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Estimates of the Distance Distribution
of Codes and Designs

Alexei Ashikhmin Member, IEEEAlexander BargSenior Member, IEEEand Simon LitsynSenior Member, IEEE

Abstract—We consider the problem of bounding the distance results can be viewed as equivalents of the Singleton bound (see
distribution for unrestricted block codes with known distance more onthisin [1], [3]). Generally the method in [9], [10] seems

and/or dual distance. Applying the polynomial method, we provide to be somewhat weaker than the polynomial method employed
a general framework for previously known results. We derive here

several upper and lower bounds both for finite length and for . .
sequences of codes of growing length. Asymptotic results in the N Section I of this paper, we formulate a general bound on
paper improve previously known estimates. In particular, we the distance distribution of a code incapolynomial associa-
prove the best known bounds on the binomiality range of the tion scheme. The most detailed analysis is performed#pr
distance spectrum of codes with a known dual distance. By modifying some polynomials known in Delsarte’s theory we
Index Terms—Binomial spectrum, constant weight codes, dis- derive bounds on the distance distribution of a code with given
tance distribution, Krawtchouk polynomials, polynomial method. ¢ andd’. We also specify the results for the cases when dnly
is known (i.e.d’ can be any number between 0 arjdand vice
I. INTRODUCTION versa, onlyd’ _is known. The results can be summarized as fol-
lows. For a given code with knowshor d’ the gap between the
I NTUITIVELY, it is clear that if the distance of a code is|gwer and upper bounds derived below depends on the “quality”
known, its distance distribution cannot be arbitrary. Thigf the code: the better the code, the smaller the gap. For some
paper is an attempt to quantify this statement. The distanggtimal codes the bounds turn out to be tight. Asymptotic ver-
distribution of a code with given parameters is importankions of the bounds improve previously known results; in par-
in particular, for bounding the probability of decoding erroficylar, we prove that the distance distribution of a design of
under different decoding procedures from maximum likelihoogl given strength itH7 is bounded above by the binomial dis-
decoding to error detection. Apart from this, it can be helpfylipytion for a wider range of distances than previously known.
in revealing structural properties of codes and establish nongxym 4 purely coding-theoretic point of view the mostimportant
istence of some codes. problem studied in the paper is bounding the distance distribu-
Our main tool is the polynomial (linear programming}ion of a code with a known distange A nontrivial estimate of
method. This approach was pioneered by Sidel'nikov [2%]for Jarge values of the distance is given in Theorem 3. This
and applied to Bose—-Chaudhuri-Hocquenghem (BCH) codg§imate in a large range of parameters is better than bounds on
correcting a small number of errors. Essentially the only featujige size of a code of constant weight and distadice

of BCH codes used in [25] was the width of the dual-weight oy results imply the following facts, made more precise in
spectrum, known due to the Carlitz—Uchiyama bound. ThiSction 111

study was taken up in [8], [13], [14], [15], [11]. These papers )
focused on establishing the range of weights in which the dis-  * |f afamily of codes meets the upper bound from [23],

tance distribution of a cod@ is close to the average distribution ~ then every small segment of distance values contains a
of a code chosen in the Hamming spaH& with uniform binomial component in the distance distributién.
probability (i.e., the binomial spectrum,, = (,:;)|O|/2"). « If the distance distribution of any family of codes is
However, implicitly some of these works contained bounds on  bounded above by the binomial spectrum, then every
the distance distribution of any code with known distadae small segment of distance values, except maybe distances
dual distancei’. close to the minimum distance of the code, contains a

Another approach to bounding distance spectrum of (linear)  binomial component.
codes with a known distance and/or dual distance was propose

in [9], see also [10]. In the frame of the polynomial method the%a gectlons Il and V deal with different ranges of code parame-

rs. In each of these sections, we first derive a general bound on
the distance distribution for some fixeldandd’ and then look
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alternative proof of Theorem 3. It is based on new inequalitiesTheorem 1:Let Z,(z) = Zf:O 2q:(x) be a polynomial

for orthogonal polynomials found recently in [12], which mayuch that
be useful also in other coding problems.

Asymptotic results claimed in the paper are related to se- 2 <0, ford <i<D
quences of codes of growing length For instance, when we and
say that a code meets a certain asymptotic upper (lower) bound Zw(i) = go(i) ford <i< D. )

relating R andé, we actually mean that there exists a sequence

of codes whose rate tendsfasn grows and the distane&n  Then

is in the limit not greater (less) than Asymptotic bounds on

other parameters are treated in a similar fashion. Fy(d, d') < |Clzo — Z(0). 3)
Let H(z) = —zlogxz — (1 — z)log(1l — =) be the binary

entropy function. (The base of logarithms is 2 throughout.) In

the paper4; is always the element of the distance distribution

of a code of lengtn anda is its exponenta, = £ log Ag,,.

Let Y, (z) = 3.2, wiqi(x) be a polynomial such that

Y >0, ford <i<D
and
ll. PRELIMINARIES Yo (i) < gu (%), ford <i<D. (4)

Let X be a finite metric space with distance funct@fx, -) Then
and letC C X be a code. LetD be the diameter ofX.
The distance distribution of the code is(® + 1)-vector Fy(d, d") > |Clyo — Y (0). (5)
(Ao, A1, ..., Ap), where _ .
Proof: Using (1), we obtain

A = (1/|ODI{(e, €) € C% dle. &) = i} . b D D

!
SupposeX affords the structure of &-polynomial asso- ZZ ()4 = ZAZZ?JQJ ZZHO'AJ < 7| Cl.
ciation scheme and let,(z), ¢ = 0,1,..., D, denote =0 = =0
the corresponding set of)-polynomials. TheQ-transform Hence
of the distance distribution of” is defined as a vector

(A(), A&, ey AID), Where zu d d/ Zgzu A < ZZW A < 70|C| zu( )
i=d
j |C| Z Aiq;(4) The proof of inequality (5) is similar. O

Remark: Bounds on F,,(d, d’) also imply bounds on
ZA;. =|X|/|C] (1) A;(d, d') for any fixed;. Indeed, ley,, (i) > 0,i =d, ..., n,
iz andgw( j) > 0. Then

and by the Delsarte inequalities [6] all the numhdfsare non- Ay, d) < Fo(d, d) (6)
negative. We havel, = A) = 1;if d = d(C) is the min- T gu(h)

imum distance of”, then4; = --- = A, ;1 = 0. Further- . o . )
more, if &' — 1 is the strength o7 as a design inX, then Regarding lower bounds, it is convenient to choggél) > 0

fori=d,d+1,...,aandg,(:) <0fori=a+1,..., D,

AL, ..., A, = 0. Below, we calld’ the dual distance. We h _ ber that v d dswoniThen. if
wite 4;(C') when we need (0 specify the code. we aro able to establish tha, (¢, ) > 1 this implies he
Let g,(z) be a real function defined of0, 1, ..., D}, . h th ( ) >0, P
wherew, 0 < w < D, is an integer parameter Define £Xistence ofj & [d, a] such that
moment funcuon of the distance distribution@f Fo(d, d)
Ai(d, d) > ~ (7)
D 9w (J)
i=d While such estimates can be asymptotically tight, they are

: . too crude for codes of finite length. We discuss two ways of
We propose to derive bounds @f),(C). The reason for intro- harpening them. Denote b, (d, &) and Fo(d, d') lower

ducing the parameter is to make expressions for the momenznd upper bounds ofi,(d, d') and byA; and by, lower and
function algebraically independent for differenf see more on upper bounds onl »(dwd’)7 respective_lyj/ J
J ? ' )

this in the end of this section.

Below we derive bounds oA, for any code with a gived
and/ord’. In this case we writé",,(d, d’). The same meaning
is ascribed to the distance coefficientgd, d') and their expo-
nentsae (6, 6') (we puti = én, d = én, d’ = &'n).

The following theorem enables us to construct upper and F(d, d)
lower bounds orF,,(d, d'). Gw(d)

works for any code with knowd andd’.) First estimated, as
follows:

In [11], the following procedure was suggested to estimate
the distance distribution of BCH codes. (The procedure actually
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Next, estimate other spectrum components through the recwherea is such that

sion
x?—l—l) <a< xgt) and Kt—w) =—1.
1 < d d/ Z ) - - Kt+1(a)
gw i
9w(J) i—d We assume through the rest of this section thas even.
!
< A4;(d, d) Proposition 2: Let C be a code with distanegéand dual dis-
1 tanced’. Let
< — < (d, d) — Zgw _Z> : (8)
9w (J) i=d t+1 () o
S wemd) /2 <w <t
In the present paper, we use a different approach, which c= 2 (4) (13)
proved to be better in our examples. Namely, we choose the 0, if0<w<d/2
fi i hat th i
unctiong so that the matrix Then, for sufficiently large:
G =[guwil = (i), d=Zw, i<n 9) 2
. i <al(2) ()]0
is nonsingular. Then, we compute w t w
2
T =Gt = [uy; <j i< aien " < <
U=aG [54], d<j, i<n +a[<t+1>+<t , 0_w<t_2
and find lower and upper bounds @i (d, d’) as follows: (14)
" " Proof: By (46), a:?) =5—Vr(l-7)+o(l) =6+
D b < Aj(d, d) <Y wjic (10)  o(1). Therefore, for sufficiently large
Where Z'w(i) Z g'w(i)a d S 7’ S n.
{E(d &) if u;; <0 The coefficients of the Krawtchouk expansion of the polynomial
b = T _ _ L (Ki41(i) + Kq(4))?, sayp;, can be estimated from below
. U . +1 t y i
q Fi(d, d), if i > 0 as follows [4]:
an

F7(d, d/), if Uji > 0 2 n _j
G = N Bz —— j
F.(d, d), if w;; < 0. t+1 V¢ <
2
Our main examples ar& = H¥, the Hamming scheme

and X = J*»™, the binary Johnson scheme Xf = HZ, then
(]f(x) = Kt(.’L'), Whel’e

K(w) = ii;(—l)"’(”“") (Z : ”“")(q S A CEY o = (Z:;) (;) : (16)

is a Krawtchouk polynomial. Note that @ is a linear code in The definition of the constant implies thatzy = ag — ¢ -

HZ, thend’ is the distance of the orthogonal cogdé Ba < 0. Note thatz, tends to zero for growing. It is not
A polynomial that satisfies (2) or (4) will be called feasibledifficult to check thag3; is decreasing op slower thanv; when

In what follows, we construct several feasible polynomials anil< j < 2w (to verify this, compare the quantitieg., /o; and

use them to derive bounds on the distance distribution, relyigg, ; /3;). Hence

on (6) and (7) for growing code length and on (10) for codes of

finite length. zi<aj—c-3; <0 (G=d,...,n).

J
jl- (15)
2

"By (44) in Appendix B, the Krawtchouk coefficients of
(K,,())? are

Thus, Z,, (%) is feasible.
Now, computingZ,,(0) with the help of (45), we complete
In this section, we will construct polynomials,,(z) and the proof. 0
Y., (z) with the help of the Christoffel-Darboux kernel (43).

Denote byx?) the smallest root of;(x). Lett = 3 —

d(n —d), 7 =L, ands = £. Let us choose,,(i) andZ,,(4)

I1l. AN ASYMPTOTIC BOUND

Let us consider the cases when odlgr only d’ is known.

| A. Codes
as follows:
We start with the case of knowh assuming thai’ = 0 (note
Guw(?) = (K, (1))? that if a polynomial is feasible for a givehandd’ = 0 itis also
and feasible for anyl’). Let
Zu(i) = (Ku(@))* = — (K (i) + Ki(8)* (12) W = (1/2) — VE(1 - €). (17)
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Theorem 3: Let C be a code of distang®:. Its distance dis- &

tribution is bounded above as follows: 0.5
ag(6,0) < H (5 = V61 =8)) + H(&) — 1+ o(1) 0.45}
($<&<1/2). (18 +

Proof: Letw = w/n. Substitutingd’ = 0 into (13), we

get from (14) 0-3%¢
0.3
a6(6, 0) < H(w) + H(r) — 105 gpuny([n]) +o(1).
0.25

To estimated |¢,,|, we have to choose. A good choice isv =
w* (in fact, this choice is optimal, though we leave this fact 0.25 0.3 0.35 0.4 0.45 0.5
without proof). From (48), it follows that

1 Fig‘. 1. Region i_n the s, f_)-pllang, marked with a, where (18) is the best
- 1og g|wn) ([€n]) = 1+ H(w™) — H(E). estimate of the distance distribution.

Now, a simple substitution completes the proof. O is also inferior to (18). For distancé24 < 6 < 0.273 there is

: N . : ._a segment of weights beginning wittwhere (18) is better than
Another proof of this theorem is given in Appendix A. It iSpoth (20) and (19). The whole picture is shown in Fig. 1.

based on some new bounds on orthogonal polynomials derive tis more difficult to compare (18) with the total size of the

re(fﬁ::gé%[éz]'ives 2 universal bound on the arowth of the diC(_)de since this bound does not involve explicitly the codekate
tance coefficie%ts inacode withagiven distange Letus exam ngshown below, for putative sequences of codes meeting the 1st
9 ' OSund of [23], the bound (18) is tight, so itis certainly nontrivial

the question when this bound is nontrivial. It can be trivial fo . .
one of the two reasons: the right-hand side of (18) is greater t for a)llgoin(g};?)l' Eo;fig??;er???ﬂ?ar; S(?Clilg %rfta/g)r SL: allerr;gv
the total size of the code, or it is greater than any known UPREL 1 Whenev;r 9

bound on the size of a code of constant weightand distance

on. . | (L= H(8) - (H((1/2) = V6L = )+ H(§) ~1) > 0. (21)
Let us examine the last option. L&(¢, 6) be the maximal

size of a code of constant weigit and Hamming distancg:. For smallé this holds true for ali outside a small segment

One of the bounds on this quantity is [23] around 1/2 (fos — 0 this segment shrinks to the point 1/2).
Another approach to bounding the distance distribution of
R(&,6) < Ry(€,9) codes was taken in [20]. In particular, in [20] it is proved that

o 1, B — —= 2 in anylinear code the number of vectors of any weight &n
=H <2 <1 \/1 (VAL -8 - 6(2-8) =) )) does not excee@(|C|/+/n). When Theorem 3 is nontrivial (for

(0< 6§ <&(1—¢)); (19) instance, for alg such that (21) holds true), it shows that the
number of vectors of weighthas a much slower exponential
for large distances this bound is the best known. A better bougrbwth than|C|. However, there is a range of code parameters
for smallé was obtained in [24] based on a result in [18] (in thisvhen the bound in [20] is better than both. In [26], the authors
form it is given in [2]). study the threshold probability of a codewith a given distance
" ) d, i.e., the crossover probabili{C’) of a binary symmetric
Proposition 4 [24]: Let channel such that the error probability of maximum likelihood

& = arg min 1— H(a) + Ri(a, 6). decoding ofC' in this channel equals/2. They give a lower
(1—v/1=25)/2<a<1/2 bound ord(C) via an upper bound on the distance distribution

of C, and then rely on upper bounds on constant weight codes.
Then Our estimate (18) sometimes yields a better bound(6H.
B Theorem 3, together with earlier results, implies interesting
(g, o) < H($) = HSo) + Fulo. 9) (fose< 1/?2)6) results on the distance distribution of certain sequences of codes.
The following theorem is a combination of results in [22] and
Comparison of these results shows that we can estimate ¢lis5].
tance distributions better than the general bounds (19) and (ZO)I_ ) -
heorem 5: For sufficiently largen and any0 < w <

for large code distances. More specifically, it is clear that when- g =
ever (20) is valid, is better than (18) (indeed, the right-hand side (%) there existg € [, 3 — \/w(1 —w)] such that

of (20) equaIsH(g’) -1 .plus thesecondaoupd. of [23], as op- ae(6,0) 2 R+ H(w) — (2/n)log K un) ([€n)) +0(1). (22)
posed to the first one in (18)). However, it is known that for

0.273 < § < 1/2 the valuegy = 1/2. For these$ bound (20) Moreover, every subinterval of the intervd, 1/2) of length
is void. Moreover, calculations show that in this range of disf%“, e > 0, contains a poin{ such that this inequality holds
tances R (¢, 6) in (19) as a bound on the distance distributiotrue.
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Now let us assume that a co@eof rate R meets the first form a code (design) is at most binomiak < R+ H({) — 14 o(1)

of the linear programming bound from [23], i.e., for any¢ € Z. Theorem 6 implies that
§(G) = 6p(R) :=1/2 — /JH Y(R)(1 - H L(R)). [1/2(1 — /&(2—¢)),1/2] CT.
Then Theorems 3 and 5 imply the following necessary conditidie will now show that this inclusion generally is strict, thereby
on the existence off. extending the binomiality interval, and also improve the second
Corollary 1: The distance distribution @¥ is asymptotically estimate in Theorem 6 for some code parameters.

binomial in the following sense: the equality Let us use the polynomial (12). To guarantee its feasibility

for any d we putd = 0. If w* < §/2 we choosev = w*
ag(G)=R+H(&) —140(1) (17). By (13),¢ = 0. Now, with the help of (48) after simple

computations, we get the first case of Theorem 6. The more

holds for some¢ within every subinterval of Iength—%Jff, interesting case is the one witht = % — &1 -¢& > %

¢ > 0, of the interval(éy, (R), 1/2). e, & < (1/2)(1 — /&2 —§&)). In this situation, the choice

Proof: It follows from the observation that the right-handbf w is a priori unclear, and, hence,can be greater than zero.
sides of (18) and (22) under the assumptions of the corollamus
can be made the same. Indeed, let uséput 1 — /w(1 — w)
in Theorem 5. Then, together with (48) we obt&n- H(¢) —  F,(0, d')

14 o(1) on the right-hand side of (22). On the other hand, a n n 2\?2 ¢ n 2\ 12
substitution ofH (1 — \/8(1 — 6)) = R into (18) gives <] [( >—C< )} - ) +o [( >+< )}
2
1e(G) S R+ H(E) —1+0(1). 6, <E<3 < |c|<”) L e [( n )+ (”)
- a|\t+1 t
d/

and the claim follows. O

This corollary complements a result in [2] in the following

way. In that paper, we proved that the distance distribution E’Et us compute the exponents of each term in (23)
codes meeting the second bound of [23] is asymptotically bi-

nomial for code rate9.421 < R < 1. Here, we prove the 1 n
same for allk € (0, 1) with respect to codes that meet the log|C] w
first bound of [23]. The first and second bounds coincide for = R+ H(w) + o(1)

0 < R < 0.305. Hence, as conclusion, binary codes of r&ate
that meet the McEliecet al. bounds (if such exist) are proved
to have asymptotically binomial distance distribution fore
(0, 0.3) U (0.421, 1). s s

As another example, consider a sequence of codes with rate (1-8)H < 1-¢ ) +2-(1=8)+ol)
and distance related by = 1 — H(6) and with distance distri- , w—06/2 ,
bution A,, < n(")|C|27" (these codes can be chosen among =(1-8H <W) + 146" +o(1).
linear codes meeting the GV bound). For them, Theorem 5 im-
plies the existence of an exactly binomial component in afgventually, we obtain the theorem.

subinterval of weights of length? +< located betweené,(R) ) 1 fE A
andn/2. The proof is basically the same as that of Corollary 1, Theorem 7:For any. € (0, 5 $1=¢)]

details are omitted. ) )
af(ov 6 ) = _ﬁ 10g KLwnJ ( LSTLJ)

+nmx{R+Jﬂw)(1—8ﬂ{<w_8ﬂ)—%1+8}.

3|

v () + (]

w—248/2

B. Designs

The following bounds on the distance distribution of a code as 1-¢

a function of its dual distance were implicitly obtained in [14].

Theorem 6 [14]: It follows from this theorem that, for codes of sufficiently large
size, the interval of binomiality can be expanded compared to
ac(0, §') < Theorem 6. Namely, let
_ <1l _ —8 < /
R"’_H(S) 1+O(1)7 0< 2 5(1 5) —6/2 51 = (1/2)(1_ 6/(2_6/))

2
4 —_ — > 4 .
R+H@/2) n log K /2([¢n]) + (1), andé&, be the root of the equation

6//2<%_ 5(1_£)S1/2 w*—&’/Z

R:ﬂ—ﬁH(l_&

) +1+4+ 8 — H(w").
Actually the authors of [14] were interested in estimating the

range of weight§ C [0, 1/2] where the distance distribution of If the root of this equation is negative, we @gt= 0.
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Corollary 2: LetC be a code of rat& with dual distance’. upper and lower bounds on the distance distribution of a code
For any¢ € [min{&y, &}, 1/2], the codeC has asymptotically with known d, d’, we consider a few examples in which the

binomial distance distribution bounds are virtually tight. In one example we also compute
bounds on the probability of undetected error and of decoding
ag(0,8') S R+ H(E) — 1+ 0(1). error, illustrating the use of the distance distribution coefficients.

) ) . o Then we turn to asymptotics, again looking separately at codes
This result can extend substantially the binomiality range ihq designs. The bounds derived in this part supplement the re-
codes’ spectra compared to Theorem 6; see the example indfgs of the previous section, covering the range of code rates
end of Section V. R - 1.

Letn be fixed. For anyw, d < w < n, let

Guw(x) = ZQJKJ(JC)

IV. CONSTANT WEIGHT CODES

In this section, we apply Theorem 1 to codes in the Johnson
spaceJ™ ™. The corresponding metri¢(c, ¢') equals half the
Hamming distance betweerandc . As above, leC be a code be the polynomial of degreg n with the Krawtchouk coeffi-
andA = (Ao, 4y, ..., A,) be its distance distribution. In cients
this case, the family af-polynomials is formed by some Hahn
polynomials@,(x), orthogonal on0, 1, ..., w) with weight gi = Kuw-c(j)Le(§) (d<w<n)

w(t) = M Hahn polynomials share many properties of here
Kravvtchou(l? polynomials. The collection of basic facts was de-
rived in [6], the asymptotics of the extremal zero was found in L(z)=Ko(j)+ K1(j)+---+ K(j)
[23] (with arefinementin [19]), and the exponential asymptotics
outside the oscillatory segment was computed in [1] and [22]s the Lloyd polynomial.
The following theorem is proved similarly to Theorem 6 by In what follows, we construct feasible polynomiats, (i)

taking in Theorem ¥ () = Q2(z) with a suitablet dependent andY., (), which enable us to compute numerically lower and
on¢. upper bounds on the distance distribution of a code. Since these

_ o bounds cannot be formulated as closed-form expressions, we do
Theorem 8:Let C be a code of ratgt in J*-™ with dual ot present the results in the form of theorems.

distanced’ = &'n. Letn — oo andw = wn. Then Let Z,(i) be the polynomial with the Krawtchouk coeffi-
¢ ¢ ¢ cients
R—i—wH(—) +(1-w)-H <1—> —H(w),
w —w . . 27 .
) 2; = Ky e(J)Le(j) — cLZ(j (24)
00, ) < ifazgd/2)/n<£§2w(1—w) ! ()Le() U)
¢(0,07) = : . .
/oy i where ¢ is chosen below. Let us computg,(i) and Z,,(%).
R+H(6 /2), (2/n)log Q%(Sn), Using (41), (44), and (42) in Appendix B, we have
| ife<al™? /n . "
where > Ko DEDE; () = Y Ki(0) ) Pl Ka(i)
j=0 §=0 5=0
1—w)—7(1— —9npi
omy _ w(l—w)—r(1—1) 2Py e

1 .
14+2/r(1 -7
( ) From this, we obtain
Note that the first of the two estimates, again, states that in e
a certain range depending dH, the distance distribution of a gu(D) =2 "pl, . 4. (25)
code is bounded above by the mathematical expectation of the t=0
distance distribution of a code chosen.t:™ with uniform

In a similar way, one can com 1). In particular, for > d
probability. To justify this, notice that the sphere.iff:™ of y putt, (i). Inp t=

radiusi has sizg"/) ("7 "), so the normalized uniform measure 2 2T, 2n
of the spheres i " is given byu(4). This theorem admits 2 (Le(5))"K;(0) = B) {Le, Ki) = @) Z<K5Kt’ Ki)
improvements along the lines of Theorem 7. I ‘ " ot
2n .
= v (K, K;)=0.
V. BOUNDS FORHIGH-RATE CODES ) ;,;pﬂ( oK)
In this section, we will construct several polynomials that gi\;% that
tight bounds on the distance distributions of good codes of r Q. we see tha
close to one. } . .
. .. .. Z'wf =Ggw\?), <1< 2
We start with deriving bounds for codes of finite length, con- (@) = 9 (®) . dsisn (26)
fining ourselves to the case of odd minimum distadee 2¢ + Z(0) = —c. 2" Z <n> @27)
1. The case of eved can be analyzed similarly. Upon deriving =0
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TABLE |

j 3 4 5 6 7 8 14 18 22 24
log A; | 8.483 11.973 14.971 17.815 20.345 22.714 32.874 36.722 38.616 38.904

log 4; | 7.938 11.675 14.312 17.468 19.643 22.333 32.306 35.881 37.146 36.650

This prompts the following choice ef Example 2:Let us estimate the distance distribution of a
Kuo(5) codeC of length 47, siz&-23*, and minimum distance 3, which
c= max —¥=e\MJ (28) s the best known for these parameters [21]. Computing the ma-

@sisn Le(j) trix (9), one can check that it is invertible. Now, using in (10) the

Itis clear that with this choice; < 0, d’ < j < n;thus,Z,(:) Polynomials defined by (24) and (30), we find upper and lower
is feasible. By (45) in Appendix B bounds on the spectrum of the code. The results of computa-
tions for some values of are presented in Table | (the bounds

n ‘“/n ‘“/n 2 are computed for alf < j < n).
70 = <w - e) Z <t> ¢ Z <t> : (29) One can see that the upper and lower bounds are close to one
=0 t=0 another. Using these bounds, let us find upper and lower bounds
Now, one can compute numerically an upper estimate of the probability of undetected errét,.(C) and of decoding

F,(d, d') from Theorem 1 and (25)—(29). error Py (C) for C under complete decoding. We assume that
To estimateF,,(d, d') from below, choosé,(¢) with the codewords of” are sent over the binary symmetric channel with
coefficients crossover probability. Then
Ui = Ku—c(j)Le(5) = c(Le(4))? (30) o o o o
Y AP (1-p)" T < Pu(C) <Y Ap' (- p)Th
where i=d i=d
c= max _M For P, let us assume thate C'is the vector transmitted over
@<jsn  Le(j) the channel andis the error vector. We use the following crude

This polynomial is feasible for the same reasons as the previGifmates:
one. Pr(a(c, ) < 1) < Pa(C) < 1= Pr(|le]| < 1).
Example 1: For the sake of argument, let us apply the results . —.
of this section to perfect codes. L@the a code with minimum
distanced = 2¢ + 1 that meets the Hamming bound, thatis The results are shown in Fig. 2. In both cases, the difference
. between the upper and lower bounds is within the 50% range.
le] Z <”> —9gn 31) If some additional information about the code or its dual code
—\t is available, we can tighten the bounds even further. Consider

the following example.
Let us find an estimate for,(C). Puttingw = d and sim- )
plifying, we obtaingy(d) = 2" (2:,:11)_ Now, using (26), (27), Example 3: LetC' be an extended BCH code correcting:
(29), and taking into account (31), we compt t%d) (20]C| — 3.errors.0 has_ lengti2 ,dlmensm_riz —3m—1, and minimum
gd distance 8. Since the cod# contains the all-one word, we can

2.+1(0)). So, finall . .
ze1(0)) y rewrite the estimates of,,(C) as follows:

n 2¢e+1
Aq(C) < .
)= <e+1>/<e+1> 1C](yo + n) — Yu(0) < Fu(C) < |C|(20 + 2n) — Zu(0)
Using the same arguments for the polynon¥ig{z), we get  \where
n 2¢+1
A > . zi < ;> '<j<n—d.
d(C)_<e+1>/<e+1> 2z <0 and y; >0, ford <j<n-—d

Thus, we have derived the well-known expression for the mitis wellknown thatd’ > n/2—2/n. Moreover(" is a subcode

imum distance component of the distance distribution of a p&rfthe Reed-Muller code of the second order, and, therefdre,

fect code. Moreover, i meets the Hamming bound, then froncan be nonzero only if is a multiple of2[/21-1, Hence, we

the definitions of the polynomialg, (i), Z. (%), andY,(¢) and have to guarantee nonpositivity of and nonnegativity of;

(31) we have only for suchj’s. Define polynomialsy.,(4), Z.,(¢), andY,, (%)
for evenw, d < w < n — d, by their coefficients as follows:

ZO|C|_Z'w(O):yO|C|_Yw(O)7 d<w<n.

In other words,Z,(C) is found exactly for allw. Now (8) 95 = Ko—c() K1)

or (10) enable us to reconstruct the entire distance distribution 2j =Ko () K (4) — cu - (Ko(5))?

of C. Yy =Ko () K (G) + cr - (Ke 1(5))*
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logy(1/p) logy(1/p)

2 3 4 5

-7

Fig. 2. Estimates of,. andP,. for the[47, 9 - 28, 3] code of Example 3.

Here,c, andc; are the minimum possible nonnegative numbers TABLE 1l

such that; andy; satisfy the aforementioned conditions. Since

the second terms df,, (i) andY, (<) are positive, suck; and J 8 10 12 14 16

¢, always exist. log Zj 24.860 33.969 42.790 51.135 59.060
This is all we need to compute bounds.4f(C) with the help logd, | 24437 33919 42785 51134 59.059

of Theorem 1 and expression (10). For instanceylet 8. The
bounds for the first five distance distribution components al
presented in Table II.
Note that these estimates are slightly better than the resul}s (d, &)
in [11] and [8]. Estimates for the distance distribution of BCH 5
codes with other values efcan be found similarly. w—+1 n n\\? n
Now, let us move to the asymptotic case. L&f(¢) be the <] 2a <<w + 1) * < )) — <E>
polynomial with the coefficients 2

n
_2"<n>+c2"<d—1>.
w—+1 w

_ 2
0 = gt Kwn () + Ku()?

rlehen, for sufficiently large,

w

Proof: To derive the bound, we use the polynon#a)(x)
(32) in Theorem 1. First, let us prove that it is feasible. Using

w+1)
wherea is a real number such thaf < a < 2" and the Christoffel-Darboux formula (43) and (42), we obtain

K, (a) = —K,+1(a). Let us define polynomlalgw( ) and
Z,,(1) as follows:

@) = (7)
o= (0 o (% E
woto-e? (ST ) () vy SR ()5 A

(32) s=0

) _ Again relying on (42), we calculate for integer
We putw = wn for the rest of this section.

Proposition 9: Let C be a code with distanegéand dual dis-

tanced’. Let Vil Z v K
1 n " & K;(a s s
(w1 (Kypr(d) + Ku(d))? ~ow <w) 3 (ﬁ()) B s 470 )
2(a—d) (K (d))? ’ ’ s=0i=0 \i
c= ifo<d<n <% ~ Sl = w)) (33) ';Kg(w)Ks(J)
1 n =~ Kz a = =
CRE <§ N w)) << =2 <w) ; (é) D0+ 080
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Assume thaty andx are even. In other cases, the arguments areLet us again consider the cases when odlgr only d’ is
similar. Estimating the sum in the last expression by the terfkmown.
i = w, we have

n—z T A. Codes
Vi(z) 2 2 <w — %> <§> ’ (34) In this case, substitution af = 0 yields a known result. It
From this estimate and from the definition &f,(¢), it follows ~Was obtained in [17], based on a result in [5].
that Proposition 10: Let C be a code with distaneé= én. Then
) 1
Zo() > gulé),  d<i<n. ag(6, 0) < H(¢) - H <§> +o(l),  §=&=5. (35)

The proof amounts to a straightforward calculation, which we
thatzy = 0. Indeed, by (44) omit. This bound is inferior to (20) and other bounds of this form
;f ' ' [17] on the size of a constant weight code.

Z(Kd X ZZP& Lo KL (HE; () The following theore_m_ presents a lower boundAp,, | -
Theorem 11:For sufficiently largen and anyw > H (1 —

It remains to prove that; < 0 for &’ < 7 < n. First, observe

5=0
! 2an R) there existg € [0, 2w] such that
- d—1 d—1-
T2 T2 2
So, the Krawtchouk coefficients in the expansion ag(6,0) > 2H(w)+R-1-(1-¢&H < gé ) —&+o(1).
n-t AN , (36)
2"d-1 i v = Zﬁj-’@(@ Proof: Let us choos&’,(i) = g.,(i). Then by (44)y; =
2 2 2 3=0 (K. (4))?, andY, (i) is obviously feasible. Compute
arej3; (Kd 1(4))2. Together with the definition of (33) logyo = 2nH(w), log Y, (0) = n(1 + H(w))

this implies thatzy, = 0. Let us show that; = v; —¢f; £0,

1 _
d < j < n, for largen. First if 2{*” < @ thenc = 0 and and note thatt logyo + R > 2logY,,(0) for w = nw >

() nH Y(1-R). 'So for such values af the term|C|uO grows ex-
v <0, _SO letus assume thd‘t; zy . Note that vz(e)only need ponentially faster thai,,(0). As suggested in the remark after
to consider the values gfin the intervald’ < j < z;*’ because Theorem 1, we have, (i) = 0 for i > 2w, hence there exists
for greaterj by the above we have; < 0. Sincevar = cfar, it gn indexi € [0, 2w] such that

suffices to show that for large the quantityc/3; decreases of IClwo

slower thany;. Ai(d, 0) = (1-o0(1)).
Observe that _ 0 _
. We conclude by computing logarithms. O
log; ~ 2log Ku(j) Remark: As a continuation of Example 1, let us observe that
and the above results imply that the distance distribution of a perfect
log 3; ~ 2log Kay2(j).- code is asymptotically binomial
Forw > d/2 we haver(") < 2%% | so both polynomials are ag=R+H(E)~1+0(1), <<

positive and decline rapidly gsgrows. We will prove that for This follows by combining the estimates of the two preceding

largen the decline rate oi(4/2( ;) is slower that ofK(,,(j). Let  statements. Since nontrivial perfect codes of growing length do
J = &n and write the derivative of the exponent/f, () inthe not exist, we do not include the details. However, there is some
form (d/d¢)log K. (En) = ng(w, ) 4+ o(n). Then from (47) theoretical interest in the fact that the distance distribution of

we get codes that meet in the asymptotics a linear-programming bound,
— 2w+ /1 — dw + 4w? — 4 + 4€2 converges to the binomial distribution [this holds true for both
P(w, §) = log 2_2¢ instances considered in this paper, and is also true in the Johnson

valid for0 < £ < (1/2) — /w(1 — w). Itis easy to check that space with respect to the bound (19)]

for a fixed¢ in this interval,¢(w, £) is a decreasing function of g Designs
w. Therefore, the exponent of is falling faster than that of;
ford <j< x( ). This finishes the proof of feasibility of the
polynomial (32).

It remains to compute the bound (3). Using (40) and (45), we Theorem 12 [14]: Let C be a code with dual distane® =
find Z,,(0) andzg. Thereby, the proof is completed. O &n.Then, the boundis in the equation at the bottom of the page.

The following bounds ori; as a function of’ were implic-
itly obtained in [14].

R—1+H() +o(1),

CL&(O,(S/)S / — &
R+2H<%— 6’(1—6’))—1—5—(1—§)H<%—61(%§6)>+0(1), ifogs<T
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We will rederive the first part of this theorem, improve the £
second part, and as a corollary, extend the interval of binomialit ; , 5
for codes of sufficiently large size. Let

=(1/2)(1 - v1-2¢)
and letq(n) be some function of polynomial growth.
First, suppose that—/w(1 — w) < §. Then, by (33)¢ = 0 0.1

0.15

0.125

andZ,(x) = V,(x). From this, we have 0. 075
F(0, 8) <[Clug — Vi (0) 0.05
2 2
—gicl(%) =2 (1) <amiel() oo
w w
and .8 0.85 0.9 0.95 I p
ag(0,8) SR+2H(w) —1—(1-¢) < )
Fig. 3. Binomiality range for the distance distribution of codes with= 0.2.
— ¢+ 0 ) The distance distribution is asymptotically binomial in the intefgaR), 1/2].

The plot shows the curv R) from Theorem 12 (straight line) and Corollaries
The optimal choice of, is w = w**. Hence, wheneved < 2and3.

1 1-2¢8 1
53— Vw1l —w*) < ¢, or, equwalently,( i <¢<s5

the following inequality is true:
ag(0, &) S R+1—H(§) +o(1).

This is the first part of Theorem 12.
Now, let: — \/w(1 —w) > &'. Then,c > 0 and

Fo0, d) <|C] <q(n) <Z>2 . 2%) —on <Z> e2n

better results for high code rates, see Fig. 3. In this example,
the binomiality range is extended for code rakes [0.795, 1].
Corollary 2 gives the best results for7/95 < R < 0.93, for

R > 0.93, Corollary 3 gives a slightly wider range of distances.

APPENDIX A
ANOTHER PROOF OFTHEOREM 3

Let d be the code distance ané= |n/2 — \/d(n — d)]. We

n\ 2 note thatd is approximately equal to the first ze Y of the
< q(n)|C] <w> + 2", Krawtchouk polynomialk,(z). Let m, 2™ < m < 2P,

be the number such that{, ., (m) = —K,;(m). Such a choice
is possible for any. because of the interlacing property of the
zeros of K, and K, ,1: zi"™ < 2{? < 2§ Let us define
the polynomialZ(z) as follows:

(Ki(x) +”Kt+1(37))2'

We obtain the following theorem..

Theorem 13:Let0 < ¢ < W Then, for any

we B Ny 1}

2 Z(z) = pe—— (37)
ae(0, 8') < min[R + 2H (w), (2/n)log K,(d') + 1] The Krawtchouk coefficients af(z) are nonpositive. Indeed,
—(1—§)H<w_£/2>—1—§ we have
1-¢ ' Z() = 1 (K1 (m)Ki(z) — Ki(m) K1 (2))*
(Kit1(m))? T —m

As mentioned earlier, the interval of binomiality can be ex-
tended for sufficiently large codes. Lét = (1 — 26')2/2 and SO this follows by (43). Furthe (z) < 0for 0 < = < m and

let &, be the root of the following equation:
= (2/m)1og Ky (['0]) + 1 = 2H (™).

If the root of this equation is negative, we figt= 0

Z(xz) > 0for m < = < n. Therefore, if we take in Theorem
1g¢(i) = Z(z), the polynomialZ(z) is feasible with respect to
the conditions of the theorem.

Recall that by [23] for any code(| < —Z(0)/z0. S0, as-

suming that the rat& of the code is
0<R< H(1/2—+/6(1-6))

we see that the dominating term in the differeagk”| — Z(0)
is the second one. Hence, we can write the estimatd.pin
the form

Corollary 3: Let C be a code of raté? and dual distance
d'. Then, for any¢ € [min{¢;, &}, 1/2] the codeC has the
binomial distance distribution

ag(0,8') < R—1+H(E) +o(1).

Example 4: As mentioned in the end of Section IlI, the im- A < —Z(0)(1 — 0(1))' (38)
provement in the estimate of the binomial range over the known v = Z(w)
results can be substantial. For instance, consider codes WItH—
0 compute the bound (3), we find
&' = 0.2. Then, Theorem 6 guarantees that the distance dis- P @)
tribution is binomial for0.2 < ¢ < 1/2 and Theorem 12 does 1 <n>2 <n(n —t) n 1>2

the same fo0.18 < ¢ < 1/2. Corollaries 2 and 3 are much 2(0) = Tm \t t+1
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To complete the proof, we have to estimatév). Note that or
this problem is essentially different from the standard situation p(n)t(n — t) (n)
sincew is greater than the first zerd"” . Therefore, the point | K1 () K1 (o) > 50t 1 o) L
is in theoscillatory segmerfor both K; and K¢ 1. (t+1)(n—t+1) ofz)’
In the last case, since by (40)

Lemma 14:Let x € [d, n/2] be an integer and(x) =
(;)27". Then ) Ky 1())? < || K1) = <t " 1)
(Ki(x) + Kpy1(2))* > O(1) <n> /). (39)  we conclude that

n 2 2 n
Using this estimate in (38) and taking logarithms, we obtamg(_) > K (@) > P (n)t(n —t) (3) )
the exponential bound claimed in the theorem. The rest of thid? + 1) e(@) ~ TAE+ 1) (n—t+ 1) ofz)
appendix is devoted to the proof of (39). Recall thatt is linear inn, so these inequalities imply that
p(n) = O(1). Since(K,(z))? < (7)/e(z), the same conclu-
sion also follows for the first case. Thus, at any integer point

We begin with the following result from [16].
Lemma 15 [16]: Let s = 24/k(n — k). Then, fork < n/2

and integet € (%32, §), n/2—\tln—1t) <z <n/2
(Kr(1)? — Kp(t — DEK(t +1) at least one of the following asymptotic equalities holds true:
s—n+2z (t—Di(n—t—1)!
> Ui(n/2 K I Vo
= s ((71/2 — 1)) k(n/ ) | t( | t”/
where fork even | Kit1() D) K] /\/
dk(n — k) (n)2\° This finishes the proof of (39).
T, =
o~ 2557
APPENDIX B
and for/ odd USEFUL IDENTITIES
2
Ur(n/2) = 4< n/2—1 ) Let {K(x)} be the family of Krawtchouk polynomials
(k—1)/2 (11). They are orthogonal orf0, 1, ..., n) with weight

First, note that, as verified easily using the Stirling formula afi) = (?)/zn

s—n+2z (z—1Dl(n—z—1)! (%) (K:, K;) /KK do = 6 <> (40)
Up(n/2) = p(n i ij
s (- =R
wherep(n) is a function of at most polynomial growth in So  For any polynomialz(z) = >°;_, 7 Ki(x)
for k < n/2 and
zj = A2 {2, K;) _2"22 (41)
n/2 —k(n—k) <t <nj2+ Vk(n - k) (K, K;)
we have The following properties are standard:
(&)
(Ki(t)? — Ki(t — DER(t + 1) ZP(”)O(Lt)- ZKk ) =2"b (42)
Now, since Kt-l—l( VK (a) — Kt( JKit1(a)
t
n n _ 2(a—=x Ki(x
<k>Kt(k): (t)mt) =4 ( )2% 9 (43)
we obtain for integer < »n/2 and K (2)K,(x) = ZP{SK' = (44)
€n/2—Va(n—x), n/2 +Jx(n — z)]
where
t+1 —t+1 . .
(Kt(a:))Q _ ( tzin_ 5 ) K 1(2)Kip1(z) pj _ < n—7 ) < J )
) Nt s —0)/2) \(E -5 +4)/2
> p(n)a(tx). if t — s+ jis even and zero if it is odd [the equality in (44)
' is asserted only di, 1, ..., n, regardless of the degree of the
Thus, in the interval considered, either polynomial on the left]. From (11), we see that
2 S p(n) (1) ="
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Polynomial K (z) has degreeé and its¢ simple zeros are [g]
located between 0 and Letx?) be the smallest zero df, (z);
letn — oo, t — o0, k/n < 1/2. Then, [23], [19], [9]
O SHa—t)+0 (/5 /n 46) M
=T (1-8)+ n). (46)
(11]
Lett = 7n,0 < z = ¢&n < 2. By [7], we have "
1 [13]
— log Ki(x) = H(7)
n
¢ 1-2r4+/(1-27)2—4y(1—
+ / log V-27)2—dy(1—y) dy+o(1). (47) 14
0 2-2
(15]
Forr = (1/2) — /&(1 — &), this gives [16]
17]
1 1+ H(r) — H(¢) [
— log Ky(x) = . 48
n g t( ) 2 (48) [18]
(19]
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