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Now, it follows directly from the definition of3,(r, m)* that if
f €{E,(r, m — 1)) thenf - ¢, (X,,) € B,(r, m)*. Also, since

X} = ep(Xo) + (14 (X)) - X,

iNA, ., fi € By(r—=1, m— 1)l implies thatf; X! € B, (r, m)*t.
Hence

B, (r, m) @ B, (r, m) C B,(r, m)*.

('m l— 1) (p _ 1)1‘

dim(Bﬁ(r, m)) = <mr_ 1) (p—1)".

m—1
2—1

Now
r—1

diIIl(B;(T’, m))=p- Z
=0
and
The identity("™ ;') + (""2)') = (') then implies that
dim(B, (r, m) @ B (r, m)) = dim(B,(r, m)T).

ACKNOWLEDGMENT

361

[19] ——, “On the optimum bit orders with respect to state complexity of
trellis diagrams for binary linear codedFEE Trans. Inform. Theory
vol. 39, pp. 242-245, Jan. 1993.

F. J. MacWilliams, “Binary codes which are ideals in the group algebra
of an Abelian group,Bell Syst. Tech. Jvol. 44, pp. 987-1011, 1970.

D. J. Muder, “Minimal trellises for block codeslEEE Trans. Inform.
Theory vol. 34, pp. 1049-1053, Sept. 1988.

A. Vardy, “Trellis structure of codes,” ilandbook of Coding Theory.

S. Pless and W. C. Huffman, Eds. Amsterdam, The Netherlands, 1998,
ch. 24.

J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes using atrellisJEEE Trans. Inform. Theoryol. IT-24, pp. 76-80,
Jan. 1978.

(20]
(21]

[22]

(23]

Concatenated Codes with Fixed Inner Code and Random

Outer Code

Alexander Barg, Jgrn Justeséviember, IEEE and
Christian ThommesemMember, IEEE

The authors wish to thank the referees and the Associate Editor for

their helpful comments and suggestions.

Abstract—We derive lower bounds on the distance and error exponent

of the coding scheme described in the title. The bounds are compared to

the parameters and error performance of a concatenated code family with
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possible to present families of codes with both nonvanishing rate and_et us introduce a random variahk defined by

distance and low construction complexity [11], [5]. Improvements of 1

the parameters of these families are based on multilevel concatenations P(X =i) = q_k‘Ai’ i=0,1,....n. (6)
[3] and the use of algebraic geometry codes [6]. A detailed account of . o .
the early work is given in [3]; see also overviews in [4] and [1]. In particular, ifB is an[n, n, 1], all-word code, then the corresponding

For a given rate? € [0, 1] denote bys, = 6o (R) the GV distance, rar|1:dom v_arlabIeY IS b|qo;n|ally q|str|buted; we lgi»nmﬁ It by.” .h W
i.e., the smaller root of the equatidh= ln ¢ — H,(6), where ora given nonzero in ormatl_on sequence AN t e weig L4 .
of the corresponding codeword is a random variable. It is conveniently

Hy(z)=2ln(¢g—1) —2zlnz — (1 —z)In(l — z) expressed vi& as follows.

is the entropy function. Suppose the constituent cotleend B are Lemma 1:Letu € Fi‘},\{O} be an information sequence. The

both chosen from their respective ensembles,and(In ¢)k/» isthe  Hamming weightV of the corresponding codeword @ equals
rate of the codeB. This defines an ensemble of concatenated codes of

rateR = rK/N. For this ensemble to contain codes meeting the GV W=X+ X4 4 X )
bound it is sufficient that [3], [9] whereX; ~ X, i = 1,..., N are independent and identically dis-
r > In[q(1 — 8o(R))]. ) tributed (i.i.d.) random variables with distribution (6).

The same holds true i is MDS. The error exponent of these codes for L€t £ = (Inq)kK/nN. Strictly speakingR is not the rate ot
transmission over the-ary symmetric channel with symbol-to-symbolSiNce€Go can have rank less thaf, but as usual, for growing param-
error probabilityp/(¢ — 1) both in the case that is a random code eters almost all codgs have rate approaching. In the next theorem

[3] and an MDS code [10] meets the random coding bound we use (7) to derive an existence bound on the cadé®m the de-
fined ensemble.
—bolnmy(p), 0<p<p. (@
E(R,p)>{ Ing—R—In(1+(q—1)my(p)), pe<p<p. (b) Proposition 1: There exist concatenated codéswhose rate and
T,(80.p)—lng+R, pe<p<é. (c) relative distance approactk, o) if
3) nR < —In(B{e™" X791, t>0.
Here Proof: The probability for a code in the ensemble to have a frac-
(2qg — by — 2) — 2\/((1 —1)(g—1-qdo) tional Hamming weight at mostis, for anyt > 0, bounded above as
Pe = (1= 5) follows:
b = 5 VNP(X) + Xo+ -+ Xy < nN6)
g2 + (g — 1)(1 — 260) < CRnI\'E{C—f,(ZXZ-—nNﬁ)}
— 9 — _ nR —t(X—né)|\N
qg—1 qg—1
To(p,p)=pln(g—1) — plnp — (1 — p)In(1 — p). 4) Remark: The bound of this proposition does not depend/¥n

. . Lo However, foré < (¢ — 1)/¢, Chernoff’s theorem for large deviations
An interesting question is what happens to the parameters of t&ses < (e )/a g

family C' if we relax (2) and take to be a certain fixed value that

does not depend on the target rateThen, clearlyR is atmostr. As  j,,, P+ -+ Xy < nNO)) L In(B{e~tX—n9)1),

shown in [3] and [10], the attainable parameters then behave as  N—= N t20 ®)
51(R) = {50(3% "> ln[_q(l = 6o(R))] (5) S0, by using the random technique together with the union bound for
l(ﬁﬁ, otherwise the minimum weight, no better result than Proposition 1 can be ob-

where the second part of the bound is a segment of the straight line figéted asymptotically, if the inner code is fixed, aNd— oc.

is tangent td, (R) at the point? = ln ¢ — H,(1 —¢e" /¢) and connects

it to the point(r,0). 7
In this correspondence, we further relax the conditions and address E {c_’(’\'_"”)} = min E {c‘t(x‘"‘s)} . 9)

the following problem: what are the parametersCoif B is a fixed 120

linear [n, k], code and the codd is chosen randomly from the en- Computing (3/9t) E{e~"X ="} we see thatr satisfies the fol-

semble of N, K7« linear codes. In the next section, we derive a lowdowing equation:

existence bound on the asymptotic parameters ahd compare it to ~ (X i)

the GV bound and to the bound (5). In Section Ill, we derive an upper E {(‘\ — né)e } =0. (10)

bound on the weight spectrum 6f and estimate its error probability |f - js ysed as parameter for th&, §) curve, given by

of decoding under the maximum-likelihood (ML) algorithm. The ex- 1

ponent of this probability is compared to the random coding exponent. R=-— - In (E {e/—’(x_‘g”) })

LetT = 7(6) be chosen so that

Il PARAMETERS OF THECODING SCHEME then (10) relates andé. This gives rise to the following theorem.

Theorem 1: The random ensemble of codégontains codes whose

Suppose that in (1) we také to be a random lineas*-ary code
op 1) o -ary parameters approach the following bound:

and B a certain fixed[n, k], linear code with weight distribution

A = [Ao, A1,..., A,]. More specifically, if Go is the generator R= l(m/ — ) (12)
matrix of A, we assume each element in it is chosen independently no T

with uniform distribution fromF .. This defines an ensemble of 5= —lqh’f. >0 (13)
concatenated codés= A X B; our goal will be to prove an existence n

bound on their parameters. where¢ = ¢(X,7) := ln Ee ™",
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Proof: Solving (10) foré, we obtain we finally obtaing”. (X, 7(B)) > ¢’ (Xo, 70). This is the first part of
Cox our claim. The second part follows since both bounds (12)—(13jand
= 1 % meet thelz-axis atlR = r and since the former is convex and the latter
n Efemm¥} a straight line.
Further, (11) gives Another proof of this proposition, similar to the above, but based on
the MacWilliams identities, is given in Appendix A.
R=— 1 InEe~ ™~ — 76. Bound (12)—(13) displays interesting behavior for small valuds.of
n Letu = (¢—1/q)— & and let us write the expansion of the GV function
Substitutingd completes the proof. O R =Inqg— H,(6)inthe neighborhood oi = 0. The derivatives of

Let us relate this bound to bounéig R) ands; ( R) discussed above. H,y(6 — ) areH’ =In(6 —)/((¢ = (L =6+ )
The slope of plotted versusk equalss, /R, = —1/. To gain un- da _ (=T s=2) (s —2)!

H ((‘)—,T) (1_9+x)5—1 ((7’—1')5_15

derstanding of the properties of the bound (12)—(13), let us compute itsdzs =~ ¢ 5§22
whered = (¢ — 1)/4. So we obtain, in the neighborhood®of= 0

behaviora®? — 0 andR — r.Forr =0, (R,6) = (0,(¢g—1)/q) is
obtained, so all the bounds, 6, and (12)—(13) coincide. Computing . .
the limit for 7 — oc, we obtain(R, §) — (£ 1n¢,0), which reflects R(6 —u) = Z { 7 Gl (15)
the fact that minimum distance greater than zero can only be obtained s(s=D(g—Dt  s(s—1)
whenR < r. Finally, it can be seen that the functi6iR) is strictly P .
U-convex for0 < R < r. Indeed, we have For ¢ = 2 this takes a somewhat mgrf appealing form

g LB SR (o) FD =0 = 2o otlr =1

RrZ = )3 ENCYE SRR 7=
(Br) n? (1) Now we are in a position to formulate our claim.

Itis straightforward to see tha&t is a growing function of the parameter
T, and sosf: > 0. 1 . :

LetCo = AKX (F,)" be a code witkd random andB the[n, n, 1], ioir:clidt:mtsh'r;rfgecg?r\gsergﬁgﬁ]ns'tg?rg;tgf(tigl)md (12)-(13por 0
all-word code. Effectively, we eliminate the concatenated construction, P 9 '
and look at random-ary codes. Then, Theorem 1 gives the GV bound. The proof of this proposition is a straightforward though tedious cal-
We isolate this in a separate lemma, whose proof is straightforwardculation based on the fact that théh-power moment of the weight

Lemma 2: Bound (12)—(13) with¥ = X, gives the GV bound. distribution is equal to that of the “binomial” distribution as long as

§>2

Proposition 3: Let B be a code with dual distaneE-. Then, first

A+ =o0.
Next let us compare (12)—(13) ta(R) andé; (R) for an arbitrary Though the expression for our bound is cumbersome, the bound
inner codeB. itself is easily calculated. For instance, taking fBe, 12] extended

. ) . . Golay codeG24 with the weight distribution{ Ao = Ay = 1, As =
Proposition 2: For a given rate? € (0, r], the distance (13) of the A1s = 759, 412 = 2576) as the inner cod®, we obtain the bound

concatenated code is always less thaf (1) an_d Ies_s_ thafs (R). lotted in Fig. 1 together with the GV bound afid R). In Fig. 2, the
Proof: We use the Pless power moment identities for the coe hree bounds are compared for e, 6] ternary Golay cod@» as

cients of the weight distribution of a linear code [7] codeB.

n . n T - 7L—j )
D =) A=Y AF (Z V1S(r.v)g" <n_y )) ;o J20 lll. ERRORPERFORMANCE
j=0 7=0 v=0

o _ _ Let us analyze the error performance of our coding scheme used for
whereS(r, v) are the Stirling numbers of the second kirfti£, ») is  transmission over the-ary symmetric channel with symbol-to-symbol
the number of partitions of an-set into» nonempty parts, and henceerror probabilityp/(¢ — 1) and decoded by the ML rule. We use the
nonnegative). So, obviously, for any cofle union bound together with estimates for the weight spectrufi.of

N -\ Generally, leC be a sequence of linear codes with weight spectrum
n — YV _ 7
E{(n = X)) 2 E{(n = Xo)’} A, w > 0. Suppose that the distance®fequalsd = pun. Further,
with the equality for alli = 0,1,...,d"(B) — 1. Writing out the Suppose that beginning with a certain value_of the (_:ode lengtie
power series in the neighborhood iof= 0, we observe that for any €xponent of the number of codewords of a given weight wn can
code different from the whole spa&& be bounded above as

(1/n)In Ay, < a(w).
Assuming that the the error probability of decoding for fantilype-

or that haves exponentially in and puttingP..(C, p) < exp(—nE(R,p)),
one can boun& (R, p) below as follows.

E{{Z—f(x—n)} > E{C—f,(xo—n)}

E{e"""} > E{e ") t>0. (14)
Proposition 4:
From this we observe that(t, X) > ¢(t, Xo) for all ¢ > 0. Now ey R N T (s
suppose that E(R,p) 2 N?g;‘](a(u)) + wlnmy(p)) (16)
. ZH(X —n) wherer, (p) is defined in (4).
7(B) = argmin E(e ) A sketch of the proof is given in Appendix B.

is the value of- for the codeB andry is the same for the inner code For instance, taking = C to be a sequence of concatenated codes
F7. Since the rate of the codg is fixed, i.e., by (12) with a random outer codd and inner codeB = (F,)", we obtain

a(w) = Hy(w) + R —Ing for w > 60(R). Substituting this in (16)
T(B)o(X,7(B)) — ¢(X,7(B)) = 1090~ (Xo0,70) — ¢(Xo0,70) produces parts (a) and (b) of (3) of the random coding exponent.
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[24,12)

- Golay Code

[12,6} - Golay Code

Fig. 1. The bold solid curve is the bound (12)—(13). The thin solid curve Big. 2. The bold solid curve is the bound (12)—(13). The thin solid curve is

the GV bound 6,(R)). The dotted curve i§, (R). The tangent point of; and

the GV bound(é,(R)). The dotted curve i$; (R). The tangent point of;

80 is R = 0.0884; 60(0.0884) = 6,(0.0884) = 0.293, and our bound gives andé, is R = 0.125;8,(0.125) = 6,(0.125) = 0.423, and our bound gives

5(0.0884) = 0.281.

It is known that for any code family that meets the GV bound for
R — 0, the error exponent in this neighborhood will behave as (a) in
(3). It is also clear that for our familg' with fixed inner codeB the
exponent( R, p) (atleast, calculated by the union bound) will become
zero forR > r. To estimate the error performance fbk R < r let
us estimate the average weight distribution of a concatenated(¢ode
with inner codeB with known weight distributior{4¢, A+,..., 4,).

The answer is given in the following theorem, which is proved exactl

as Theorem 1. 0

Theorem 2: Let Ex(w) be the average number of vectors of weigh
< nNw over the ensemble of concatenated codeg hen forl >
w > 6,

In(En(w)/nN) < R+ %(lngﬁ —7é,)
1

o
w=——0;
n

17

(18)
whereX is the random variable with
P(X =w)=Ay/¢"

H(X,7)=InEe ™ 0.

andr is chosen from the condition
E (S—T(,\'—nw)) — IninE (e—f(x—n,;u)) .

t>0
This bound again is easy to compute. For instance, as a follow-up
the above example, let us compute the average exponent of the wei
spectrum of the family of concatenated codes wWkh= Gs4. This
is compared to the weight spectrum@f = A X (F2)" in Fig. 3,

0.2

.15

05

6(0.125) = 0.401.

0.2 0.3 0.4 0.5

Fig. 3. The solid curve is the exponent of the weight spectrum of

where on the horizontal axis we show the relative weighind on ¢’ = 4 ®(F,)"; the dashed curve is an upper bound on the exponent of the
the vertical axis the logarithm of the weight distribution of the codeeight spectrum o = 4 K G.,.
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Further, the sum og on the right-hand side of this equality is nonneg-

ative since fort > 0,0 < ¢~' — e~ "¢ < t/q. This takes us again
to (14).

APPENDIX B
PROOF OFPROPOSITION4 (AN OUTLINE)

The proof proceeds by an application of the union bound. We com-
pute the two-word error probability and multiply it by the number of
codewords of weighty. This gives the following expression:

Pde(c,p)giAwi wf nf("f)(”?)(q—?)j

w=d 7=0 izl’waj'| =0

i+l
n—w _ s P _ n—i—j—¢
><( / )(q 1) <q_1> (1-p) :

Direct optimization shows that the exponent of the maximal term in the
sum onj behaves asw In 7, (p). Now taking logarithms establishes
(16).

As a side remark, note that in many cases the bound (16) can be
improved for high code rates. The reason for this is that the union bound
becomes too crude even compared to the trivial assumption that for
all errors of weight greater than somevery error vector results in a
decoding error. In particular, faB = (F,)" this argument produces
the sphere-packing bound (c) of (3); see [8] for detalils.
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