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Abstract—Given any r and n, we present an explicit con-
struction of high-rate maximum distance separable (MDS) array
codes that can optimally repair any d failed nodes from any
h helper nodes for all h, 1 ď h ď r and d, k ď d ď n ´ h
simultaneously. These codes can be constructed over any base
field F as long as |F | ě sn, where s “ lcmp1, 2, . . . , rq. The
encoding, decoding, repair of failed nodes, and update procedures
of these codes all have low complexity. Our results present
a significant improvement over earlier results which can only
construct explicit codes for the case of at most 3 parity nodes,
and these existing constructions can only optimally repair a single
node failure by accessing all the surviving nodes.

In the second part of the paper we give an explicit construc-
tion of Reed-Solomon codes with asymptotically optimal repair
bandwidth.

I. INTRODUCTION

An pn, k, lq MDS array code has k information nodes1 and
r “ n ´ k redundancy nodes in each codeword with the
property that any k out of n nodes can recover the codeword.
Each node is a column vector in F l, where F is some finite
field. While originally MDS array codes were studied for error
correction in memories [1], recent applications in distributed
storage brought forth the problem of efficient regeneration of
a failed node [2].

Recovering failed (erased) node(s) from the information
available at the other nodes is called the repair process.

Definition I.1. For h ď r and k ď d ă n, define Nph, dq as
the smallest integer such that the contents of any h nodes
can be recovered by accessing any d surviving nodes and
downloading the total of at most Nph, dq symbols of F from
these nodes2. The parameter Nph, dq is called the ph, dq-repair
bandwidth of the code C.

By a result of [2], [7],

Nph, dq ě d l
h

d ` h ´ k
. (1)

We say that an pn, k, lq MDS array code C has the ph, dq-
optimal repair property if this lower bound is achieved, and
omit the reference to h if h “ 1. If d “ n´1 we also omit the
reference to d. For k ď pn`1q{2 (the low rate regime), MDS
array codes with the optimal repair property were constructed
in [3]–[6]. For arbitrary code rate, [7] proved that the bound
(1) is asymptotically achievable when l Ñ 8. For finite l and
k ą pn`1q{2 (the high-rate regime) [8]–[12] showed that for
F large enough there exist MDS array codes that can optimally
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1following the recent literature, we refer to codeword coordinates as nodes.
2these symbols can be some functions of the contents of the nodes.

repair any systematic node using all the surviving nodes, and
[13] showed the same for all rather than only systematic nodes.
At the same time, explicit MDS array code constructions for
optimal all-node or even only systematic node repair in the
high rate regime are known only if r ď 3 [10]–[14].

In Section III, we present an explicit MDS array code
construction with the optimal repair property for any number
of parity nodes and any code length using a field F of size
|F | ě rn. The encoding, decoding, and repair of a single failed
node involve only simple operations with r ˆ r matrices over
F , and thus have low complexity3. An additional property of
the proposed codes is optimal update, i.e., the need to change
only the minimal number of coordinates in parity nodes if one
coordinate in systematic node is updated. In our construction
we rely on a (non-systematic) parity-check representation of
the codes as opposed to the systematic generator form used
in most earlier works. This representation does not distinguish
between systematic nodes and parity nodes, and leads naturally
to the optimal repair of all nodes. Moreover, the parity-check
form combined with the block Vandermonde structure [12] and
the idea of using r-ary expansions [8], [11] makes the explicit
construction for larger number of parity nodes possible.

In Section IV, we give an explicit construction of pn, k, lq
MDS array codes with d-optimal repair property for any
positive integers n, k, d, l such that k ď d ă n, l “ pd`1´kqn

using a field F of size |F | ě pd ` 1 ´ kqn.
In Section V, we construct MDS codes with d-optimal repair

property for several values of d simultaneously. Moreover, we
show that pn, k, rnq MDS array codes constructed in Section
III will automatically have d-optimal repair property for all
d such that pd ` 1 ´ kq|pn ´ kq. In Section VI we further
extend our construction to obtain pn, k, lq MDS array codes
with ph, dq-optimal repair property for all h ď r and k ď

d ď n´h simultaneously, where l “ sn, s “ lcmp1, 2, . . . , rq.
These codes can be constructed over any base field F as long
as |F | ě sn, and they also have the optimal update property.
Moreover, the encoding, decoding, and repair procedures only
require operations with matrices of size not greater than nˆn.

Recently, [16] studied the repair bandwidth of Reed-
Solomon (RS) codes and introduced an efficient linear repair
scheme for RS codes. In Section VII we use this linear
repair scheme and the r-ary expansion idea to construct
an explicit family of RS codes with asymptotically optimal
repair bandwidth: we show that the ratio of the actual repair
bandwidth of the codes and the optimal value approaches 1
when the code length goes to infinity.

3An expanded version of Sections II-VI of this paper is available online as
arXiv:1604.00454 [15].



II. GENERAL CODE CONSTRUCTION

Let C P F ln be an pn, k, lq array code with nodes Ci P

F l, i “ 1, . . . , n, where each Ci is a column vector. Through-
out this paper we consider codes defined in the following
parity-check form:

C “ tpC1, C2, . . . , Cnq :
n

ÿ

i“1

At,iCi “ 0, t “ 1, . . . , ru, (2)

where At,i, t “ 1, . . . , r, i “ 1, . . . , n are l ˆ l matrices over
F .

Given positive integers r and n, define an pn, k “ n ´ r, lq
array code C by setting in (2)

At,i “ At´1
i , t P rrs, i P rns, (3)

where A1, A2, . . . , An are some l ˆ l matrices. (We use the
convention A0 “ I.) The specific code families in Section III-
VI are obtained by choosing different forms of the matrices
A1, A2, . . . , An.

III. CONSTRUCTION OF MDS ARRAY CODES WITH
OPTIMAL REPAIR PROPERTY

A. Code construction
Construction 1. Let F be a finite field of size |F | ě rn, and
let l “ rn. Let tλi,juiPrns,j“0,1,...,r´1 be rn distinct elements
in F. Consider the code family given by (2)-(3), where we take

Ai “

l´1
ÿ

a“0

λi,aieae
T
a , i “ 1, . . . , n.

Here tea : a “ 0, 1, . . . , l´1u is the standard basis of F l over
F, and ai is the i-th digit from the right in the representation
of a in the r-ary form, a “ pan, an´1, . . . , a1q.

Since the Ai, i “ 1, . . . , n are diagonal matrices, we can
write out the parity-check equations (2) coordinatewise. Let
ci,a denote the a-th coordinate of the column vector Ci for all
a “ 0, . . . , l ´ 1, i.e., Ci “ pci,0, ci,1, . . . , ci,l´1qT . We have

n
ÿ

i“1

λt
i,ai

ci,a “ 0 (4)

for all t “ 0, . . . , r ´ 1 and a “ 0, . . . , l ´ 1.

Theorem III.1. Codes given by Construction 1 attain optimal
repair bandwidth for repairing any single failed node.

Proof: For u “ 0, 1, . . . , r ´ 1, let api, uq :“
pan, . . . , ai`1, u, ai´1, . . . , a1q. We will show that for any
i P rns and a “ 0, 1, . . . , l ´ 1, the coordinates
tci,api,0q, ci,api,1q, . . . , ci,api,r´1qu in Ci are functions of the
following set of n ´ 1 elements of F :

µ
paq
j,i :“

r´1
ÿ

u“0

cj,api,uq, j P rnsztiu. (5)

In other words, each surviving node only needs to transmit
one scalar in F to recover r coordinates in the failed node,
so the optimal repair bandwidth is achieved. Replacing a with
api, uq in (4), we obtain

λt
i,uci,api,uq `

ÿ

j‰i

λt
j,aj

cj,api,uq “ 0. (6)

Summing (6) over u “ 0, 1, . . . , r ´ 1 and then writing the
result in matrix form, we get

»

—

—

—

–

1 1 . . . 1
λi,0 λi,1 . . . λi,r´1

...
...

...
...

λr´1
i,0 λr´1

i,1 . . . λr´1
i,r´1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

ci,api,0q

ci,api,1q

...
ci,api,r´1q

fi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

–

ř

j‰i µ
paq
j,i

ř

j‰i λj,ajµ
paq
j,i

...
ř

j‰i λ
r´1
j,aj

µ
paq
j,i

fi

ffi

ffi

ffi

ffi

fl

.

(7)

By construction λi,0, . . . , λi,r´1 are distinct, so we can solve
this system for tci,api,0q, ci,api,1q, . . . , ci,api,r´1qu given the set
of elements in (5).

The repair procedure of a single node has low complexity:
indeed, according to (7), it can be accomplished by operations
with r ˆ r matrices (rather than much larger l ˆ l matrices).

Theorem III.2. The code C given by Construction 1 is MDS.

Proof: We write out the parity-check equations (2) coor-
dinatewise. For all a “ 0, 1, . . . , l ´ 1, we have

»

—

—

—

–

1 1 . . . 1
λ1,a1 λ2,a2 . . . λn,an

...
...

...
...

λr´1
1,a1

λr´1
2,a2

. . . λr´1
n,an

fi

ffi

ffi

ffi

fl

»

—

—

–

c1,a
c2,a

...
cn,a

fi

ffi

ffi

fl

“ 0 (8)

Clearly every r columns of the parity-check matrix in (8)
have rank r, so any k out of n elements in the set
tc1,a, c2,a, . . . , cn,au can recover the whole set. Since this
holds for all a “ 0, 1, . . . , l´1, we conclude that any k nodes
of a codeword in C can recover the whole codeword.

B. Complexity of encoding, decoding, and updates
The code given by Construction 1 can be efficiently trans-

formed into systematic form. Without loss of generality we
assume that the first k nodes are systematic (information)
nodes. By (8), for all a “ 0, 1, . . . , l ´ 1, we have

»

—

—

—

–

1 1 . . . 1
λk`1,ak`1

λk`2,ak`2
. . . λk`r,ak`r

...
...

...
...

λr´1
k`1,ak`1

λr´1
k`2,ak`2

. . . λr´1
k`r,ak`r

fi

ffi

ffi

ffi

fl

»

—

—

–

ck`1,a

ck`2,a

...
ck`r,a

fi

ffi

ffi

fl

“ ´

»

—

—

—

–

1 1 . . . 1
λ1,a1 λ2,a2 . . . λk,ak

...
...

...
...

λr´1
1,a1

λr´1
2,a2

. . . λr´1
k,ak

fi

ffi

ffi

ffi

fl

»

—

—

–

c1,a
c2,a

...
ck,a

fi

ffi

ffi

fl

.

(9)
Consequently, in the encoding process we do not need to invert
an rlˆrl matrix, instead, we only need to invert rˆr matrices
l times, gaining a factor of l2 in complexity. Similarly, in the
decoding process, if some r nodes are erased, then in order to
recover them, we only need to invert r ˆ r matrices l times.

Another useful parameter of codes is update complexity [1].
On account of the MDS property, in order to update the value
of a stored element ci,a in an information node, one needs to
update at least one coordinate in every parity node [17]. From



(9) it is easy to see that for any i P rks and a “ 0, . . . , l´1, to
update ci,a, we only need to update ck`1,a, . . . , ck`r,a. Thus
Construction 1 gives an optimal update code.

IV. EXPLICIT MDS ARRAY CODES WITH d-OPTIMAL
REPAIR PROPERTY

The general construction in (2)-(3) can also be used to
construct an pn, k “ n ´ r, lq MDS array code C with d-
optimal repair property, k ď d ď n ´ 1.

Construction 2. Let F be a finite field of size |F | ě sn,
where s “ d`1´k. Let tλi,juiPrns,j“0,1,...,s´1 be sn distinct
elements in F. Consider the code family given by (2)-(3),
where l “ sn and

Ai “

l´1
ÿ

a“0

λi,aieae
T
a , i “ 1, . . . , n.

Here tea : a “ 0, 1, . . . , l´1u is the standard basis of F l over
F and ai is the i-th digit from the right in the representation
of a in the s-ary form, a “ pan, an´1, . . . , a1q.

Define api, uq and ci,a in the same way as in Sect. III.

Theorem IV.1. The code C given by Construction 2 is an
MDS code.

Proof: Same as the proof of Theorem III.2.
By the same arguments as in the previous section, C also has

low-complexity encoding, decoding, and the optimal update
property.

Let us show that the code C has d-optimal repair property.
Recall the definition of Generalized Reed-Solomon codes.

Definition IV.2. A Generalized Reed-Solomon code
GRSpn, k,Ω, vq Ď Fn of dimension k over F with
evaluation points Ω “ tω1, ω2, . . . , ωnu Ď F is the set of
vectors

tpv1fpω1q, . . . , vnfpωnqq P Fn : f P F rxs, deg f ď k ´ 1u

where v “ pv1, . . . , vnq P pF˚qn are some nonzero coeffi-
cients. If v “ p1, . . . , 1q, then the GRS code is called a Reed-
Solomon code.

Theorem IV.3. The code C given by Construction 2 has d-
optimal repair property.

Proof: Without loss of generality, we consider the case
of repairing C1. Let

µ
paq
j,1 :“

s´1
ÿ

u“0

cj,ap1,uq, j P t2, 3, . . . , nu. (10)

Using arguments similar to those that lead to (7), we obtain
»

—

—

—

—

—

–

1 1 . . . 1
λ1,0 λ1,1 . . . λ1,s´1

λ2
1,0 λ2

1,1 . . . λ2
1,s´1

...
...

...
...

λr´1
1,0 λr´1

1,1 . . . λr´1
1,s´1

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

c1,ap1,0q

c1,ap1,1q

...
c1,ap1,s´1q

fi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

—

–

1 1 . . . 1
λ2,a2 λ3,a3 . . . λn,an

λ2
2,a2

λ2
3,a3

. . . λ2
n,an

...
...

...
...

λr´1
2,a2

λr´1
3,a3

. . . λr´1
n,an

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

µ
paq
2,1

µ
paq
3,1
...

µ
paq
n,1

fi

ffi

ffi

ffi

ffi

fl

.

(11)

Define polynomials p0pxq “
śs´1

u“0px ´ λ1,uq, and pipxq “

xip0pxq for i “ 0, 1, . . . , r ´ s ´ 1. We have proved the case
of d “ n´1 in the previous section, so here we only consider
the case when d ă n ´ 1, and so r ´ s ´ 1 ě 0. Since the
degree of pipxq is less than r for all i “ 0, 1, . . . , r ´ s ´ 1,
we can write

pipxq “

r´1
ÿ

j“0

pi,jx
j .

Define the pr ´ sq ˆ r matrix

P “

»

—

—

–

p0,0 p0,1 . . . p0,r´1

p1,0 p1,1 . . . p1,r´1

...
...

...
...

pr´s´1,0 pr´s´1,1 . . . pr´s´1,r´1

fi

ffi

ffi

fl

.

Since

P

»

—

—

—

—

—

–

1 1 . . . 1
λ1,0 λ1,1 . . . λ1,s´1

λ2
1,0 λ2

1,1 . . . λ2
1,s´1

...
...

...
...

λr´1
1,0 λr´1

1,1 . . . λr´1
1,s´1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

p0pλ1,0q p0pλ1,1q . . . p0pλ1,s´1q

p1pλ1,0q p1pλ1,1q . . . p1pλ1,s´1q
...

...
...

...
pr´s´1pλ1,0q pr´s´1pλ1,1q . . . pr´s´1pλ1,s´1q

fi

ffi

ffi

fl

“0,

together with (11), we have

P

»

—

—

—

—

—

–

1 1 . . . 1
λ2,a2 λ3,a3 . . . λn,an

λ2
2,a2

λ2
3,a3

. . . λ2
n,an

...
...

...
...

λr´1
2,a2

λr´1
3,a3

. . . λr´1
n,an

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

µ
paq
2,1

µ
paq
3,1
...

µ
paq
n,1

fi

ffi

ffi

ffi

ffi

fl

“ 0. (12)

By (13) and the fact that p0pλ2,a2q, p0pλ3,a3q, . . . , p0pλn,anq

are all nonzero, pµ
paq
2,1, µ

paq
3,1, . . . , µ

paq
n,1q forms a Generalized

Reed-Solomon code of length n ´ 1 and dimension d.

Thus any d out of n ´ 1 elements in tµ
paq
2,1, µ

paq
3,1, . . . , µ

paq
n,1u

suffice to recover the whole set. Moreover, (11) implies
that tc1,ap1,0q, c1,ap1,1q, . . . , c1,ap1,s´1qu can be determined by
tµ

paq
2,1, µ

paq
3,1, . . . , µ

paq
n,1u. Consequently, we can recover C1 by

accessing any d surviving nodes and downloading the total
of dl{s symbols of F from these nodes. This completes the
proof.

V. MDS ARRAY CODES WITH d-OPTIMAL REPAIR
PROPERTY FOR SEVERAL VALUES OF d SIMULTANEOUSLY

In the previous two sections, we constructed MDS array
codes with d-optimal repair property for a single value of d.
In this section we give a simple extension of the previous con-
structions to make the code have d-optimal repair property for
several values of d simultaneously. Let n, k,m, d1, d2, . . . , dm
be any positive integers such that k ď d1, . . . , dm ă n. We
will show that by replacing s in Construction 2 with the value

s “ lcmpd1 ` 1 ´ k, d2 ` 1 ´ k, . . . , dm ` 1 ´ kq



P

»

—

—

—

—

—

–

1 1 . . . 1
λ2,a2 λ3,a3 . . . λn,an

λ2
2,a2

λ2
3,a3

. . . λ2
n,an

...
...

...
...

λr´1
2,a2

λr´1
3,a3

. . . λr´1
n,an

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

p0pλ2,a2q p0pλ3,a3q . . . p0pλn,anq

p1pλ2,a2q p1pλ3,a3q . . . p1pλn,anq
...

...
...

...
pr´s´1pλ2,a2q pr´s´1pλ3,a3q . . . pr´s´1pλn,anq

fi

ffi

ffi

fl

“

»

—

—

—

–

p0pλ2,a2q p0pλ3,a3q . . . p0pλn,anq

p0pλ2,a2qλ2,a2 p0pλ3,a3qλ3,a3 . . . p0pλn,anqλn,an

...
...

...
...

p0pλ2,a2qλr´s´1
2,a2

p0pλ3,a3qλr´s´1
3,a3

. . . p0pλn,anqλr´s´1
n,an

fi

ffi

ffi

ffi

fl

.

(13)

we obtain an pn, k, l “ snq MDS array code C with di-optimal
repair property for all i “ 1, . . . ,m simultaneously.

By Theorem IV.1, C is an MDS array code. In the next
theorem we establish results about the repair properties of the
code C.

Theorem V.1. The code C has di-optimal repair property for
any i P rms.

The proof can be found in [15].

Corollary V.2. The pn, k, pn ´ kqnq MDS array code given
by Construction 1 has d-optimal repair property if pd ` 1 ´

kq|pn ´ kq.

Example V.3. A pk ` 4, k, 4k`4q MDS array code given
by Construction 1 will automatically have pk ` 1q-optimal
repair property. A pk ` 6, k, 6k`6q MDS array code given by
Construction 1 has both pk ` 1q-optimal repair property and
pk ` 2q-optimal repair property.

VI. EXPLICIT MDS ARRAY CODES WITH ph, dq-OPTIMAL
REPAIR PROPERTY FOR ALL h ď r AND k ď d ď n ´ h

SIMULTANEOUSLY

Given integers n and r, we construct a family of pn, k “

n´ r, lq MDS array codes with ph, dq-optimal repair property
for all h ď r and k ď d ď n ´ h simultaneously. (The proofs
of this section can be found in [15].)

Construction 3. Let F be a finite field of size |F | ě sn,
where s “ lcmp1, 2, . . . , rq. Let tλi,juiPrns,j“0,1,...,s´1 be sn
distinct elements in F. Let l “ sn. Consider the code family
given by (2)-(3), where the matrices Ai are given by

Ai “

l´1
ÿ

a“0

λi,aieae
T
a , i “ 1, . . . , n. (14)

Here tea : a “ 0, 1, . . . , l ´ 1u is the standard basis of F l

over F and ai is defined in Construction 2.

VII. A FAMILY OF REED-SOLOMON CODES WITH
ASYMPTOTICALLY OPTIMAL REPAIR BANDWIDTH

In this section we take a different perspective of the repair
problem: rather than constructing codes with optimal repair
bandwidth, we study the repair bandwidth of a classical code
family, the RS codes. Such a study was recently undertaken
in [16], and we couple its linear repair scheme with the r-ary
expansion idea of [8], [11] to construct a family of RS codes
with asymptotically optimal repair bandwidth.

Given any n and k, we will specify a symbol field E, which
is a degree l finite field extension over some finite field F,
and a set of evaluation points Λ, and view the RSpn, k,Λq

codes as pn, k, lq array codes over F. We will show that they
have repair bandwidth bounded above by lpn`1q

n´k over the base
field F. Since the optimal repair bandwidth for an pn, k, lq

MDS array code is lpn´1q

n´k , we conclude that when n Ñ 8,
the ratio between the actual and the optimal repair bandwidth
approaches 1 (the corresponding quantity of the construction
in [16] is about 1.5).

A. The linear repair scheme of [16]

Suppose the symbol field of the code C “ RSpn, k,Λq

is E and we want to repair it over the base field F Ď E.
More precisely, if a single codeword symbol is erased, we
will recover this symbol by download sub-symbols of the base
field F from the surviving nodes. Let trpβq “ trE{F pβq :“

β`βq`βq2`¨ ¨ ¨`βql´1

be the trace function. In order to make
the repair scheme F -linear, [16] uses F -linear transforms
Lγ : E Ñ F given by the trace functionals Lγpβq “ trpγβq.

Let tζ1, . . . , ζlu be a basis for E over F, and let tµ1, . . . , µlu

be its dual (trace-orthogonal) basis, then for all β P E

β “

l
ÿ

i“1

ptrpζiβqµiq.

Therefore, we can make the following observation: If
tζ1, . . . , ζlu is a basis for E over F, then ttrpζiβquli“1 uniquely
determines β.

Let CK be the dual code of C “ RSpn, k,Λq. Suppose that
the codeword symbol ci in a codeword c “ pc1, . . . , cnq P C
is erased. We can find l codewords tcK

j “ pcK
j,1, . . . , c

K
j,nqulj“1

in CK such that tcK
1,i, . . . , c

K
l,iu is a basis of E over F. By

the observation above, knowing the values of ttrpcK
j,iciqulj“1

suffices to recover the erased symbol ci. Since the trace is an
F -linear transformation, we have

trpcK
j,iciq “ ´

ÿ

t‰i

trpcK
j,tctq for all j P rls.

Thus knowing the values of tttrpcK
j,tctqujPrlsutPrns,t‰i suffices

to recover ci. Let Bt be a maximal linearly independent
subset of the set tcK

j,tujPrls over F. Again due to the F -
linearity of the trace function, ttrpcK

j,tctqujPrls can be cal-
culated from ttrpβctquβPBt . Consequently, ci can be recov-
ered from tttrpβctquβPBtutPrns,t‰i. The total number of sub-



symbols in F we need to download from the surviving nodes
to recover ci is

ř

tPrns,t‰i dimF ptcK
j,tujPrlsq.

We conclude that to efficiently recover ci, we need
to find l codewords in CK that minimize the quan-
tity

ř

tPrns,t‰i dimF ptcK
j,tujPrlsq under the condition that

tcK
1,i, . . . , c

K
l,iu is a basis for E over F.

As already remarked, CK “ GRSpn, n ´ k,Λ, vq for some
nonzero coefficients v “ pv1, . . . , vnq P En. Choosing a
codeword from CK “ GRSpn, n ´ k,Λ, vq is equivalent to
choosing a polynomial with degree less than n ´ k. Suppose
Λ “ tα1, . . . , αnu. Since v1, . . . , vn are nonzero constants,
our task of efficiently repairing ci is reduced to finding l
polynomials tfjujPrls of degree less than n ´ k such that the
quantity

ÿ

tPrns,t‰i

dimF ptfjpαtqujPrlsq (15)

is minimized under the condition that tf1pαiq, . . . , flpαiqu is
a basis for E over F.

B. The choice of symbol field and evaluation points

In this section we show how to find a symbol field E and
a set of evaluation points Λ such that the corresponding RS
code has nearly optimal repair bandwidth.

Suppose that n and k are arbitrary fixed numbers. Let F
be a finite field and let hpxq P F rxs be a degree l irreducible
polynomial over F, where l “ rn, r “ n ´ k. Let β be a root
of hpxq and set the symbol field to be E “ F pβq, i.e., the
field generated by β over F. Clearly t1, β, β2, . . . , βl´1u is a
basis for E over F. Choose the set of evaluation points to be
Λ “ tβr0 , βr1 , . . . , βrn´1

u.

Theorem VII.1. The repair bandwidth of the code RSpn, k,Λq

over F is less than l n`1
n´k .

Proof. We need to show that for every i P rns, we can find
polynomials fi,j with degpfi,jq ă r, j “ 1, . . . , l such that
fi,1pβri´1

q, . . . , fi,lpβ
ri´1

q form a basis for E over F and

ÿ

0ďtăn,t‰i´1

dimF ptfi,jpβrtqujPrlsq ă
lpn ` 1q

n ´ k
.

For a “ 0, 1, . . . , l ´ 1, write its r-ary expansion as a “

pan, an´1, . . . , a1q, where ai is the i-th digit from the right.
Define the set of l polynomials tfi,jujPrls “ tβaxs : ai “

0, s “ 0, 1, . . . , r ´ 1u.
It is easy to verify that

tfi,jpβri´1

q : j P rlsu “ t1, β, β2, . . . , βl´1u

(as sets), so the elements tfi,jpβri´1

qujPrls form a basis for E
over F. When t ă i ´ 1, we have

tfi,jpβrtqujPrls “ tβa : ai “ 0u
ď

´

r´2
ď

u“0

tβa : ai “ 1, ai´1 “ ¨ ¨ ¨ “ at`2 “ 0, at`1 “ uu

¯

.

Thus dimF ptfi,jpβrtqujPrlsq ď l
r ` pr ´ 1q l

ri´t if t ă i ´ 1.
When t ą i ´ 1, we have

tfi,jpβrtqujPrls “ tβa : ai “ 0u
ď

´

r´2
ď

u“0

tβl`a : an “ ¨ ¨ ¨ “ at`2 “ 0, at`1 “ u, ai “ 0u

¯

.

Thus dimF ptfi,jpβrtqujPrlsq ď l
r `pr´1q l

rn´t`1 for t ą i´1.
An upper bound on the sum of the dimensions is given by:

ÿ

0ďtăn,t‰i´1

dimF ptfi,jpβrtqujPrlsq

ď pn ´ 1q
l

r
` pr ´ 1q

i´2
ÿ

t“0

l

ri´t
` pr ´ 1q

n´1
ÿ

t“i

l

rn´t`1

“ l
´n ´ 1

r
`

ri´1 ´ 1

ri
`

rn´i ´ 1

rn´i`1

¯

ă l
n ` 1

n ´ k
.

The proof is complete.

REFERENCES

[1] M. Blaum, P. G. Farell, and H. van Tilborg, “Array codes,” in Handbook
of Coding Theory, V. Pless and W. C. Huffman, Eds. Elsevier Science,
1998, vol. II, ch. 22, pp. 1855–1909.

[2] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. on
Information Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[3] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix
construction,” IEEE Trans. on Information Theory, vol. 57, no. 8, pp.
5227–5239, 2011.

[4] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran, “Interference
alignment in regenerating codes for distributed storage: Necessity and
code constructions,” IEEE Trans. on Information Theory, vol. 58, no. 4,
pp. 2134–2158, 2012.

[5] C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Trans. on Information Theory,
vol. 57, no. 3, pp. 1425–1442, 2011.

[6] Y. Wu and A. Dimakis, “Reducing repair traffic for erasure coding-based
storage via interference alignment,” in Proc. 2009 IEEE Int. Sympos.
Inform. Theory, 2009, pp. 2276–2280.

[7] V. Cadambe, S. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes
in distributed storage,” IEEE Trans. on Information Theory, vol. 59,
no. 5, pp. 2974–2987, 2013.

[8] V. Cadambe, C. Huang, and J. Li, “Permutation code: Optimal exact-
repair of a single failed node in MDS code based distributed storage
systems,” in Proc. 2011 IEEE Int. Sympos. Inform. Theory, 2011, pp.
1225–1229.

[9] V. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial length MDS
codes with optimal repair in distributed storage,” in Proc. 45th Asilomar
Conference on Signals, Systems and Computers, 2011, pp. 1850–1854.

[10] D. Papailiopoulos, A. Dimakis, and V. Cadambe, “Repair optimal erasure
codes through hadamard designs,” IEEE Trans. on Information Theory,
vol. 59, no. 5, pp. 3021–3037, 2013.

[11] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” IEEE Trans. on Information Theory, vol. 59, no. 3,
pp. 1597–1616, 2013.

[12] Z. Wang, I. Tamo, and J. Bruck, “Explicit MDS codes for optimal repair
bandwidth,” 2014, arXiv:1411.6328.

[13] ——, “On codes for optimal rebuilding access,” in Proceedings of
the 49th Annual Allerton Conference on Communication, Control and
Computing, 2011, pp. 1374–1381.

[14] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate MSR
codes over small fields,” 2015, arXiv:1505.00919.

[15] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” 2016, arXiv:1604.00454.

[16] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,”
2015, arXiv:1509.04764.

[17] I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. on Information Theory, vol. 60, no. 4, pp.
2028–2037, 2014.


