true:

This finishes the proof of (39).

APPENDIX B
USEFUL IDENTITIES

Let be the family of Krawtchouk polynomials
(11). They are orthogonal on with weight

(40)

For any polynomial

(41)

The following properties are standard:

(42)

(43)

(44)

where

if is even and zero if it is odd [the equality in (44)
is asserted only at , regardless of the degree of the
polynomial on the left]. From (11), we see that

(45)
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Polynomial has degree and its simple zeros are
located between 0 and. Let be the smallest zero of ;
let , , . Then, [23], [19],

(46)

Let , . By [7], we have

(47)

For , this gives

(48)
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